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Abstract. We examine the spline collocation method for a class of pseudodifferential equa-
tions on a two-dimensional torus. In the analysis, we assumenonuniform mesh, continuous
piecewise linear splines, and nodal point collocation. By employing the “Arnold–Wendland
trick” we are able to carry out the stability and convergenceanalysis. The results show quasi-
optimal order estimates for the convergence of the collocation solution.
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1. INTRODUCTION

In the spline collocation method, an approximate solution for the equation
Au = f is searched from a finite dimensional spline space assuming that the given
equation is valid in collocation points. The boundary element spline collocation
solution is widely studied in the literature, and fundamental results of [1−5] cover
the analysis ifA is a strongly elliptic operator on a one-dimensional smooth
boundary curve.

If a quasi-uniform mesh is assumed, the stability and convergence analysiscan
be done by adopting the approach of [1]. The basic idea is to reduce the collocation
problem to an equivalent Galerkin problem by means of the now well known
“Arnold–Wendland trick”. The same method is applied by Arnold and Saranen [3]
in the analysis of periodic problems in the case of several dimensions. The analysis
considers partial differential equations of the second order, and it can be quite easily
extended to the case of more general periodic problems if one assumes thatthe
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principal symbol has constant coefficients. Unfortunately, this is not thecase in
real applications arising, for example, if the boundary integral solution ofelliptic
problems in several dimensions is considered.

A more general approach in the analysis can be adopted by assuming
that A is a strongly elliptic pseudodifferential operator. This class covers the
classical boundary integral operators, such as the single layer and hypersingular
operators, for example. The extensions of such problems to several dimensions
is studied in [6−10]. Especially, in [6,8−10] the collocation problem on a multi-
dimensional torus has been considered. While the analysis in [8] is restricted to
pseudodifferential operators of order zero and analysis of [10] is valid only for a
certain modified collocation, the analysis carried out in [6,9] covers also a more
general case. However, a uniform mesh has been assumed in [6−9] and the case of
a nonuniform mesh is open up to now.

In this work we analyse the spline collocation method assuming thatA is
in a class of strongly elliptic pseudodifferential operators on a two-dimensional
torus. As trial functions we use the tensor products of continuous piecewise linear
splines with collocation at nodal points. A nonuniform mesh is assumed so thatthe
“Arnold–Wendland trick” can be employed. This leads to a certain nonstandard
Galerkin method which is equivalent to the collocation problem. The obtained
results show quasi-optimal order estimates for the convergence of the collocation
solution. Detailed proofs for the results of this paper are given in [11]. Also, the
trial space is expanded such that spline functions of arbitrary high odd degree are
employed.

2. PRELIMINARIES

Our aim is to analyse the spline collocation method corresponding to the
equation

Au(x, y) = f(x, y), (x, y) ∈ T
2,

whereT2 is a two-dimensional torus and thus, the variablesx andy are both one-
periodic. The operatorA is a strongly elliptic classical pseudodifferential operator
of degreeα. Below we will impose some additional properties for the operator
A. These conditions are needed in the analysis of the collocation problem andare
known to be true for classical boundary integral operators.

Let û(m, n) denote the complex Fourier coefficient ofu(x, y). Then the
Sobolev spaceHs, s ∈ R, of biperiodic distributions is defined through the norm

‖u‖s =
{

∑

n,m∈Z

|û(m, n)|2(m2 + n2)s
}1/2

, m = max{1, 2π|m|}.

We note that the embeddingHs ⊂ C1,1(R
2) is continuous ifs > 1. HereC1,1(R

2)
refers to the space of continuous biperiodic functions. Furthermore, weuse the
notationL(Hs, Hs′) for the space of all bounded linear operatorsA : Hs → Hs′ .
Now we set the following conditions (a)–(c) for the operatorA.
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(a) Let α ∈ R be given. For anyJ ∈ N there holdsA =
∑J−1

j=0 Aj +AR, where
AR ∈ L(Hs, Hs−α+J), s ∈ R, and the operatorsAj , 0 ≤ j ≤ J − 1, have
the form

Aju(x, y) =
∑

m,n∈Z

aj(x, y, m, n)û(m, n) ei2π(mx+ny) .

Here, the symbolsaj(x, y, m, n), 1 ≤ j ≤ J − 1, are inC∞

1,1(R
2 × Z2) and

are bounded such that for allκ, λ ∈ N0 there holds

|∂κ
x∂λ

y aj(x, y, m, n)| ≤ Cj,κ,λ(m + n)α−j , x, y ∈ R, m, n ∈ Z. (1)

(b) The principal symbola0 of the main part operatorA0 has the form

a0(x, y, m, n) = a00(ν(x)m, τ(y)n), x, y ∈ R, m, n ∈ Z,

where ν and τ are positive one-periodic smooth functions, anda00 ∈
C∞(R2) is a homogeneous function such that

a00(ρξ, ρη) = ραa00(ξ, η), ρ ≥ 1, |ξ| + |η| ≥ 1.

(c) A : Hs → Hs−α is an isomorphism for alls ∈ R, and strongly elliptic such
that there exists a constantC > 0 such that Re(Au, u)0 ≥ C ‖u‖2

α/2 for any

u ∈ Hα/2. Here,(·, ·)0 is theL2-inner product.

In order to give an example of an operator that has properties (a)–(c), we recall
from [6] the single layer boundary operatorV , defined by

V u(xΓ, yΓ) =
1

4π

∫

Γ

u(x̃Γ, ỹΓ) dsΓ
∣

∣(xΓ, yΓ) − (x̃Γ, ỹΓ)
∣

∣

, (xΓ, yΓ) ∈ Γ,

whereΓ ⊂ R3 is a torus with radiir andR, anddsΓ is the element of the surface
area onΓ. We note that, by using curvilinear coordinates,V can be viewed as an
operator onT2. According to [6], the principal symbol ofV attains the form

aV0
(x, y, ξ, η) =

1

2
ν(x)

(

ν(x)2ξ2/r2 + η2
)

−1/2
,

whereν(x) = R + r cos 2πx is a positive smooth function. This principal symbol
does not fulfil the requirements of (b), but if we defineA = ν(x)−1V , then the
main part ofA has the desired form withα = −1. This modification is not crucial
from the collocation point of view.
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3. THE COLLOCATION PROBLEM

For any given positive integersM and N we define nonuniform periodic
meshes∆x = {xm}m∈Z and∆y = {yn}n∈Z such thatxm < xm+1, xm+M =
xm + 1 for all m ∈ Z, andyn < yn+1, yn+N = yn + 1 for all n ∈ Z. The
corresponding mesh parameters are defined byh∆x

= maxm∈Z |xm+1 − xm| and
h∆y

= maxn∈Z |yn+1 − yn|, and we denoteh∆ = max{h∆x
, h∆y

}. Let S1
∆x

andS1
∆y

be the spaces of all one-periodic continuous piecewise linear splines with
respect to the meshes∆x and∆y. In the collocation method we apply the tensor
product trial spaceM1

∆ = S1
∆x

⊗ S1
∆y

and nodal point collocation as follows:

Findu∆ ∈ M1
∆ : Au∆(xm, yn) = Au(xm, yn), 1 ≤ m ≤ M, 1 ≤ n ≤ N.

(2)
We note thatAu is continuous ifu ∈ Hs, s > α+1. Moreover,M1

∆ is a subspace
of Hs if s < 3/2, and therefore,Au∆ is continuous forα ≤ 0.

Let us define the operators∂x = ∂x + Jx and∂y = ∂y + Jy, where

Jxu(x, y) =

∫ 1

0
u(z, y) dz, Jyu(x, y) =

∫ 1

0
u(x, z) dz.

Let us note that∂x, ∂y ∈ L(Hs, Hs−1) and∂−1
x , ∂−1

y ∈ L(Hs, Hs). Let us also
note that∂x∂y = ∂y∂x and∂−1

x ∂−1
y ∈ L(Hs, Hs+1). Moreover, we define the

discretized counterpart of∂x by ∂∆x
= ∂x + J∆x

, where

J∆x
u(x, y) =

M−1
∑

m=0

xm+1 − xm−1

2
u(xm, y)

is the trapezoidal rule approximation. The operator∂∆y
is defined analogously. Let

us now define the operator̃A∆ = ∂∆x
∂∆y

A∂−1
x ∂−1

y .

Let u be the solution ofAu = f . Let us consider the following Galerkin
problem:

Findu∆ ∈ M1
∆ : 〈Ã∆∂x∂yu∆, ∂x∂yv〉 = 〈Ã∆∂x∂yu, ∂x∂yv〉, v ∈ M1

∆.
(3)

Here〈·, ·〉 refers to the duality brackets and is an extension of theL2-inner product.
There holds

Lemma 1. The collocation problem(2) and the Galerkin problem(3) are
equivalent.
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4. MAPPING PROPERTIES OF THE STUDIED OPERATORS

By the formula Ã = ∂x∂yA∂−1
x ∂−1

y we define a modified operator̃A
corresponding to any bounded operatorA. In what follows we need the operator

Ã = ∂x∂yA∂−1
x ∂−1

y =
J−1
∑

j=0

Ãj + ÃR.

Lemma 2. Let (a)−(c) be valid and assume thatu ∈ Hα/2+2 andα ≤ 0. Then
there exists a constantC > 0 such that

‖(Ã − Ã∆)∂x∂yu‖−α/2 ≤ Ch∆‖∂x∂yu‖α/2.

Hereby, the differencẽA − Ã∆ is “small” and the properties of the operator̃A
instead ofÃ∆ can be applied. The quasi-optimal approximation result can be
proved by employing the decompositioñA = A + (Ã − A). Here it is crucial
thatA ∈ L(Hs, Hs−α) is strongly elliptic as stated in (c), and thatÃ − A is a
compact mapping ofHs into Hs−α as will be shown next.

Theorem 3. Let assumptions(a) and (b) be valid, and letÃ = ∂x∂yA∂−1
x ∂−1

y .

ThenÃ − A ∈ L(Hs, Hs−α+1).

Proof. There holdsÃ − A =
∑J−1

j=0 (Ãj − Aj) + (ÃR − AR). First, AR ∈

L(Hs, Hs−α+J) by definition and if J ≥ 2, then ÃR ∈ L(Hs, Hs−α+1).
Moreover, the boundedness condition (1) imposed for symbolsaj(x, y, m, n),
1 ≤ j ≤ J − 1, yields that the corresponding operatorsAj ∈ L(Hs, Hs−α+j). A
similar result in the one-periodic case is given, for example, in [12], Theorem 7.3.1.

Consider next the modified operatorsÃj , 1 ≤ j ≤ J − 1. The symbol ofÃj is

aj(x, y, m, n) = σ(m)−1σ(n)−1∂x∂y

(

aj(x, y, m, n) ei2π(mx+ny)
)

e−i2π(mx+ny),

where σ(m) = i2πm if m 6= 0, and σ(0) = 1. Furthermore, the Fourier
coefficients ofaj are bounded such that

|âj(m̂, n̂, m, n)| ≤ Cr(m̂ + n̂)−r(m + n)α−j ,

wherer can be any non-negative integer. Therefore, it can be concluded that also
Ãj ∈ L(Hs, Hs−α+j), cf. the proof of Theorem 7.3.1 in [12].

Considering the main part operator, we employ the decomposition

Ã0 − A0 = ∂yB00∂
−1
y + B01,

where
B00 = ∂xA0∂

−1
x − A0, B01 = ∂yA0∂

−1
y − A0.
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The Fourier coefficients of the symbol ofB00 are b̂00(m̂, n̂, m, n) =
(m̂/m) â0(m̂, n̂, m, n). Therefore, with anyp, q ∈ N, there holds

∣

∣∂κ
x∂λ

y b00(x, y, m, n)
∣

∣ ≤ C
∑

m̂,n̂∈Z

m̂κ+1−pn̂λ−q|m|−1|∂̂p
x∂q

ya0(m̂, n̂, m, n)|, m 6= 0.

(4)
Recall the properties of the symbola0 given in (b). There exist positive constants
cν andcτ such thatν(x) ≥ cν andτ(x) ≥ cτ . Let cν,τ = min{cν , cτ}/2π. Then
we can chooseρ = cν,τ (m + n) and have

a00(ν(x)m, τ(y)n) = ραa00

(ν(x)m

ρ
,
τ(y)n

ρ

)

, |m|+|n| ≥
(

min{cν , cτ}
)

−1
.

By applying formula (0.430) in [13] for the general order derivative of composite
function we find that

∂p
x∂q

ya00(ν(x)m, τ(y)n)

=

p
∑

k=1

q
∑

l=1

ρα−k−lmknlRk,p
ν (x)Rl,q

τ (y)a
(k,l)
00

(ν(x)m

ρ
,
τ(y)n

ρ

)

.

Here the superscript notation ina00 indicates the partial derivatives with respect to
the first and the second argument, and

Rk,p
ν (x) =

1

k!

k−1
∑

k′=0

(

k

k′

)

(−1)k′

ν(x)k′

Dp
x

(

ν(x)k−k′)

.

The functionRl,q
τ (y) is defined analogously. Hence we find that
∣

∣∂p
x∂q

ya00(ν(x)m, τ(y)n)
∣

∣ ≤ Cp,q|m| · (m + n)α−1. (5)

Next we combine (4) and (5) and choosep andq such that the series on the right-
hand side is convergent. Then we have

∣

∣∂κ
x∂λ

y b00(x, y, m, n)
∣

∣ ≤ Cκ,λ(m + n)α−1. (6)

Therefore,B00 ∈ L(Hs, Hs−α+1). Also, the operatorB01 has the same property
based on symmetry. It remains to consider the operator∂yB00∂

−1
y . Since (6)

is valid, we can proceed in a similar way as in the case of the operatorsÃj ,
1 ≤ j ≤ J − 1, earlier in the proof. As an outcome we find that∂yB00∂

−1
y is

also inL(Hs, Hs−α+1).

Based on Theorem 3 and the Fredholm properties ofÃ we can prove

Theorem 4. Let assumptions(a)–(c) be valid. Then the operator̃A is an iso-
morphism ofHs ontoHs−α for anys ∈ R.
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5. STABILITY AND CONVERGENCE RESULTS

We note that∂x∂y is an isomorphism ofM1
∆ ontoM0

∆ = S0
∆x

⊗ S0
∆y

, which
is the space of tensor products of the one-dimensional piecewise constant splines.
Moreover,M0

∆ is a subspace ofHα/2 if α ≤ 0. Therefore, we can employ in the
spaceM1

∆ the norm

|||u||| = ‖∂x∂yu‖α/2, u ∈ M1
∆.

Based on the equivalence of the collocation problem (2) and the Galerkin
problem (3), Theorem 4, and the Babuska–Aziz infsup-condition (see[14]), we
can prove

Theorem 5. LetA be defined by(a)−(c) and suppose thatu ∈ Hα/2+2 andα ≤ 0.
Then there existsh0 > 0 such that the collocation problem(2) has a unique solution
provided that0 < h∆ ≤ h0. Moreover, we have the quasi-optimal approximation
result

|||u − u∆||| ≤ C inf
{

|||u − v||| : v ∈ M1
∆

}

.

In the convergence analysis we need the spacesHs,r defined through the norm

‖u‖s,r =
{

∑

m,n∈Z

|û(m, n)|2m2sn2r
}1/2

, s, r ∈ R.

The notationsP∆x
andP∆y

correspond to the one-dimensional projections ofL2-
functions to the appropriate spaces of splines. The one-dimensional approximation
result (see [15]) implies that

‖u − P∆x
u‖p,q ≤ Chs−p

∆x
‖u‖s,q, u ∈ Hs,q,

‖u − P∆y
u‖p,q ≤ Chr−q

∆y
‖u‖p,r, u ∈ Hp,r,

whenever0 ≤ p ≤ s ≤ 2, p < 3/2 and 0 ≤ q ≤ r ≤ 2, q < 3/2. By
P∆ = P∆x

P∆y
we denote the projection ofH0 into M1

∆. By applying the
decompositionI − P∆ = I − P∆x

+ P∆x
(I − P∆y

) and the norm

‖u‖′α/2 =
{

inf
{

‖u1‖
2
α/2,0 + ‖u2‖

2
0,α/2 : u = u1 + u2

}

}1/2

we can prove the following approximation result.

Lemma 6. If α ≤ 0, there holds

|||u − P∆u||| ≤ Ch
1−α/2
∆ ‖u‖2,2, u ∈ H2,2.
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By applying Lemma 6 and the quasi-optimality approximation result of
Theorem 5 we obtain the following convergence results for the collocation solution.

Theorem 7. Letu ∈ H2,2 be the solution of the equationAu = f , and letα ≤ 0.
If u∆ ∈ M1

∆ is the solution of the collocation problem(2), then there exists a
positiveh0 such that if0 < h∆ ≤ h0, there holds

|||u − u∆||| ≤ Ch
1−α/2
∆ ‖u‖2,2,

‖u − u∆‖1,1 ≤ C(h∆x
, h∆y

)h∆‖u‖2,2,

max
(x,y)∈R2

|(u − u∆)(x, y)| ≤ C(h∆x
, h∆y

)h∆‖u‖2,2,

whereC(h∆x
, h∆y

) = C
(

1 + max{(h∆x
/h∆y

)α/2, (h∆x
/h∆y

)−α/2}
)

.
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Lineaarsplainidega kollokatsioonimeetod
pseudodiferentsiaalvõrrandite jaoks tooril

Juha Anttila, Jyri Hämäläinen ja Jukka Saranen

On käsitletud kahemõõtmelisel tooril määratud pseudodiferentsiaalvõrrandite
lahendamist kollokatsioonimeetodiga. On vaadeldud juhtu, kus koordinaatfunkt-
sioonideks on tensorkorrutised pidevatest tükiti lineaarsetest splainidest ning
kollokatsioonipunktid langevad kokku võrgu sõlmedega. On uuritud kollokat-
sioonimeetodi koonduvust ja koonduvuskiirust mitteühtlaste võrkude korral.
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