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Abstract. Numerical integration over the unit square of functions having a weak singularity
at a vertex is considered. The cubature formula resulting from using in both directions a one-
dimensional composite quadrature formula on graded grid is studied. The dependence of the
error of the cubature rule on nonuniformity of the grid is investigated and the conditions for the
grid under which the method has the maximal possible convergence rate are found. Theoretical
results are verified by numerical examples in the case of the Gaussian quadrature.
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1. INTRODUCTION

We consider numerical evaluation of the double integral

1∫
0

1∫
0

f(x, y)dxdy, (1)

where the integrandf is continuous in the unit square

G = {(x, y) : 0 < x < 1, 0 < y < 1}

and satisfies the condition∣∣f(x, y)
∣∣ ≤ c0

(
x2 + y2

)−ν/2
, (x, y) ∈ G, (2)

where0 < ν < 2. Such a function is in general unbounded at the origin(0, 0).
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If the integration region is a rectangle and the integrand has a weak singularity
at its vertex, then we can get with the help of an affine transformation the integral
(1). But if the integrand has a weak singularity at a point in the rectangle or on
a side of it, then we can divide this region into two or four rectangles so that the
integrand has a singularity only at a vertex of each of the new rectangles. It is
necessary to compute such integrals, for example, when solving weakly singular
integral equations by the collocation method (see, e.g., [1]).

If the integrand function has a singularity, then the convergence of standard
quadrature methods may be very poor [2]. The present paper deals with the
cubature formulas which we get using in both directions a one-dimensional
composite quadrature formula on graded grid [3,4]. We choose the grid points so
that a high-order convergence is obtained. The use of such quadrature formulas for
the solution of one-dimensional weakly singular integral equations is studied in [5].

Note that in [6,7] the adaptive quadrature for functions with a point singularity
is studied. But if the type of the singularity is known, it is better to determine a
suitable grid in advance, instead of using an adaptive method.

We shall construct an appropriate cubature formula for the evaluation of the
integral (1) in the following way.

We use a one-dimensional quadrature formula

1∫
−1

g(ξ)dξ ≈
m∑

p=1

wpg(ξp), (3)

which is exact for all polynomials of degreeµ, 0 ≤ m − 1 ≤ µ ≤ 2m − 1, for
instance, for the trapezoidal rulem = 2 andµ = 1, for Simpson’s rulem = 3
andµ = 3, for Gaussian quadratureµ = 2m− 1. We assume that the knots of the
formula (3) satisfy the conditions

−1 ≤ ξ1 < ξ2 < . . . < ξm ≤ 1 (4)

and the weightswp > 0, p = 1, . . . ,m. Then

m∑
p=1

wp = 2 . (5)

We divide the interval(0, 1) with grid points

xi =
( i

N

)r
, i = 0, 1, . . . , N,

into N subintervals(xi−1, xi), i = 1, . . . , N . Here the real numberr ≥ 1
characterizes the nonuniformity of the grid. Ifr = 1, then the grid points are
uniformly located. Using the transformation

x = xi−1 +
1
2
(ξ + 1)(xi − xi−1),
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we transfer the knots into[xi−1, xi]:

ξip = xi−1 +
1
2
(ξp + 1)(xi − xi−1), p = 1, . . . ,m . (6)

Then from (3) it follows

xi∫
xi−1

J(x)dx ≈ 1
2
(xi − xi−1)

m∑
p=1

wpJ(ξip), i = 1, . . . , N . (7)

As in general the integrandf(x, y) is unbounded in the neighbourhood of the
origin (0, 0), then by constructing the cubature formula we replace it with0 in the
(small) square

G11 = {(x, y) : 0 < x < x1, 0 < y < x1}
and denote

fN (x, y) =

{
0 if (x, y) ∈ G11 ,

f(x, y) if (x, y) ∈ G \G11 .

The corresponding error

QN =
∫
G

[f(x, y)− fN (x, y)]dxdy =
∫

G11

f(x, y)dxdy .

We denote

J(x) =

1∫
0

fN (x, y)dy . (8)

Using the formula (7), we get

1∫
0

1∫
0

f(x, y)dxdy =

1∫
0

J(x)dx + QN

=
N∑

i=1

1
2
(xi − xi−1)

m∑
p=1

wpJ(ξip) + QN + RN

=
N∑

i=1

1
2
(xi − xi−1)

m∑
p=1

wp

N∑
j=1

1
2
(xj − xj−1)

×
m∑

q=1

wqfN (ξip, ξjq) + QN + RN + SN ,

whereRn andSn are the errors of quadrature formulas.
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So we get the cubature formula

1∫
0

1∫
0

f(x, y)dxdy =
N∑

i,j=1

1
4
(xi − xi−1)(xj − xj−1)

m∑
p,q=1

wpwqfN (ξip, ξjq)

+QN + RN + SN . (9)

Here and below, if eitherξi1 = xi−1 or ξim = xi, then we define the value of a
function atξi1 or ξim, respectively, as the limit from the right or from the left. Thus
fN (ξ1p, ξ1q) = 0 andfN (ξip, ξjq) = f(ξip, ξjq) if i > 1 or j > 1.

To estimate the error of the formula (9), we assume that the integrandf(x, y)
has in the squareG continuous partial derivatives with respect tox andy until the
orderµ + 1 and satisfies the conditions

∣∣∣ ∂µ+1

∂xµ+1
f(x, y)

∣∣∣ ≤ c1(x2 + y2)−(ν+µ+1)/2,∣∣∣ ∂µ+1

∂yµ+1
f(x, y)

∣∣∣ ≤ c2(x2 + y2)−(ν+µ+1)/2, (x, y) ∈ G .

(10)

We present two examples of the functions which satisfy the conditions (2) and
(10). In these examplesh(x, y) is a function which has on the closed squareG
continuous partial derivatives with respect tox andy up to the orderµ + 1.

1. The function

f(x, y) = (γ1x + γ2y)−α(γ3x
2 + γ4y

2)−β/2h(x, y)

satisfies the conditions (2) and (10) withν = α + β if 0 < α + β < 2 andγp,
p = 1, 2, 3, 4, are positive constants.

2. The function

f(x, y) = (γ1x + γ2y)−α(γ3x
2 + γ4y

2)−β/2
[
log(γ5x

2 + γ6y
2)

]k
h(x, y)

satisfies the conditions (2) and (10) withν = α + β + ε if 0 < α + β < 2,
k is a positive integer andγp, p = 1, 2, . . . , 6, are positive constants. Hereε is an
arbitrary (small) positive constant such thatα + β + ε < 2.

It is well known (see, e.g., [8]) that if integrandf ∈ Cµ+1(G) andfN (x, y) =
f(x, y) (thenQN = 0), then the maximal possible convergence rateRN + SN =
O(N−µ−1) is obtained in the case of a uniform grid (r = 1). In the next section
we show that the same convergence rate can be achieved also for the integrands
satisfying the conditions (2) and (10) if we choose an appropriate graded grid.
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2. THE ESTIMATE FOR THE ERROR OF THE CUBATURE FORMULA

For the convergence rate of the cubature formula (9) the following result is
valid.

Theorem. Let the following conditions be fulfilled
1. The quadrature formula(3) is exact for all polynomials of degreeµ,

0 ≤ m − 1 ≤ µ ≤ 2m − 1, its weightswp > 0, p = 1, . . . ,m, and its knots
satisfy the conditions(4).

2. The integrandf(x, y) is continuous and has continuous partial derivatives
with respect tox andy up to the orderµ + 1 in the squareG and in this square the
estimates(2) and(10) (where0 < ν < 2) hold.

3. In the formula(9) grid pointsxi = (i/N)r, i = 0, 1, . . . , N , r ≥ 1, and
knotsξip are expressed in the form(6).

Then for the error of the cubature formula(9) the following estimates hold:

∣∣QN + RN + SN

∣∣ ≤ c


N−r(2−ν) if 1 ≤ r < µ+1

2−ν ,

N−µ−1 lnN if r = µ+1
2−ν ,

N−µ−1 if r > µ+1
2−ν .

(11)

Proof. We shall estimate the errorsQN , RN , andSN separately.
Using the conditions (2) and the change of variables

x = % cos θ, y = % sin θ,

we estimate

∣∣QN

∣∣ =
∣∣∣ x1∫

0

x1∫
0

f(x, y)dxdy
∣∣∣ ≤ c0

x1∫
0

x1∫
0

(
x2 + y2

)−ν/2
dxdy

≤ c0

π/2∫
0

x1

√
2∫

0

%−ν+1d%dθ = c3x
2−ν
1 .

As x1 = N−r, we get ∣∣QN

∣∣ ≤ c3N
−r(2−ν) . (12)

To estimateRN andSN , we use some ideas from [1,4]. If µ > m − 1, then in
addition to the knotsξ1, . . . , ξm we fix in the interval(−1, 1) additionalµ−m + 1
knotsξm+1, . . . , ξµ+1 so thatξi 6= ξj if i 6= j and generate by the formula (6) the
corresponding knotsξip ∈ (xi−1, xi), p = m + 1, . . . , µ + 1, i = 1, . . . , N . We
define the interpolation projectorPN by the formula

(
PNJ

)
(x) =

µ+1∑
p=1

J
(
ξip

)
ϕip(x), x ∈ (xi−1, xi), i = 1, . . . , N ,
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where

ϕip(x) =
µ+1∏
q=1
q 6=p

x− ξiq

ξip − ξiq
.

Then
(
PNJ

)
(x) is on every interval(xi−1, xi), i = 1, . . . , N , a polynomial of the

degree not exceedingµ,(
PNJ)(ξip) = J(ξip), p = 1, . . . , µ + 1, i = 1, . . . , N ,

and

sup
xi−1<x<xi

∣∣ϕip(x)
∣∣ = sup

−1<ξ<1

∣∣∣∣ µ+1∏
q=1
q 6=p

ξ − ξq

ξp − ξq

∣∣∣∣ = dp

does not depend oni andN .
Let J(x) be defined by the formula (8). Due to the exactness of the formula (7)

for the polynomials of the degreeµ we have

RN =

1∫
0

[
J(x)−

(
PNJ

)
(x)

]
dx .

Let v(x) be an arbitrary polynomial of the degree not exceedingµ. Then(
PNv

)
(x) = v(x) and

sup
xi−1<x<xi

∣∣J(x)−
(
PNJ

)
(x)

∣∣
≤ sup

xi−1<x<xi

∣∣J(x)− v(x)
∣∣ + sup

xi−1<x<xi

∣∣(PNv
)
(x)−

(
PNJ

)
(x)

∣∣
≤

(
1 +

µ+1∑
p=1

dp

)
sup

xi−1<x<xi

∣∣J(x)− v(x)
∣∣ .

If v(x) is the Taylor polynomial

v(x) =
µ∑

q=0

1
q !

J (q)(xi)(x− xi)q, x ∈ (xi−1, xi) ,

then

J(x)− v(x) =
1
µ!

x∫
xi

(x− s)µJ (µ+1)(s)ds, x ∈ (xi−1, xi) ,
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and therefore

sup
xi−1<x<xi

∣∣J(x)−
(
PNJ)(x)

∣∣ ≤ c sup
xi−1<x<xi

∣∣∣ x∫
xi

(x− s)µJ (µ+1)(s)ds
∣∣∣ , (13)

i = 1, . . . , N .

By c we denote a constant whose value changes from time to time and which does
not depend oni, j, andN .

If x ∈ (0, x1), then with the help of (10) we estimate

∣∣∣J (µ+1)(x)
∣∣∣ =

∣∣∣ 1∫
x1

∂µ+1

∂xµ+1
f(x, y)dy

∣∣∣ ≤ c1

1∫
x1

(
x2 + y2

)−(ν+µ+1)/2
dy

≤ c1

1∫
x1

y−ν−µ−1dy ≤ cx−ν−µ
1 .

But if x ∈ (x1, 1), then

∣∣∣J (µ+1)(x)
∣∣∣ =

∣∣∣ 1∫
0

∂µ+1

∂xµ+1
f(x, y)dy

∣∣∣ ≤ c1

1∫
0

(
x2 + y2

)−(ν+µ+1)/2
dy

≤ c1

x∫
0

x−ν−µ−1dy + c1

1∫
x

y−ν−µ−1dy ≤ cx−ν−µ .

Using in (13) these estimates and the inequalityxi−1 ≥ 2rxi, i = 2, . . . , N , we get

sup
xi−1<x<xi

∣∣J(x)−
(
PNJ)(x)

∣∣ ≤ c(xi − xi−1)µ+1x−ν−µ
i , i = 1, . . . , N ,

and therefore

∣∣RN

∣∣ =
∣∣∣ N∑

i=1

xi∫
xi−1

[
J(x)−

(
PNJ

)
(x)

]
dx

∣∣∣
≤ c

N∑
i=1

(xi − xi−1)µ+2x−ν−µ
i .

As

xi =
( i

N

)r
and 0 < xi − xi−1 ≤ r

ir−1

N r
,
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we get ∣∣RN

∣∣ ≤ cN−r(2−ν)
N∑

i=1

ir(2−ν)−µ−2

and thus

∣∣RN

∣∣ ≤ c


N−r(2−ν) if r(2− ν) < µ + 1 ,

N−µ−1 lnN if r(2− ν) = µ + 1 ,

N−µ−1 if r(2− ν) > µ + 1 .

(14)

Now we begin to estimate the error

SN =
N∑

i=1

1
2
(xi − xi−1)

m∑
p=1

wp

[
J(ξip)−

N∑
j=1

1
2
(xj − xj−1)

m∑
q=1

wqfN (ξip, ξjq)
]
.

If we denote

SNj(ξip) =

xj∫
xj−1

fN (ξip, y)dy − 1
2
(xj − xj−1)

m∑
q=1

wqfN (ξip, ξjq),

then

SN =
N∑

i=1

1
2
(xi − xi−1)

m∑
p=1

wp

N∑
j=1

SNj(ξip) . (15)

As

(PNfN )(ξip, y) =
µ+1∑
q=1

fN (ξip, ξjq)ϕjq(y)

is in the intervaly ∈ (xj−1, xj), j = 1, . . . , N , a polynomial with respect toy of
degree not exceedingµ and(PNfN )(ξip, ξjq) = fN (ξip, ξjq), we have

SNj(ξip) =

xj∫
xj−1

[
fN (ξip, y)− (PNfN )(ξip, y)

]
dy .

As fN (x, y) = 0, (x, y) ∈ G11, we getSN1(ξ1p) = 0, p = 1, . . . ,m. If either
i > 0 or j > 1, then estimating as above gives
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∣∣SNj(ξip)
∣∣ ≤ (xj − xj−1) sup

xj−1<y<xj

∣∣fN (ξip, y)− (PNfN )(ξip, y)
∣∣

≤ c(xj − xj−1) sup
xj−1<y<xj

∣∣∣∣
y∫

xj

(y − s)µ ∂µ+1

∂yµ+1
f(ξip, y)dy

∣∣∣∣
≤ c c2(xj − xj−1)µ+2

(
x2

i−1 + x2
j−1

)−(ν+µ+1)/2
.

Due to (15) and (5) we get

∣∣SN

∣∣ =
∣∣∣∣ N∑

i=2

[ i∑
j=1

1
2
(xi − xi−1)

m∑
p=1

wpSNj(ξip)

+
i−1∑
j=1

1
2
(xj − xj−1)

m∑
p=1

wpSNi(ξjp)
]∣∣∣∣

≤ c

N∑
i=2

[ i∑
j=1

(xi − xi−1)(xj − xj−1)µ+2
(
x2

i−1 + x2
j−1

)−(ν+µ+1)/2

+
i−1∑
j=1

(xj − xj−1)(xi − xi−1)µ+2
(
x2

j−1 + x2
i−1

)−(ν+µ+1)/2
]

≤ 2c

N∑
i=2

i(xi − xi−1)µ+3x−ν−µ−1
i−1 .

The last inequality is a consequence from the estimatesx2
i−1 + x2

j−1 ≥ x2
i−1 and

xj − xj−1 ≤ xi − xi−1 if j ≤ i. As in estimatingRN , we get here

∣∣SN

∣∣ ≤ c


N−r(2−ν) if r(2− ν) < µ + 1 ,

N−µ−1 lnN if r(2− ν) = µ + 1 ,

N−µ−1 if r(2− ν) > µ + 1 .

Together with (12) and (14), the estimates (11) follow.

3. NUMERICAL EXAMPLES

We consider the computation of the integral

1∫
0

1∫
0

3

√
x + y

(x2 + 2y2)2
dxdy = 1.504 558 921 379 898.
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Table 1. The errors of the cubature formula

r = 3 r = 5 r = 7

N εN %N εN %N εN %N

4 2.4 E−2 3.2 E−3 4.5 E−3
8 3.0 E−3 8.0 1.3 E−4 25.5 1.6 E−4 28.6
16 3.8 E−4 8.0 4.4 E−6 28.8 3.5 E−6 45.4
32 4.7 E−5 8.0 1.4 E−7 30.4 6.4 E−8 54.6
64 5.9 E−6 8.0 4.6 E−9 31.2 1.1 E−9 59.3
128 7.3 E−7 8.0 1.5 E−10 31.6 1.8 E−11 61.7
256 9.2 E−8 8.0 4.6 E−12 31.8 2.8 E−13 63.0
512 1.2 E−8 8.0 1.4 E−13 32.0 4.4 E−15 62.5

The integrand satisfies the conditions (2) and (10) withν = 1 for an arbitrary
integerµ ≥ 0. We compute the integral by the cubature formula (9) corresponding
to Gaussian quadrature with 3 knots. Thenm = 3 and µ = 5. The errors
εN = |QN + RN + SN | and their ratios%N = εN/2/εN for different values of
r are presented in Table 1. It follows from the estimates (11) that forr = 3, r = 5
andr = 7 the ratios%N should be approximately 8, 32, and 64. Computed%N

agrees well with the theoretical convergence rate.
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Kahemõõtmeline kvadratuurvalem ühes punktis
iseärasusega funktsioonide jaoks

Enn Tamme

On vaadeldud integraalide arvutamist ruudukujulises piirkonnas funktsiooni-
dest, millel ruudu ühes tipus on nõrk iseärasus, ja uuritud kubatuurvalemit, mille
saab, kui kasutada kummaski suunas liitkvadratuurvalemit ebaühtlasel võrgul. On
selgitatud kubatuurvalemi vea sõltuvus võrgu ebaühtlusest ja näidatud, millise
võrgu korral on saavutatav suurim võimalik koonduvuskiirus. Teoreetilisi tulemusi
on kontrollitud numbrilistes näidetes Gaussi liitkvadratuurvalemi korral.
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