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Abstract. The paper deals with summability methods which are equivalent for summing
bounded sequences (b-equivalent). It is well known that the Cesàro methodsCα (α > 0)
and the Abel methodA are b-equivalent. More generally, different authors have proved
that generalized Nörlund methods(N, a, b) and Abel-type power series methodsJq are
b-equivalent under certain conditions on these methods. It turns out that quite often these
conditions imply theb-equivalence of the methods(N, a, b) andJq to Cα (α > 0) as well.
The idea of this paper is to investigate theb-equivalence of the methods(N, a, b), Jq, andCα

(α > 0).

Key words: summability methods, generalized Nörlund methods, Cesàro methods, power
series methods,b-equivalence of methods.

1. INTRODUCTION AND PRELIMINARIES

We begin with the definition of generalized Nörlund summability methods
and power series methods of Abel type. Let(ξn) denote throughout the paper a
complex sequence andq = (qn) a non-negative sequence withq0 > 0 (n ∈ N =
{0, 1, 2, . . . }). For the definition of the power series methodJq (see [1]) we suppose
that

the power seriesq(x) =
∞∑

n=0

qnxn has the radius of convergenceR = 1. (1)

We say that(ξn) is summable toξ by the power series summability methodJq and
write ξn → ξ(Jq) if

qξ(x) =
∞∑

n=0

ξnqnxn converges for|x| < 1
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and
qξ(x)
q(x)

→ ξ asx → 1− .

In particular, if qn ≡ 1, then Jq is the Abel method, i.e. Jq = A. If
q = Aα = (Aα

n) =
((

n+α
n

))
, α > −1, thenJq is the generalized Abel method

Aα. Therefore we say that the power series methodJq is an Abel-type method (in
contrast to the case withR = ∞ where we speak of Borel-type methods).

In the sequel the following restrictions on(qn) will be important:

n∑
k=0

qk →∞ (n →∞), (2)

nqn = O

(
n∑

k=0

qk

)
(n →∞), (3)

n∑
k=0

qk = O(nqn) (n →∞). (4)

We note that (4) implies (2), and the conditions (2) and (3) imply (1) asR ≤ 1
by (2) andR ≥ 1 by (3). By Theorem 5 in [2] the methodJq is regular, i.e.
ξn → ξ (n → ∞) implies ξn → ξ(Jq), if and only if (2) holds. Notice that
(3) is satisfied, for example, in case of a non-increasing and (4) in case of a non-
decreasing sequence(qn). If, in particular, qn = Aγ

n (γ > −1), then (3) and
(4) both are satisfied. The conditions (3) and (4) are satisfied also in case of
qn = nγL(n) (n > n0), whereγ > −1 andL(.) is a slowly varying function
(i.e., in case of regularly varying weightsqn, see [3] for definitions) because of the
relation

n∑
k=0

Aα−1
n−kk

γL(k) ∼ Γ(γ + 1)
Γ(γ + α + 1)

nα+γL(n) (n →∞, α > 0, γ > −1)

(5)
(see [4], Lemma A 1), whereΓ(.) is the gamma function.

The definition of a generalized Nörlund method(N, a, b) was given in [5] and
is as follows:

Let a = (an) andb = (bn) be real sequences with the convoluted sequence

(a ∗ b)n =
n∑

k=0

an−kbk 6= 0 (n ∈ N).

We say that(ξn) is summable by the generalized Nörlund method(N, a, b) to ξ and
write ξn → ξ(N, a, b) if

ηn =
1

(a ∗ b)n

n∑
k=0

an−kbkξk → ξ (n →∞).
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The theorem of Toeplitz (see Theorem 2 in [2]) says that the method(N, a, b)
is regular if and only if the following two conditions are satisfied:

an−kbk

(a ∗ b)n
→ 0 (n →∞, k ∈ N),

n∑
k=0

|an−kbk| = O((a ∗ b)n) (n →∞).
(6)

In particular, ifbn ≡ 1, then we have the Nörlund method(N, a) = (N, a,1), if
alsoan = Aα−1

n , then we have the Cesàro methods(N,Aα−1,1) = (C,α) = Cα.
If bn = Aγ

n and an = Aα−1
n , then we get the generalized Cesàro methods

(N,Aα−1, Aγ) = (C,α, γ). If an ≡ 1, then we have the Riesz methods
(N,1, b) = (N, b) (for more examples see [6−13]).

For any two summability methodsA andB we say thatB is not weaker than
A and writeA ⊂ B if ξn → ξ (B) wheneverξn → ξ (A). We say that methodsA
andB are equivalent and writeA ∼ B if both the relationsA ⊂ B andB ⊂ A
hold. If the relation

ξn → ξ(A) ⇔ ξn → ξ(B)

is true for all bounded sequences(ξn), then we say thatA andB areb-equivalent
(or, A is b-equivalent toB).

Relations between the methods(N, a, q) and Jq were investigated in [14]
and [15] in general and, in more or less general cases, also in all papers listed
in References to our paper. In particular, some families of methods(N, aα, q),
whereα is a discrete or continuous parameter andaα is defined as convolution
of sequences, have been constructed and relations between the methods(N, aα, q)
themselves, and between these methods and related power series methodsJq have
been investigated (see [7−13]). Among other results the mentioned papers present
sufficient conditions for theb-equivalence of the methods(N, aα, q) to each other
and toJq. It turns out that quite often these conditions are sufficient (or almost
sufficient) for theb-equivalence of the considered methods to the Cesàro methods
Cα (α > 0) as well.

The idea of the present paper is to extend these investigations by studying the
b-equivalence of the methods(N, a, q), Jq, andCα (α > 0). Different sets of
sufficient conditions for theb-equivalence of these methods will be found here.

The following inclusion relations are quite well known (see Theorem 43 in [2]
and Theorem 2 in [16]):

Cα ⊂ Cβ ⊂ Aγ (β > α > −1, γ > −1), (7)

Aγ ⊂ Aδ (γ > δ > −1). (8)

Also (see [17]),
(N, q) ⊂ Jq (9)

provided that (1) holds.
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Note that the inclusion relations (7), (8), and (9) are strict, i.e. the methods
compared there are not equivalent.

We take for our starting-point the following three theorems (see Theorem 92 in
[2] and Theorem 4.3 in [18] together with (7) and (9), respectively, and Lemma 2
in [19]).

Theorem A. The Cesàro methodsCα (α > 0) and the Abel methodA are
b-equivalent.

Theorem B. If the conditions(2) and (3) are satisfied, then the methods(N, q)
andJq are b-equivalent.

Theorem C. Let(qn) satisfy the conditions(1) and(2) and be positive for all large
n. If (gn) is a non-negative sequence withg0 > 0 such thatgn/qn → 1 (n →∞),
then the methodJg is b-equivalent toJq.

2. MAIN THEOREMS

We will present here two theorems.
Let c = (cn) andp = (pn) be two non-negative sequences such thatc0, p0 > 0

and(c ∗ p) ∗ q = (rn) is a positive sequence. Consider the generalized Nörlund
method(N, c ∗ p, q) and the power series methodJq.

Theorem 1. Let us suppose that(cn) satisfies the condition

n cn = O

(
n∑

k=0

ck

)
(n →∞) (10)

and either
(i) (qn) is non-decreasing and satisfies(3)

or
(ii) (qn) is non-increasing and satisfies(4).

Suppose also that either
(iii) (pn) is non-decreasing and

n pn = O

(
n∑

k=0

pk

)
(n →∞) (11)

or
(iv) (pn) is non-increasing and

n∑
k=0

qk = O((p ∗ q)n) (n →∞). (12)

Then the method(N, c ∗ p, q) is b-equivalent toJq and to the Cesàro methodsCα

(α > 0) as well.
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Remark 1. Notice that the method(N, c ∗ p, q) turns into the method(N, p, q) if
cn = δ0,n. Thus, Theorem 1 says that the method(N, p, q) is b-equivalent to the
Cesàro methodsCα (α > 0) if conditions (i) or (ii) and (iii) or (iv) of Theorem 1
are satisfied. In particular, the method(N, q) is b-equivalent to the Cesàro methods
Cα (α > 0) if (i) or (ii) is satisfied.

In particular, ifcn = Aα−1
n , then the restrictions onpn andqn in Theorem 1

can be weakened. Thus we get another theorem.
Denotepα

n =
(
Aα−1 ∗ p

)
n

and consider the methods

(N, pα, q) = (N,Aα−1 ∗ p, q) = (N, c ∗ p, q),

whereα is a continuous parameter with valuesα > α0 andα0 is such a number
thatpα ∗ q = (Aα−1 ∗ p) ∗ q = (rα

n) are positive sequences. Notice that the last
condition is surely satisfied ifα0 = 0, and the relation

pβ = Aβ−α−1 ∗ pα (β > α0, α > α0) (13)

holds by the properties of convolutions and the Cesàro numbersAα
n.

The structure of the family of methods(N, pα, q) was observed in [10,12,13] in
the general case and in partial cases also in [6,8,11]. In this paper we will prove the
following theorem.

Theorem 2. Let us consider the methods(N, pα, q) = (N,Aα−1 ∗ p, q) with
α > 0. Suppose that(qn) and (pn) satisfy the conditions(1), (3), and (11),
respectively.

(i) Then the methods(N, pα, q) (α > 0) are b-equivalent toJq.
(ii) If, in addition, (qn) is non-decreasing or(qn) is non-increasing and satisfies

(4), then the methods(N, pα, q) (α > 0) are b-equivalent to the Cesàro methods
Cδ (δ > 0).

To prove Theorems 1 and 2 we need some auxiliary results.

3. AUXILIARY PROPOSITIONS

Proposition 1. If (qn) satisfies conditions(i) or (ii) of Theorem1, then the methods
Jq andCα (α > 0) are b-equivalent. In particular, the generalized Abel methods
Jq = Aγ (γ > −1) andCα (α > 0) are b-equivalent.

Proof. The methodsJq and (N, q) are b-equivalent by Theorem B because the
conditions (2) and (3) both are satisfied. Further,(N, q) ∼ C1 by Theorem 14 in
[2] andC1 is b-equivalent toCα (α > 0) by Theorem A. It remains to note that
qn = Aγ

n satisfies condition (i) ifγ ≥ 0 and condition (ii) if−1 < γ ≤ 0.
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Proposition 2. Suppose that(gn) is a non-negative sequence withg0 > 0 and
gn ∼ nγL(n) (n → ∞, γ > −1), whereL(.) is a slowly varying function. If
(nγL(n)) is monotonic, then the methodsJg andCα (α > 0) are b-equivalent.

Proof. Our proposition is a direct conclusion from the previous one and Theorem
C. Denoteqn = nγL(n) (n > n0) and see from (5) that(qn) satisfies (3) and (4).
Thus conditions (i) or (ii) of Theorem 1 are satisfied andJq is b-equivalent toCα

(α > 0). It follows now from Theorem C thatJg is b-equivalent toCα (α > 0).

Remark 2. (i) Notice that if (qn) is monotonic and satisfies (2) and (3), then the
relationC1 ⊂ Jq holds (use (9) and Theorem 14 in [2]).

(ii) If qn = 1
n+1 , thenJq is notb-equivalent toCα (α > 0) because there exists

a bounded sequence(ξn) summable byJq but not byC1 (see [2], Section 3.8 and
Theorem 82).

The next proposition is proved in [12] as Lemma 1.1(h).

Proposition 3. Let(qn) satisfy(1) and the power series
∑∞

n=0 (c ∗ p)nxn have the
radius of convergenceR ≥ 1. If

n∑
k=0

((c ∗ p) ∗ q)k →∞ (n →∞) (14)

and
∞∑

n=0

(c ∗ p)nzn 6= 0 (15)

in the unit disc|z| < 1 on the complex plane then1

(N, c ∗ p, q) ⊂ Jq.

Remark 3. In particular, if we consider the methods(N, pα, q) (α > α0), then we
have by Proposition 3

(N, pα, q) ⊂ Jq,

provided that(qn) satisfies (1),

the power series
∞∑

n=0

pnzn hasR ≥ 1 (16)

and
∑∞

n=0 pnzn 6= 0 in the unit disc on the complex plane (cf. [12],
Proposition 2.5). The last restriction is redundant if we apply our inclusion relation
to bounded sequences(ξn) only.

1 If we consider the following inclusion relation only for bounded sequences(ξn), then the
condition (15) can be dropped. Note thatcn may be also negative for somen in this pro-
position.
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Proposition 4. If (cn) satisfies(10) and either
(i) (qn) is non-decreasing

or
(ii) (qn) is non-increasing and satisfies(4),

then the method(N, c, p ∗ q) is regular.

Proof. Since the matrix(N, c, p ∗ q) is non-negative, we have to verify only the
first regularity condition (6). In case (i) we have:

cn−k

rn
≤ cn−k

p0q0
∑n

ν=0 cν
≤

M
∑n

ν=0 cν

(n− k)
∑n

ν=0 cν
= O

(
1

n− k

)
= ok(1) (n →∞).

In case (ii) we get analogously that

cn−k

rn
≤ cn−k

p0qn
∑n

k=0 ck
≤ K ncn−k

Qn
∑n

k=0 ck
= O

(
n

(n− k)Qn

)
= ok(1) (n →∞).

Proposition 5. If the conditions of Proposition4 are satisfied, then the relation

(N, p, q) ⊂ (N, c ∗ p, q)

holds.

Proof. Let us verify the equality

(N, c ∗ p, q) = (N, c, p ∗ q) ◦ (N, p, q), (17)

where the right side can be read as superposition of two transforms. Indeed, for a
sequence(ξn) we have:

1
rn

n∑
k=0

(c ∗ p)n−kqkξk =
1
rn

n∑
k=0

n−k∑
ν=0

cn−k−νpνqkξk

=
1
rn

n∑
ν=0

cn−ν(p ∗ q)ν

1
(p ∗ q)ν

ν∑
k=0

pν−kqkξk.

As the method(N, c, p ∗ q) is regular by Proposition 4, our statement follows
from (17).

Remark 4. It follows from (17) and (13) with the help of Proposition 4 that

(N, pα, q) ⊂ (N, pβ , q) (β > α > α0)

(cf. Proposition 2.2 in [12]). Indeed, it is sufficient to notice that the method

(N,Aβ−α−1, pα ∗ q) = (N,Aβ−α−1, (pα′ ∗ q) ∗Aα−α′−1)

(β > α > α0, α′ = (α + α0)/2)

satisfies the conditions of Proposition 4 if we takecn = Aβ−α−1
n and replaceqn by

Aα−α′−1
n andpn by (pα′ ∗ q)n in it.
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The following result was proved in [12] by Proposition 2.7.

Proposition 6. If the methods(N, pα, q) = (aα
nk) (α > α0) satisfy the conditions

(1), (16),
n∑

k=0

|aα
nk| = O(1) (n →∞) (18)

and

M1n
β−α ≤ rβ

n

rα
n

≤ M2n
β−α (n = 1, 2, ...) (19)

for all β > α > α0, then the implication

ξn = O(1), ξn → ξ(Jq) ⇒ ξn → ξ(N, pα, q) (20)

is true for anyα > α0.

We need also the following proposition.

Proposition 7. If pn andqn satisfy the conditions(11) and(3), respectively, then
(p ∗ q)n satisfies the condition

n(p ∗ q)n = O

(
n∑

k=0

(p ∗ q)k

)
. (21)

Proof. With the help of (11) and (3) we get:

n

n∑
k=0

pn−kqk = n

[n/2]∑
k=0

pn−kqk + n

n∑
k=[n/2]+1

pn−kqk

≤ n

[n/2]∑
k=0

pn−kqk + n

[n/2]∑
k=0

qn−kpk

= n

[n/2]∑
k=0

pn−k
n− k

n− k
qk + n

[n/2]∑
k=0

qn−k
n− k

n− k
pk

≤ 2M1

n∑
k=0

Pn−kqk + 2M2

n∑
k=0

Qn−kpk

= 2M1

n∑
ν=0

(p ∗ q)ν + 2M2

n∑
ν=0

(p ∗ q)ν = O

(
n∑

ν=0

(p ∗ q)ν

)
.

Thus we have proved that (21) holds.
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4. PROOFS OF MAIN THEOREMS

Let us prove now Theorems 1 and 2.

Proof of Theorem 1.The methodsJq and Cα (α > 0) are b-equivalent by
Proposition 1. It remains to prove that(N, c ∗ p, q) andJq areb-equivalent. Notice
that the power series

∑∞
n=0 (c ∗ p)nxn has the radius of convergenceR ≥ 1,

because this series can be seen as the product of the power series
∑∞

n=0 cnxn and∑∞
n=0 pnxn which both haveR ≥ 1 due to the restrictions (10) and (11). Also, the

condition (14) holds as

n∑
k=0

((c ∗ p) ∗ q)k ≥ c0p0

n∑
k=0

qk (n ∈ N)

and (2) is satisfied. Thus the conditions of Proposition 3 are satisfied and we have
by this proposition that the implication

ξn → ξ(N, c ∗ p, q) ⇒ ξn → ξ(Jq)

is true for any bounded sequence(ξn). To complete the proof, we have to show that
also the implication

ξn → ξ(Jq) ⇒ ξn → ξ(N, c ∗ p, q)

is true for the bounded sequences(ξn). Indeed,

ξn → ξ(Jq) ⇒ ξn → ξ(N, q)

by Theorem B. As the method(N, p, q) is regular (use Proposition 4), the
implication

ξn → ξ(N, q) ⇒ ξn → ξ(N, p, q)

is true by Theorem 3 in [15]. Finally, we have:

ξn → ξ(N, p, q) ⇒ ξn → ξ(N, c ∗ p, q)

by Proposition 5. Our theorem is proved.

Remark 5. (i) It can be seen from the proof of Theorem 1 that also the relations

C1 ⊂ (N, p, q) ⊂ (N, c ∗ p, q)

hold under the conditions of Theorem 1.
(ii) Note that we needed Theorem 3 from [15] and Theorem 14 from [2] in the

proof of Theorem 1. That is why we could not weaken the restrictions on (pn)
and (qn) in this theorem. These restictions are weakened in Theorem 2, where the
special sequences (cn) are considered.
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Proof of Theorem 2.Let us show first that all the conditions of Proposition 6 are
satisfied withα0 = 0. Notice that ifα > 0, thenAα−1

n > 0 (n ∈ N), and thus
(18) is satisfied by the definition of methods(N, pα, q). Also, the conditions (3)
and (11) imply the inequalities (19) for allβ > α > α0 by Lemma 2.1 in [12], and
(16) is satisfied due to (11). Thus the implication (20) is true by Proposition 6, and
our statement (i) follows now from Proposition 3 (see also Remark 3). Statement
(ii) is a direct conclusion from (i) and Proposition 1.

Remark 6. Suppose that(qn) is as in Theorem 1 or 2 and(gn) is a non-negative
sequence withg0 > 0 such thatgn/qn → 1 (n → ∞). It can be seen from proofs
of Theorems 1 and 2 (with the help of Theorem C) that in the conditions of these
theorems also the methodsJg and(N, c ∗ p, g) or (N, pα, g) (α > 0), respectively,
areb-equivalent toCδ (δ > 0). For example, this case works ifgn ∼ qn = nγL(n)
(γ > −1) and(qn) is monotonic.

5. SOME CONCLUSIONS

We derive now some corollaries from Theorems 1 and 2.

Denotep∗α = p ∗ p∗(α−1) and p∗1 = p (α = 1, 2, ...) supposing that
(p∗2)n = (p ∗ p)n > 0 (n ∈ N). Realize that

p∗β = p∗(β−α) ∗ p∗α (β > α, β, α = 1, 2, ...).

Consider the methods(N, p∗α, q). The following result can be obtained as a
corollary from Theorem 1.

Corollary 1. Let us consider the methods(N, p∗α, q) (α = 1, 2, ...). If (qn)
and (pn) satisfy the conditions of Theorem1, then the methods(N, p∗α, q)
(α = 1, 2, ...) are b-equivalent toJq and to the Cesàro methodsCδ (δ > 0) as
well.

Proof. If α = 1, then our statement follows directly from Theorem 1 if we take
cn = δ0,n in it. If α > 1, then our statement can be also derived immediately from

Theorem 1 by takingcn = p
∗(α−1)
n in it and realizing that (11) implies here (10) by

Proposition 7.

In particular, ifq = p∗γ , then Corollary 1 says as follows.

Corollary 2. Let us consider the methods(N, p∗α, p∗γ), whereα, γ = 1, 2, ... If
(pn) is non-decreasing and satisfies(11), then the methods(N, p∗α, p∗γ) andJp∗γ

(α, γ = 1, 2, ...) are b-equivalent to the Cesàro methodsCδ (δ > 0).
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Proof. Our statement can be derived from Corollary 1 as a direct conclusion,
because the sequence(qn) = (p∗γn ) (γ = 1, 2, 3, ...) satisfies (3) due to (11) (see
Proposition 7) and is also non-decreasing:

p∗γn+1 =
n+1∑
k=0

pn+1−kp
∗(γ−1)
k ≥

n∑
k=0

pn+1−kp
∗(γ−1)
k ≥

n∑
k=0

pn−kp
∗(γ−1)
k = p∗γn .

Remark 7. The methods(N, p∗α, p∗γ) (α, γ = 1, 2, ...) obeying the conditions
of Corollary 2 were considered in [7,9,12], where certain inclusion, convexity
and Tauberian theorems implying theb-equivalence of the methods(N, p∗α, p∗γ)
andJp∗γ were proved. Theb-equivalence of these methods in the conditions of
Corollary 2 was proved in [12] by Theorem 3.5(b) and Proposition 2.5. In papers
[7] and [9] the restrictions on(pn) are presented in the formpn = nδL(n) (more
precisely,pn ∼ nδL(n), n → ∞), whereδ ≥ 0, L(.) is a regularly varying
function and(nδL(n)) is non-decreasing; in [12] also the case−1 < δ < 0 is
included. Theb-equivalence of the methods(N, p∗α, p∗γ) to the Cesàro methods
was not noticed in these papers.

Finishing our paper we derive a corollary from Theorem 2.

Corollary 3. Consider the methods(N,Aα−1, q) with α > 0. Suppose that(qn)
satisfies(1) and(3).

(i) Then the methods(N,Aα−1, q) (α > 0) andJq are b-equivalent.
(ii) If, in addition, (qn) is non-decreasing or(qn) is non-increasing and satisfies

(4), then the methods(N,Aα−1, q) (α > 0) are b-equivalent to the Cesàro methods
Cδ (δ > 0).

This corollary is the immediate conclusion from Theorem 2 for the case
pn = δ0,n. Note that statement (i) was proved in [8] in stronger conditions (2)
and (3) (see Theorem 1 and Proposition 1 in [8]).

Remark 8. If qn = 1
n+1 and (pn) satisfies the condition (11), then(N, pα, q)

(α > 0) andJq areb-equivalent by Theorem 2. It should be mentioned that the
methods(N, pα, q) are notb-equivalent toCδ (δ > 0) (see Remark 2). In particular,
the method(N, q) is b-equivalent toJq but not toCδ (δ > 0).
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Cesàro menetlustegab-ekvivalentsetest
summeerimismenetlustest

Olga Meronen ja Anne Tali

Artiklis on käsitletud summeerimismenetlusi, mis on tõkestatud jadade
summeerimisel ekvivalentsed (b-ekvivalentsed). On hästi teada, et Cesàro menet-
lusedCα (α > 0) ja Abeli menetlusA on b-ekvivalentsed. Üldisemalt, mitmed
autorid on tõestanud, et üldistatud Nörlundi menetlus(N, a, b) ja Abeli tüüpi
astmerea menetlusJq on teatavatel tingimustelb-ekvivalentsed. Osutub, et küllalt
sageli on saadud tingimustel menetlused(N, a, b) ja Jq b-ekvivalentsed ühtlasi ka
Cesàro menetlustegaCα (α > 0). Käesolevas töös on leitud erinevaid piisavaid
tingimusi nimetatud menetlusteb-ekvivalentsuseks.
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