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Abstract. Algebraic transformations for nonlinear and nonhomogeneous ordinary differential 
equations are introduced that yield, step by step, quasilinear forms and analytic solutions on small 
subintervals. Usually in the relevant physical example these analytical solutions allow us to obtain 
the time evolution operator, for any initial conditions. 
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1. INTRODUCTION 
 
Many problems in physics, chemistry, engineering, and operative research 

are mathematically formulated using ordinary differential equations. These 
equations are neither linear nor homogeneous and they are endowed with 
variable coefficients. In such cases the analytic solutions are difficult to obtain or 
they are generated by doubtful approaches. Many calculation methods exist [1,2], 
a good summary of which can be found in [3,4]. 

In this work we show that it is possible to obtain numeric solutions using the 
theory of linear equations. We propose a calculation method step by step. These 
steps represent the solutions in the basis associated to the linear form of the 
problem. 
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2. THE  PROBLEM 
 
Let us consider the differential equation in a general form 
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or, when possible, as the equivalent system of equations: 
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Let us further suppose that Eq. (2.1) may be nonlinear or linear with variable 
coefficients, but it can be reduced to the quasilinear form: 
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where 
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We have written the same equation in different forms in order to use some 
properties of the linear systems. 

 
 

3. LINEARIZATION  AND  EVOLUTION  OPERATOR 
 
We add the condition that both ja  and f  would be nonsingular functions to 

integrate Eq. (2.3). More precisely, these functions must be continuous with 
respect to t  and to the set of variables ,,,, )1()1( −nxxx �  in a certain domain of .t  
As in other classical methods the derivability condition of ja  and f  is not 
necessary. Let us decompose the t  domain in intervals ,iI  defined as 
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where 0>ih  is the width of the interval iI  and .,1,0 ni �=  We will consider 
two cases. 
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3.1. Case )(tff =  
 

In this case we consider Eq. (2.3) in each interval iI  as 
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where )(tzi  is an estimated function of )(tx  in the interval ,iI  and 
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Now we solve the linear equation (3.2) in the interval iI  beginning with the 
initial condition at ,0=t  then integrating in ,0I  obtaining the initial condition at 

,1t  integrating in ,,1 �I  etc. For each interval iI  we obtain the estimated 
solution, 
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where )}({ tikφ  is a set of N  linearly independent solutions of the homogeneous 
version of Eq. (3.2) and )(tzip  is a particular solution of its nonhomogeneous 
version. Constant ikc  can be computed using the boundary conditions at ,1tt =  
more precisely, by solving the system 
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This system can be solved since )}({ tikφ  is a linearly independent set of 

solutions. In this way we have obtained an analytic approximation of )(tx  in the 
thi  interval given by Eq. (3.4). In order to compute the solution in these intervals 

,1+iI  the initial conditions 1,,0),()(
1 −=+ nltZ l

i �  at 1+it are determined with their 
derivatives. Formally we can say that 
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or, written in a more compact way, 
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where P  is the evolution operator in the interval iI  and iz  is the estimated value 
of x  in .it  So we can determine the solution of Eq. (2.1) in an approximative 
way, with continuity up to the th)1( −n  derivative. 
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3.2. Case ),,,,( 1)–((1) txxxff n
�=  

 
When, via factorization, this problem is written as in Eq. (2.3), it may happen 

that the function f  will be such that the terms which eventually appear cannot 
be incorporated in the quasilinear form. Then in each element iI  we can define a 
number 
 

).),(,),(( )1(
ii

n
ii ttxtxff −= �                                (3.8) 

 
The nonhomogeneous terms are taken as constants and Eq. (2.3) reads 
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Then we can follow the procedure as in the previous subsection. We could also 
work with greater precision if we defined 
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In this case, however, some difficulties appear when we try to compute the 
solution of the particular inhomogeneous equation, so we will not follow this 
path. 

 
 

4. LYAPUNOV  STABILITY 
 
One of the advantages of using the sectional continuous linear equation 

(obtained by reducing Eq. (2.3) to the quasilinear form and using Eqs. (3.3), 
(3.8)) is that in each interval we have an nth-order linear equation with a constant 
coefficient that allows us to study the stability of the solution using the Lyapunov 
criterion [5]. This can be done using the basis }.{ ikφ  Then, if in our nonlinear 
problem we have a sequence of intervals, where at least one root of the 
characteristic polynomial associated to the linear equations is positive, we can 
find a subset of the set solution, where these solutions evolve in an exponential 
way. Then this will be a critical consideration for the choice of .ih  In this way 
we have a quasiempirical method for finding transition or chaotic regions, as can 
be see in Section 9. 

 
 

5. STRUCTURAL  STABILITY 
 
The evolution operators may create a problem if the roots of their 

characteristic polynomial of Eq. (3.2) vanish, or are very close to zero. In this 
case small fluctuations in the equation coefficients, produced by the numerical 
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truncation or by a systematical error, may cause changes of signs of the value of 
the roots, and therefore substantial modifications in the form of the solution. 

If at least one of the roots persists to be near zero, the efficiency of the method 
can be in danger. Nevertheless, this problem is also present in usual methods as, 
e.g., the Runge–Kutta method for different orders [6,7]. 

 
 

6. NUMERICAL  CONVERGENCE 
 
We do not have an analytic result to obtain a convergence condition, but it is 

clear that when ,0→h  the numerical results tend to exact solutions, but it is not 
a useful criterion. We can use a pragmatic criterion to determine the “reliability” 
of the sectional analytic solutions. Since these solutions depend on the value of 

,h  we must study the sensibility of the solution by varying h  and determine an 
appropriate step as a function of the desired degree of precision. 

When we can find at least a constant of motion, this constant must not be used 
to reduce the order of the equation, but must be taken as a control variable. Then 
the selection of the integration step can be determined by the maximum variation 
of the motion constants, according to the degree of precision required by the 
problem. 

 
 

7. A  SIMPLE  MODEL 
 
As the first example of the nonlinear system the ecological model of 

Volterra [8] is studied. It is defined by the system 
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where x  is the population of the vegetarian species and y  is the population of 
the predator of the species x  and dcba ,,,  are constants of the systems. The first 
integral of Eq. (7.1) is 
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Using the calculation technique developed in Section 3, we get the iterative 
solution 
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where 
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and h  is the time increment. The evolution of the motion constant (7.2) is 
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where iE  is the error of the method, 
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when the initial conditions of Eqs. (7.1) are 
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8. BESSEL’S  EQUATION 
 
As the second example, a linear problem with variable coefficients is studied, 

more precisely the modified Bessel equation of integer order, 
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The analytical solutions are expressed as linear combinations of the modified 
Bessel functions of integer order [9], 

 

).(),( zKzI vv  
 

According to the structure of our calculation method, the solution of Eq. (8.1) is 
represented using a real exponential basis. In this way the discrete solutions to 

)(zw  and )(zw′  are expressed as 
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For ,0=v  ,1)0( =w  and ,0)0( =′w  the analytical solution of Eq. (8.1) is 
)()( 0 zIzw =  defined by 
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where we can see the divergence of )(0 zI  for .1>>z  We regularize analytical 
and numerical solutions as follows 
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9. QUANTUM  OSCILLATOR 
 
As the last example, an eigenvalue problem is studied, for the Schrödinger 

equation [10], 
 

,Ψ=Ψ EH                                                (9.1) 
 

more precisely, the one of a quantum oscillator. The associated equation is 
 

,0)( 2
2

2

=−+ φφ
xe

dx

d
                                       (9.2) 

 

where φ  is such that 
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Here φ  is the wave function and e  is the eigenvalue. It is known that 
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where )(xH k  are the Hermite polynomials of degree k  and kα  is the 
normalization constant. Moreover, being an eigenvalue problem, the differential 
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equations are structurally unstable under the variations of ,e  making the obtained 
numerical solutions unstable for the big values of .x  Our solution has better 
numerical properties with respect to other calculation methods, and also a smaller 
computation time. The region where the solution diverges from the exact one, 
corresponding to ,cxx >  where 21)( kc ex =  is the classically allowed maximum 
width. The reason for this is that, in the classically allowed area, the equation 
associated with constant coefficients has an equilibrium point in the phase space: 
a centre, which gives the numerical stability and the solutions can be represented 
with a harmonic basis. In a similar way for ,cxx >  the singular point is unstable 
and the basis of solutions contains a real exponential. Moreover, that is the 
reason why numerical fluctuation in the structure of the equation induces the loss 
of quality of the solution. 

 
 

10. CONCLUSIONS 
 
The advantage of the proposed method, which is in fact only an alternative to 

obtaining a solution of nonlinear differential equations or linear equations with 
variable coefficients, is that it is easier to implement as the roots of the 
characteristic polynomial are easy to obtain with low error. Moreover, in the set 
of problems presented in this paper, we obtain a smaller computation time with 
respect to the Runge–Kutta method for the 4th order. It is possible to use bigger 
steps of integration without losing a significative precision with respect to the 
other methods, because of the peculiar way the quasilinear form is generated. The 
method is useful for the study of the stability of the solution. 
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Meetod harilike diferentsiaalvõrrandite lahendamiseks 
 

Mario Castagnino, Luis Lara ja Roberto Aquilano 
 
Cauchy ülesanne üldise mittelineaarse hariliku diferentsiaalvõrrandi jaoks on 

taandatud algebraliste teisenduste abil samm-sammult väikestes vahemikes 
kvaasilineaarsele kujule ja seejärel lahendatud analüütiliselt. Mitmetes füüsika-
listes näidetes võimaldab see lähendada evolutsioonioperaatorit protsessi kulge-
misest ajas. 


