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Abstract. We examine the spline collocation method for a class of pseifférential equa-
tions on a two-dimensional torus. In the analysis, we assuomeiniform mesh, continuous
piecewise linear splines, and nodal point collocation. Bypying the “Arnold—Wendland
trick” we are able to carry out the stability and convergeacalysis. The results show quasi-
optimal order estimates for the convergence of the coliooatolution.
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1. INTRODUCTION

In the spline collocation method, an approximate solution for the equation
Au = f is searched from a finite dimensional spline space assuming that the given
equation is valid in collocation points. The boundary element spline collocation
solution is widely studied in the literature, and fundamental result$of cover
the analysis ifA is a strongly elliptic operator on a one-dimensional smooth
boundary curve.

If a quasi-uniform mesh is assumed, the stability and convergence araysis
be done by adopting the approach 4f [The basic idea is to reduce the collocation
problem to an equivalent Galerkin problem by means of the now well known
“Arnold—Wendland trick”. The same method is applied by Arnold and Sarfitje
in the analysis of periodic problems in the case of several dimensions.nahesis
considers partial differential equations of the second order, and liegquite easily
extended to the case of more general periodic problems if one assumdisethat
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principal symbol has constant coefficients. Unfortunately, this is notdse in
real applications arising, for example, if the boundary integral soluticelliptic
problems in several dimensions is considered.

A more general approach in the analysis can be adopted by assuming
that A is a strongly elliptic pseudodifferential operator. This class covers the
classical boundary integral operators, such as the single layer greuisiygular
operators, for example. The extensions of such problems to severahgsione
is studied in §~19]. Especially, in {*=1°] the collocation problem on a multi-
dimensional torus has been considered. While the analys{ in festricted to
pseudodifferential operators of order zero and analysis®%fi§ valid only for a
certain modified collocation, the analysis carried out%f][covers also a more
general case. However, a uniform mesh has been assunfedjrand the case of
a nonuniform mesh is open up to now.

In this work we analyse the spline collocation method assuming thé
in a class of strongly elliptic pseudodifferential operators on a two-dimaakio
torus. As trial functions we use the tensor products of continuous piseédiwear
splines with collocation at nodal points. A nonuniform mesh is assumed sthéhat
“Arnold—Wendland trick” can be employed. This leads to a certain nonatdnd
Galerkin method which is equivalent to the collocation problem. The obtained
results show quasi-optimal order estimates for the convergence of theat@io
solution. Detailed proofs for the results of this paper are giveriin [Also, the
trial space is expanded such that spline functions of arbitrary high edckd are
employed.

2. PRELIMINARIES

Our aim is to analyse the spline collocation method corresponding to the

equation
Au(z,y) = f(z,y),  (2,y) € T

whereT? is a two-dimensional torus and thus, the variablesdy are both one-
periodic. The operatod is a strongly elliptic classical pseudodifferential operator
of degreea. Below we will impose some additional properties for the operator
A. These conditions are needed in the analysis of the collocation problearand
known to be true for classical boundary integral operators.

Let a(m,n) denote the complex Fourier coefficient ofz,y). Then the
Sobolev spacéi®, s € R, of biperiodic distributions is defined through the norm

fulle={ 3 fatm.mPa? + 0} m = max(1,20m]).

nme”Z

We note that the embeddirg® C C; 1 (R?) is continuous ifs > 1. HereC 1 (R?)
refers to the space of continuous biperiodic functions. Furthermoraysedhe
notationZ(H*, H*') for the space of all bounded linear operatdrs H* — H*'.
Now we set the following conditions)—(c) for the operatorA.
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(@) Leta € R be given. For any € N there holds4d = Z A + AR, where
Ar € L(H® H*~ C“FJ) s € R, and the operatord;, 0 g j<J -1, have
the form

Aju(z,y) = Z a;(x,y, m,n)a(m,n) 2rmatny)
m,ne”

Here, the symbols;(z,y,m,n), 1 < j < J — 1, are inCS (R? x Z*) and
are bounded such that for all A € Ny there holds

050, aj(x,y,m,n)| < Cjunlm+n)*7, z,yeR, mmneZ (1)

(b) The principal symbokg of the main part operatof has the form
ao(%?/ﬁ%”) ZQOO(V(x)mvT(y)n)7 xayeRv m,nEZ,

where v and 7 are positive one-periodic smooth functions, an@d €
C>(R?) is a homogeneous function such that

CLOO(P&PU) = paa()O(gan)a P 2 ]-a |€| + |77| Z L.

(c) A:H®— H’ “isanisomorphism for akk € R, and strongly elliptic such
that there exists a constafit> 0 such that RéAwu, u)y > C ||uHZ/2 for any

u € H*/?. Here,(-,-)o is the L2-inner product.

In order to give an example of an operator that has propeg)efcj, we recall
from [°] the single layer boundary operatt defined by

u(Zr, gr) dst

) (xF;yF) € P)
4W r |(zr,yr) — (Zr,9r)

Vu(zr,yr)

wherel’ ¢ R? is a torus with radiir and R, anddsr is the element of the surface
area onl’. We note that, by using curvilinear coordinat&€scan be viewed as an
operator oril2. According to f], the principal symbol o¥ attains the form

il &) = o) (WP ),

wherev(xz) = R + r cos 27z is a positive smooth function. This principal symbol
does not fulfil the requirements db), but if we defineA = v(x)~1V, then the
main part ofA has the desired form with = —1. This modification is not crucial
from the collocation point of view.
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3. THE COLLOCATION PROBLEM

For any given positive integers/ and N we define nonuniform periodic
meshesA, = {2, }mez andA, = {yn }nez such thate,, < xmi1, Tmem =
xm + 1foralm € Z, andy, < yp+1, Ynan = yn + 1 foralln € Z. The
corresponding mesh parameters are definebd by= max,,cz |m+1 — x| @and
ha, = maxXpez [Yni1 — Yn|, and we denotén = max{ha,,ha,}. Let SA
andSA be the spaces of all one-periodic continuous piecewise Imear splines with
respect to the meshes, andA,. In the collocation method we apply the tensor
product trial spaceV = SAI ® SAy and nodal point collocation as follows:

Findua € MK : Aua(m, yn) = Au(@pm,yn), 1<m <M, 1<n<N.
2)

We note thatdw is continuous ifu € H*, s > a+ 1. Moreover,MJ, is a subspace
of H* if s < 3/2, and thereforedua is continuous forx < 0.

Let us define the operatots, = 0, + J, andg, = 9, + J,,, where

1 1
Jzu(x,y):/o u(z,y)dz, Jyu(ﬂsjy):/o u(z, z) dz.

Let us note thab,,d, € L(H®, H*™ ") andd, ! 8 € L(H® H®). Letus also
note thatd, 9, = 9,0, andd, 1Qy € L(H?, H3+1). Moreover, we define the

discretized counterpart of, by 95 = 9, + Ja,, Where

M-1

X 1 — Tm—1
Iagu(e,y) = Y = u(m, y)

m=0
is the trapezoidal rule approximation. The operatgr is defined analogously. Let
us now define the operatot, = QAZQA?!AQ;IQ;P

Let u be the solution ofdu = f. Let us consider the following Galerkin
problem:

Findua € My : (Ar0,0,un,0,0,v) = (Aprd,0,u,0,0,v),  vE Ma.
3
Here(-, -) refers to the duality brackets and is an extension ofthinner product.
There holds

Lemma 1. The collocation problem(2) and the Galerkin problem(3) are
equivalent.
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4. MAPPING PROPERTIES OF THE STUDIED OPERATORS

By the formulad = 0,0,A0,'0," we define a modified operatad
corresponding to any bounded operatorin what follows we need the operator

J—1
A=0,0,A0,'9," = A;+ Ap.
j=0

Lemma 2. Let (a)—(c) be valid and assume thatc H*/>*2 anda < 0. Then
there exists a constaidt > 0 such that

(A = Ar)0,0,ull—aj2 < Chall,0yullas-

Hereby, the differencel — A, is “small” and the properties of the operatdr
instead of Ax can be applied. The quasi-optimal approximation result can be
proved by employing the decompositich = A + (A — A). Here it is crucial
that A € L(H®, H°~) is strongly elliptic as stated irc), and that4 — A is a
compact mapping off® into H5~< as will be shown next.

Theorem 3. Let assumptionga) and (b) be valid and let A = QzQyAﬁglﬁzjl.
ThenA — A € L(H®, H* 1),

Proof. There holdsd — A = Y72 0(4; — A;) + (Ag — Ag). First, Ag €
L(H*,H*~**/) by definition and ifJ > 2, then Ap € L(H?® H*~t1),
Moreover, the boundedness condition (1) imposed for symbgls,y,m,n),
1 < j < J — 1, yields that the corresponding operaterse £(H*®, H~*t7). A
similar result in the one-periodic case is given, for example' 4 Theorem 7.3.1.
Consider next the modified operatots, 1 < j < J — 1. The symbol of4; is

a; (x7 y,m, n) _ O_(m>—1o_(n)—1Qny (aj (iL‘, y,m, n) ei27r(m1’+ny) ) e—i27r(m:c+ny),

whereo(m) = i2rm if m # 0, ando(0) = 1. Furthermore, the Fourier
coefficients o@j are bounded such that

| (i, 7, m,m)| < Cr(rn + 7)™ (m+n)* 7,

wherer can be any non-negative integer. Therefore, it can be concludeellsioa
Aj € L(H®, H*~*%), cf. the proof of Theorem 7.3.1in7].
Considering the main part operator, we employ the decomposition

Ay — Ao = 0,Bood, " + Box,

where
BOO - QmAOQ;1 - AO, BO]_ = QyAOQy_l o AO.
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The Fourier coefficients of the symbol oBy, are Boo(m,ﬁ,m,n) =
(m/m) ap(m,n, m,n). Therefore, with any, ¢ € N, there holds

’8“8%00 (z,y,m,n)| <C Z MATLPRA |~ 1|5p(913a0(m n,m,n)|, m# 0.

m,NEZL
(4)
Recall the properties of the symha] given in ). There exist positive constants
¢, ande; such thav(z) > ¢, andr(z) > ¢;. Lete,, = min{c,, ¢, }/2m. Then
we can choosg = ¢, -(m + n) and have

aon(vam, 7)) = paon (“2, ) sl > (ainfecr)

By applying formula (0.430) in'f] for the general order derivative of composite
function we find that

P q
e vir)m T n
:Zzpa k lmkanllf,p(x)Ri_,q(y)aggl)( (z) ’ (v) >

k=11=1 P P

Here the superscript notation iy indicates the partial derivatives with respect to
the first and the second argument, and

o 5 (St ot

The functionR?q(y) is defined analogously. Hence we find that
‘3:03']@00 z)m, T(y)n)‘ < Cpglm| - (m +ﬂ)a_1- (5)

Next we combine (4) and (5) and chogsandg such that the series on the right-
hand side is convergent. Then we have

050, boo (2, y, m,n)| < Cx(m+n)* . (6)

Therefore,Byg € L(H?®, H5~**1). Also, the operato3y; has the same property
based on symmetry. It remains to consider the ope@}(ﬂoo@jl. Since (6)

is valid, we can proceed in a similar way as in the case of the operaitprs
1 < j < J -1, earlier in the proof. As an outcome we find t@tBOOQ;1

also inL(H$, Hs—o+1), O
Based on Theorem 3 and the Fredholm propertied ofe can prove

Theorem 4. Let assumptionga)—(c) be valid. Then the operatad is an iso-
morphism ofH® onto H*~“ for anys € R.
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5. STABILITY AND CONVERGENCE RESULTS

We note that), 9, is an isomorphism of, onto M) = 5% ® SA , Which
is the space of tensor products of the one-dimensional piecewise closs]sliaas
Moreover,MY, is a subspace o/ if o < 0. Therefore, we can employ in the
spaceM} the norm

lull = 11020y ullay2, u € M.

Based on the equivalence of the collocation problem (2) and the Galerkin
problem (3), Theorem 4, and the Babuska—Aziz infsup-condition [$§g we
can prove

Theorem 5. Let A be defined bya)—(c) and suppose that € H*/?*2 anda < 0.
Then there existg, > 0 such that the collocation proble(2) has a unique solution
provided thatd < ha < hg. Moreover we have the quasi-optimal approximation
result

Ju—uall < Cinf {Jlu—v] : v € MA}.

In the convergence analysis we need the spat&sdefined through the norm

1/2
ul|g,r = a(m,n)*m*n® s,r € R.
’ )

m,nez

The notations’A, and P, correspond to the one-dimensional projectiond df
functions to the appropriate spaces of splines. The one-dimensiomakapgtion
result (see'P]) implies that

Ju— Pa,ullpq < ChSA;pHuHs,qv ue H>,
lu— Pa,ullpg < Chy Hlullpy,  uwe H,
whenever) < p < s < 2,p < 3/2and0 < ¢ < r < 2,9 < 3/2. By

Pn = Pa,Pa, we denote the projection off® into Mj. By applying the
decompositiol — P = I — Pa, + Pa,(I — Pa,) and the norm

/ : 2 2 1/2
leallo = { inf {llual2 o0 + ol o+ w = w1 + s} §
we can prove the following approximation result.

Lemma 6. If o < 0, there holds
Jlu— Paull < ChY " |lullag,  ue H>?
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By applying Lemma 6 and the quasi-optimality approximation result of
Theorem 5 we obtain the following convergence results for the collocatiatian.

Theorem 7. Letu € H??2 be the solution of the equatiodu = f, and leta < 0.
If un € MY is the solution of the collocation proble(®), then there exists a
positivehg such that ifd < ha < hg, there holds

1—a/2
lu —uall < Chiy *"|ull22,

|lu —uall1,1 < Clha,, ha,)hallull2,2,

- )| < C(ha,,ha, )h ,
(IIE)%{ZKU un)(z,y)| < Clha,, ha,)hallull2,2

whereC(ha,, ha,) = C(1 + max{(ha,/ha,)*? (ha,/ha,)”/}).
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Lineaarsplainidega kollokatsioonimeetod
pseudodiferentsiaalvorrandite jaoks tooril

Juha Anttila, Jyri Hamalainen ja Jukka Saranen

On kasitletud kahemddtmelisel tooril maéaratud pseudodiferentsiaalvérrandite
lahendamist kollokatsioonimeetodiga. On vaadeldud juhtu, kus koordin&atfu
sioonideks on tensorkorrutised pidevatest tikiti lineaarsetest spldinmies
kollokatsioonipunktid langevad kokku vérgu sGlmedega. On uuritud kaHoka
sioonimeetodi koonduvust ja koonduvuskiirust mittetihtlaste vorkudekorr
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