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Abstract. Algebraic transformations for nonlinear and nonhomogeneous ordinary differential
equations are introduced that yield, step by step, quasilinear forms and analytic solutions on small
subintervals. Usually in the relevant physical example these analytical solutions allow us to obtain
the time evolution operator, for any initial conditions.
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1. INTRODUCTION

Many problems in physics, chemistry, engineering, and operative research
are mathematically formulated using ordinary differential equations. These
equations are neither linear nor homogeneous and they are endowed with
variable coefficients. In such cases the analytic solutions are difficult to obtain or
they are generated by doubtful approaches. Many calculation methods exist [*?],
agood summary of which can be found in [>“].

In this work we show that it is possible to obtain numeric solutions using the
theory of linear equations. We propose a calculation method step by step. These
steps represent the solutions in the basis associated to the linear form of the
problem.
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2. THE PROBLEM
Let us consider the differential equation in ageneral form
F(xt), xXP@),..., xM(t),t) =0, (2.2)
X (tg) =4, j=0, n-1
or, when possible, as the equivalent system of equations:
;/k = f(Yore-s Yoo O, (2.2)
Yk (to) = Yko» k=1 n.

Let us further suppose that Eg. (2.1) may be nonlinear or linear with variable
coefficients, but it can be reduced to the quasilinear form:

n

Z}ajx(j)(t) =f, (2.3)
]:
where
a; =a;(x,x®,...,x" 1), (2.4)
f=f(xx?,...,x" 1), (2.5)

We have written the same equation in different forms in order to use some
properties of the linear systems.

3. LINEARIZATION AND EVOLUTION OPERATOR

We add the condition that both a; and f would be nonsingular functions to
integrate Eq. (2.3). More precisdly, these functions must be continuous with
respect to t and to the set of variables x, x®,..., x"™®, in acertain domain of t.
As in other classica methods the derivability condition of a; and f is not

I
necessary. Let usdecompose the t domaininintervals |,, defined as

Ti StSti+l, ti+l :ti +hi1 (31)

where h, >0 is the width of the interval |, and i =0,1,...n. We will consider
two cases.
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3.1 Case f = f (1)

In this case we consider Eq. (2.3) ineachinterval |, as

iaﬂ-a‘”(t) =f(t), tOl;, (32)
=0

where z (t) isan estimated function of x(t) intheinterva 1|,, and
a; =a;(z(t), Zi(l) ), Zi(n_l) (t) t). (33)

Now we solve the linear equation (3.2) in the interval |, beginning with the
initial condition at t =0, then integratingin |,, obtaining theinitial condition at
t,, integrating in I,,..., etc. For each interval |; we obtain the estimated
solution,

Z(1) = ckdk(t) + zp(t), (34)
k=1

where {@, (t)} isaset of N linearly independent solutions of the homogeneous
version of Eq. (3.2) and z,(t) is a particular solution of its nonhomogeneous
version. Constant ¢, can be computed using the boundary conditions at t =t
more precisely, by solving the system

D)= ca®)+20), 120, n—
) kzlqk‘ﬁk () +2p () -t (35)
25 (to) = X" (to).

This system can be solved since {¢, (t)} is a linearly independent set of
solutions. In this way we have obtained an analytic approximation of x(t) in the
ith interval given by Eq. (3.4). In order to compute the solution in these intervals
..., theinitial conditions Z{)(t), 1 =0,...,n-1 at t,,,are determined with their
derivatives. Formally we can say that

Z(t.) =G(z ), P (t),.... 2"V (1)), (3.6)

or, written in a more compact way,
z,=Rz, 3.7)
where P isthe evolution operator in theinterval |; and z isthe estimated value
of x in t;. So we can determine the solution of Eqg. (2.1) in an approximative

way, with continuity up to the (n—1)th derivative.
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32 Case f = f(x,x® ... x("D t)

When, via factorization, this problem is written asin Eq. (2.3), it may happen
that the function f will be such that the terms which eventually appear cannot
be incorporated in the quasilinear form. Then in each element |; we can definea
number

fo= Fxt),..., x" (), t). (3.8)

The nonhomogeneous terms are taken as constants and Eq. (2.3) reads
n .
> &z ()= (3.9
]=0

Then we can follow the procedure as in the previous subsection. We could also
work with greater precision if we defined

fi= £ (x(t),.... xX"V(t), 1) = g (t). (3.10)

In this case, however, some difficulties appear when we try to compute the
solution of the particular inhomogeneous equation, so we will not follow this
path.

4. LYAPUNOV STABILITY

One of the advantages of using the sectional continuous linear equation
(obtained by reducing Eq. (2.3) to the quasilinear form and using Egs. (3.3),
(3.8)) isthat in each interval we have an nth-order linear equation with a constant
coefficient that allows us to study the stability of the solution using the Lyapunov
criterion [?]. This can be done using the basis {@.}. Then, if in our nonlinear
problem we have a sequence of intervals, where at least one root of the
characteristic polynomial associated to the linear equations is positive, we can
find a subset of the set solution, where these solutions evolve in an exponentia
way. Then this will be a critical consideration for the choice of h;. In this way
we have a quasiempirical method for finding transition or chagtic regions, as can
be seein Section 9.

5.STRUCTURAL STABILITY
The evolution operators may create a problem if the roots of their

characteristic polynomial of Eg. (3.2) vanish, or are very close to zero. In this
case small fluctuations in the equation coefficients, produced by the numerica
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truncation or by a systematical error, may cause changes of signs of the value of
the roots, and therefore substantial modifications in the form of the solution.

If at least one of the roots persists to be near zero, the efficiency of the method
can be in danger. Nevertheless, this problem is also present in usual methods as,
e.g., the Runge—K utta method for different orders[®7].

6. NUMERICAL CONVERGENCE

We do not have an analytic result to obtain a convergence condition, but it is
clear that when h — 0O, the numerical results tend to exact solutions, but it is not
a useful criterion. We can use a pragmatic criterion to determine the “rdiability”
of the sectional analytic solutions. Since these solutions depend on the value of
h, we must study the sensibility of the solution by varying h and determine an
appropriate step as afunction of the desired degree of precision.

When we can find at least a constant of motion, this constant must not be used
to reduce the order of the equation, but must be taken as a control variable. Then
the selection of the integration step can be determined by the maximum variation
of the motion constants, according to the degree of precision required by the
problem.

7.A SSMPLE MODEL

As the first example of the nonlinear system the ecological model of
Volterra[?] isstudied. It is defined by the system

d
— X = X(a-hy),
ot (7.1)

d
—y=-y(c-dx),
i) ¥( )

where x is the population of the vegetarian species and v is the population of
the predator of the species x and a, b, ¢, d are constants of the systems. The first
integral of Eq. (7.1) is

In(y®x®) —by —dx=C. (7.2

Using the calculation technique developed in Section 3, we get the iterative
solution

X+1 = X exp(a;h),

(7.3)
Yia = Yiexp(Bih),
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where

a; =a-—by,
(7.4)
i =-c+dx,
and h isthe timeincrement. The evolution of the motion constant (7.2) is
C..=C, +E, (7.5)
where E; istheerror of the method,
2 2 h2
E =-(dxai +by; )7 (7.6)
and
E, =0, 0i, (7.7)
when theinitial conditions of Egs. (7.1) are
=c/d,
% =¢/ (7.8)
Yo =a/b.

8. BESSEL’'S EQUATION

As the second example, a linear problem with variable coefficients is studied,
more precisely the modified Bessel equation of integer order,

sz—2W+ ziw—(22+wz)w=0 (8.1)
dz? dz ' '

The analytical solutions are expressed as linear combinations of the modified
Bessel functions of integer order [7],

(2, K(2).

According to the structure of our calculation method, the solution of Eq. (8.1) is
represented using a real exponential basis. In this way the discrete solutions to
wW(z) and w(z) are expressed as
Wiy = Crexp(Ry'h) +Crexp(Ryh), (8.2)
W' b1 = PYCexp(Pih) + P Crexp(Prh), '

where
Cr: = Zn(V\/n _WnPn_)v

n ] (8.3)
Cn =Zn(WnPn _Wn)’
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Pt = -2_;@1 J1+ 472 . (8.4)

z, =nh, n isinteger. (8.5
For v=0, w(0)=1 and w(0)=0, the analytica solution of Eg.(8.1) is

wW(z) =1,(z) defined by
Mz):i%%%‘m*, 8.6)
k=0

where we can see the divergence of 1,(z) for z>>1. We regularize analytical
and numerical solutions as follows

W(2) =z exp(-2)W(2), (8.7)

W, =z exp(-z,)W,. (8.8)

9. QUANTUM OSCILLATOR

As the last example, an eigenvalue problem is studied, for the Schrodinger
equation [*],
HY=EWY, (9.1
more precisaly, the one of a quantum oscillator. The associated equation is

2

OI—(,f+(e—x2)(p=0, (9.2)
dx
where @ issuch that
+00
J’(p* @ dx=finite. (9.3)
Here ¢ isthewave function and e isthe eigenvalue. It is known that
e =2k+1 (9.9
and
1.,
=a, ex =X X), 9.5
A =0y exp2 X H (9 (95)

where H,(x) are the Hermite polynomials of degree k and a, is the
normalization constant. Moreover, being an eigenvalue problem, the differential
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eguations are structurally unstable under the variations of e, making the obtained
numerical solutions unstable for the big values of x. Our solution has better
numerical properties with respect to other cal culation methods, and also asmaller
computation time. The region where the solution diverges from the exact one,
corresponding to x> x., where x, = (ek)’/2 isthe classically alowed maximum
width. The reason for this is that, in the classically allowed area, the equation
associated with constant coefficients has an equilibrium point in the phase space:
a centre, which gives the numerical stability and the solutions can be represented
with a harmonic basis. In asimilar way for x> x., the singular point is unstable
and the basis of solutions contains a real exponential. Moreover, that is the
reason why numerical fluctuation in the structure of the equation induces the loss
of quality of the solution.

10. CONCLUSIONS

The advantage of the proposed method, which isin fact only an alternative to
obtaining a solution of nonlinear differential equations or linear equations with
variable coefficients, is that it is easier to implement as the roots of the
characteristic polynomial are easy to obtain with low error. Moreover, in the set
of problems presented in this paper, we obtain a smaller computation time with
respect to the Runge—Kutta method for the 4th order. It is possible to use bigger
steps of integration without losing a significative precision with respect to the
other methods, because of the peculiar way the quasilinear form is generated. The
method is useful for the study of the stability of the solution.
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Meetod harilike diferentsiaalvorrandite lahendamiseks
Mario Castagnino, Luis Laraja Roberto Aquilano

Cauchy Ulesanne Uldise mittelineaarse hariliku diferentsiaalvorrandi jaoks on
taandatud algebraliste teisenduste abil samm-sammult véikestes vahemikes
kvaasilineaarsdle kujule ja segjérel lahendatud analldtiliselt. Mitmetes fllsika
listes ndidetes voimaldab see léhendada evolutsioonioperaatorit protsessi kulge-
misest gjas.
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