Proc. Estonian Acad. Sci. Phys. Math., 2082, 3, 137-148

Some summability methodsh-equivalent to the
Cesaro methods

Olga Meronen and Anne Tali

Department of Mathematics, Tallinn Pedagogical University, Narva mnt. 25, 10120 Tallinn,
Estonia; atali@tpu.ee

Received 3 January 2002, in revised form 8 May 2002

Abstract. The paper deals with summability methods which are equivalent for summing
bounded sequenceb-équivalent). It is well known that the Cesaro methdds (o > 0)

and the Abel methodd are b-equivalent. More generally, different authors have proved
that generalized Norlund methodsV, a,b) and Abel-type power series methods are
b-equivalent under certain conditions on these methods. It turns out that quite often these
conditions imply theb-equivalence of the methodsV, a, b) and J, to C, (o > 0) as well.

The idea of this paper is to investigate thequivalence of the method#V, a, b), J,, andC,

(a > 0).

Key words: summability methods, generalized No6rlund methods, Cesaro methods, power
series method$-equivalence of methods.

1. INTRODUCTION AND PRELIMINARIES

We begin with the definition of generalized Nérlund summability methods
and power series methods of Abel type. Igt) denote throughout the paper a
complex sequence and= (¢,) a non-negative sequence wigh > 0 (n € N =
{0,1,2,...}). For the definition of the power series methpdsee []) we suppose
that

the power serieg;(x) = anx” has the radius of convergenfe=1. (1)

n=0

We say that¢,,) is summable t@ by the power series summability methdgand
write &, — &(J,) if

oo
ge(x) = &ugna™ converges fotz| < 1

n=0
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and
q¢(w)
q(x)
In particular, ifg, = 1, thenJ, is the Abel method, i.e.J, = A. If
qg= A% = (A?) = ((”*a)) a > —1 then J, is the generalized Abel method
A.. Therefore we say that the power series metﬂlpd; an Abel-type method (in
contrast to the case witR = co where we speak of Borel-type methods).
In the sequel the following restrictions dg,) will be important:

—fasr —1— .

n

ZQk—)OO (TL—>OO), (2)
k=0
ngn = @ (Z Qk:) (TL - OO)? (3)
k=0
qu — O(ngn) (n— o). (4)

We note that (4) implles (2), and the conditions (2) and (3) imply (1Ras 1

by (2) andR > 1 by (3). By Theorem 5 inq] the method.J, is regular, i.e.

& — & (n — oo) implies&, — £(Jy), if and only if (2) holds. Notice that

(3) is satisfied, for example, in case of a non-increasing and (4) in case of a non-
decreasing sequence,). If, in particular,q, = A} (y > —1), then (3) and

(4) both are satisfied. The conditions (3) and (4) are satisfied also in case of
gn = n7L(n) (n > ng), wherey > —1 and L(.) is a slowly varying function

(i.e., in case of regularly varying weighgs, see §] for definitions) because of the
relation

ZAa kLK mnaﬂ“n) (n—o00, a>0, v>-1)
(5)
(see ], Lemma A 1), wherd'(.) is the gamma function.
The definition of a generalized N6rlund meth@¥l, a, b) was given in {] and
is as follows:
Leta = (ay,) andb = (b,,) be real sequences with the convoluted sequence

(axb), = Zan—kbk #0 (n € N).

We say that¢,,) is summable by the generalized Noérlund methdda, b) to £ and
write &, — &(N, a,b) if

(a*b
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The theorem of Toeplitz (see Theorem 2 i) [says that the methodV, a, b)
is regular if and only if the following two conditions are satisfied:

ap—kbg
(axb)y

> lan—kbr| = O((a ¥ b)) (n — o0).
k=0

-0 (n — oo, keN),
(6)

In particular, ifb,, = 1, then we have the Norlund method, a) = (N, a, 1), if
alsoa, = A2~!, then we have the Cesaro methgdg A1 1) = (C,a) = C,.

If b, = A} anda, = A2l then we get the generalized Cesaro methods
(N,A*1 A7) = (C,a,y). If a, = 1, then we have the Riesz methods
(N,1,b) = (N, b) (for more examples se&{'?)).

For any two summability method4 and B we say thatB is not weaker than
A and writeA C B if £, — & (B) whenever,, — £ (A). We say that method4
and B are equivalent and writd ~ B if both the relationsd ¢ B andB C A
hold. If the relation
is true for all bounded sequencgs,), then we say thatl and B areb-equivalent
(or, A is b-equivalent taB).

Relations between the method#/,a,q) and J, were investigated in'f]
and [°] in general and, in more or less general cases, also in all papers listed
in References to our paper. In particular, some families of metldda“, q),
where« is a discrete or continuous parameter afidis defined as convolution
of sequences, have been constructed and relations between the niéthotlsy)
themselves, and between these methods and related power series nmigthads
been investigated (se€&1'3]). Among other results the mentioned papers present
sufficient conditions for th&-equivalence of the method#v, a®, ¢) to each other
and toJ,. It turns out that quite often these conditions are sufficient (or almost
sufficient) for theb-equivalence of the considered methods to the Cesaro methods
Cy (a > 0) as well.

The idea of the present paper is to extend these investigations by studying the
b-equivalence of the methodsV, a, q), J;, andC, (o > 0). Different sets of
sufficient conditions for thé-equivalence of these methods will be found here.

The following inclusion relations are quite well known (see Theorem 43]in [
and Theorem 2 in'f]):

CoCCgC A, B>a>-1, v>-1), @)
A, C As (y>d>-1). (8)

Also (see [7]), -
(N7Q> C Jq (9)

provided that (1) holds.
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Note that the inclusion relations (7), (8), and (9) are strict, i.e. the methods
compared there are not equivalent.

We take for our starting-point the following three theorems (see Theorem 92 in
[2] and Theorem 4.3 in'[] together with (7) and (9), respectively, and Lemma 2
in [']).
Theorem A. The Cesaro method€, (« > 0) and the Abel methodi are
b-equivalent.

Theorem B. If the conditions(2) and (3) are satisfiedthen the method6V, q)
andJ, are b-equivalent.

Theorem C. Let (g, ) satisfy the conditiongl) and(2) and be positive for all large
n. If (g») is a non-negative sequence with> 0 such thatg, /¢, — 1 (n — o),
then the method, is b-equivalent ta/,.

2. MAIN THEOREMS

We will present here two theorems.

Letc = (¢,) andp = (p,) be two non-negative sequences such thaty > 0
and(c * p) x ¢ = (r,) is a positive sequence. Consider the generalized Nérlund
method(V, ¢ * p, ¢) and the power series methdgl.

Theorem 1. Let us suppose thdt,,) satisfies the condition

nep, =0 <i ck> (n — o) (10)
k=0

and either

(i) (¢n) is non-decreasing and satisfié¥)
or

(i) (gn) Is non-increasing and satisfi¢g).
Suppose also that either

(iii) (pn) is non-decreasing and

npy =0 (Zm) (n — o0) (11)
k=0

or
(iv) (pn) is non-increasing and

> a=0(p*q), (n— o). (12)
k=0

Then the metho@V, ¢ * p, ¢) is b-equivalent to/, and to the Cesaro methods,
(o > 0) as well.
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Remark 1. Notice that the methodV, ¢  p, ¢) turns into the methodN, p, q) if

¢n = don. Thus, Theorem 1 says that the meth{dd p, q) is b-equivalent to the
Cesaro method€', (« > 0) if conditions (i) or (ii) and (iii) or (iv) of Theorem 1
are satisfied. In particular, the meth@¥l, ¢) is b-equivalent to the Cesaro methods
Cq (o > 0) if (i) or (i) is satisfied.

In particular, ifc, = Ag*l, then the restrictions op,, andg, in Theorem 1
can be weakened. Thus we get another theorem.
Denotep; = (A*~ !« p) and consider the methods

(N,p®,q) = (N, A xp, q) = (N,c*p,q),

whereq is a continuous parameter with values> oy andcag is such a number
thatp® + ¢ = (A*"! % p) x ¢ = (r®) are positive sequences. Notice that the last
condition is surely satisfied #y = 0, and the relation

pﬁ = AB—o-1 xp* (B> ap, a>a) (13)

holds by the properties of convolutions and the Cesaro nuniers

The structure of the family of method#V, p%, ¢) was observed in'f>12:13] in
the general case and in partial cases als&i{]. In this paper we will prove the
following theorem.

Theorem 2. Let us consider the methodsV, p®, q) = (N, A%~ ! x p,q) with
a > 0. Suppose thatg,) and (p,) satisfy the conditiong1), (3), and (11),
respectively.

(i) Then the methodsV, p®, ¢) (o« > 0) are b-equivalent t@/,.

(i) If, in addition, (¢, ) is non-decreasing ofg,, ) is non-increasing and satisfies
(4), then the method&V, p*, ¢) (o« > 0) are b-equivalent to the Cesaro methods
Cs (0 > 0).

To prove Theorems 1 and 2 we need some auxiliary results.

3. AUXILIARY PROPOSITIONS

Proposition 1. If (g,,) satisfies condition@) or (ii) of Theoremni, then the methods
J, and C, (o > 0) are b-equivalent. In particularthe generalized Abel methods
Jg=A, (v>—1)andC, (o« > 0) are b-equivalent.

Proof. The methodsJ, and (IV, ¢) are b-equivalent by Theorem B because the
conditions (2) and (3) both are satisfied. Furtlié¥, q) ~ C; by Theorem 14 in
[%] and C; is b-equivalent taC,, (o > 0) by Theorem A. It remains to note that
qn = A, satisfies condition (i) ify > 0 and condition (ii) if—1 < v < 0. O
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Proposition 2. Suppose thatg,) is a non-negative sequence wih > 0 and
gn ~ nYL(n) (n — oo, v > —1), whereL(.) is a slowly varying function. If
(n7L(n)) is monotoni¢cthen the methodg, andC,, (a > 0) are b-equivalent.

Proof. Our proposition is a direct conclusion from the previous one and Theorem
C. Denotey,, = n7L(n) (n > ng) and see from (5) thdy,) satisfies (3) and (4).
Thus conditions (i) or (ii) of Theorem 1 are satisfied afyds b-equivalent toC',

(o > 0). It follows now from Theorem C thaf, is b-equivalent ta’,, (o > 0). [

Remark 2. (i) Notice that if (¢,,) is monotonic and satisfies (2) and (3), then the
relationC; C J, holds (use (9) and Theorem 14 #)[
@iy If ¢, = n%rl thenJ, is notb-equivalent taC”,, (o > 0) because there exists

a bounded sequencg,) summable by, but not byC; (see ], Section 3.8 and
Theorem 82).

The next proposition is proved if%] as Lemma 1.1(h).

Proposition 3. Let(g,,) satisfy(1) and the power seri€s >, (¢ * p), 2™ have the
radius of convergenc®& > 1. If

n

D (cxp)rq)y—oc  (n—o0) (14)
k=0
and -
Z (c*xp),z" #0 (15)
n=0

in the unit disdz| < 1 on the complex plane then

(N,C*p,Q) CJQ‘

Remark 3. In particular, if we consider the methot, p©, q) (o > «), then we
have by Proposition 3
(vaa7 q) - Jq7

provided thatq,,) satisfies (1),

the power series) _ p, 2" hasR > 1 (16)
n=0
and > >° (p,2" #0 in the unit disc on the complex plane (cf!?],
Proposition 2.5). The last restriction is redundant if we apply our inclusion relation
to bounded sequencés,) only.

1 If we consider the following inclusion relation only for bounded sequelégl then the
condition (15) can be dropped. Note tligtmay be also negative for somen this pro-
position.
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Proposition 4. If (¢,) satisfieg10) and either
(i) (gn) is non-decreasing
or
(i) (gn) Is non-increasing and satisfi¢g),
then the methodN, ¢, p * ¢) is regular.
Proof. Since the matrixX NV, ¢, p * q) is non-negative, we have to verify only the
first regularity condition (6). In case (i) we have:

Cn—k < Cn—k < M ZZL:O Cy _ O( 1
Tn D040 ZZ:O v (n - k) ZZ:O Cvy n-—
In case (ii) we get analogously that

Cn—k Cn—k Knecp—g, ( n >
< = < - =0|— | =0(1l) (n— ).
Tn  Pogn Zk:O Ck Qn Zk:o Ck (TL - k)Qn k( ) ( )

k) — oy(1) (n— o0).

O]

Proposition 5. If the conditions of Proposition are satisfiedthen the relation
(N,p.q) C (N,cxp.q)
holds.
Proof. Let us verify the equality
(N,cxp,q) = (N,c,pxq)o(N,p,q), 17)

where the right side can be read as superposition of two transforms. Indeed, for a
sequencés,, ) we have:

n n—k

1 1
o~ > (exp) panbe = - DD enokovPurén
" k=0 " k=0 v=0
1 & 1 z
= — > cnw(P*q),—— > Pv—r&k-
o g,

As the method(N, ¢, p = ¢) is regular by Proposition 4, our statement follows
from (17). O

Remark 4. It follows from (17) and (13) with the help of Proposition 4 that

(N,p*q) € (N,p’,q)  (B>a>a)

(cf. Proposition 2.2 in'?]). Indeed, it is sufficient to notice that the method
(N, AP 1 p s q) = (N, AP (p% x q) x A7)
(B>a>ay, o= (a+a)/2)
satisfies the conditions of Proposition 4 if we take— A2 and replace,, by

A2~ ~Landp, by (p® *q), init.
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The following result was proved int{] by Proposition 2.7.

Proposition 6. If the methods N, p*, q) = (af,) (o > o) satisfy the conditions
(1), (16),

D lagl=001)  (n—o0) (18)
k=0
and
r
MinP— < o < MynP—@ (n=1,2,...) (29)

n

forall 3 > o > ay, then the implication

& =0(1), & — &(Jg) = & — (N, p%,q) (20)
is true for anya > «p.
We need also the following proposition.

Proposition 7. If p,, andg,, satisfy the condition§11) and (3), respectivelythen
(p % q),, satisfies the condition

n(pxq)n =0 (Z(p * Q)k> . (21)
k=0
Proof. With the help of (11) and (3) we get:

[n/2]

nZPn—ka =n Z Pn—kqk t 1 Z Pn—kQk
k=0 =[n/2]+1
[n/2] [n/2
< ann qu+n2qn kDk
[n/2 L [n/2] k
= annk inﬁ‘”Z%k — Pk
< 2M Z Pr—kaqr + 2M> Z Qn—kPk
k=0 k=0
= 2M; Z(p *q)y + 2Mo Z(P *q)y =0 (Z(p * Q)u> :
v=0 v=0 v=0
Thus we have proved that (21) holds. O
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4. PROOFS OF MAIN THEOREMS

Let us prove now Theorems 1 and 2.

Proof of Theorem 1The methodsJ, and C, (a > 0) are b-equivalent by
Proposition 1. It remains to prove th@v, c = p, ¢) and.J, areb-equivalent. Notice
that the power serie§"° , (c*p), 2" has the radius of convergende > 1,
because this series can be seen as the product of the power)sgries,, =™ and

> o2 o pnx™ which both haveR > 1 due to the restrictions (10) and (11). Also, the
condition (14) holds as

n

Z((C*P)*Q)kZCoPOqu (n € N)

k=0 k=0

and (2) is satisfied. Thus the conditions of Proposition 3 are satisfied and we have
by this proposition that the implication

gn —>£(N,C*p7Q) :>£n—>£(Jq)

is true for any bounded sequen@g). To complete the proof, we have to show that
also the implication

En — S(Jq) = gn — €(N7C*P7Q)
is true for the bounded sequengés). Indeed,
gn - g(Jq) = &n — g(ﬁ, Q)

by Theorem B. As the methodN,p,q) is regular (use Proposition 4), the
implication o
&n — &N, q) = & — E(N,p,q)

is true by Theorem 3 in'f]. Finally, we have:

&n — E(N,p,q) = & — (N, cxp,q)

by Proposition 5. Our theorem is proved. O

Remark 5. (i) It can be seen from the proof of Theorem 1 that also the relations
Cl - (Napaq) C (N,C*p,Q)

hold under the conditions of Theorem 1.

(ii) Note that we needed Theorem 3 from]and Theorem 14 fron?] in the
proof of Theorem 1. That is why we could not weaken the restrictiongpgh (
and @,,) in this theorem. These restictions are weakened in Theorem 2, where the
special sequences,f) are considered.
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Proof of Theorem 2Let us show first that all the conditions of Proposition 6 are
satisfied withay = 0. Notice that ifa > 0, thenA2~! > 0 (n € N), and thus

(18) is satisfied by the definition of metho@¥, p*, ¢). Also, the conditions (3)

and (11) imply the inequalities (19) for all > a > ag by Lemma 2.1 in1?], and

(16) is satisfied due to (11). Thus the implication (20) is true by Proposition 6, and
our statement (i) follows now from Proposition 3 (see also Remark 3). Statement
(ii) is a direct conclusion from (i) and Proposition 1. O

Remark 6. Suppose thatg,,) is as in Theorem 1 or 2 and@,,) is a non-negative
sequence witlyy > 0 such thaty,, /g, — 1 (n — o0). It can be seen from proofs

of Theorems 1 and 2 (with the help of Theorem C) that in the conditions of these
theorems also the methodg and(N, ¢ * p, g) or (N, p“, g) (o > 0), respectively,
areb-equivalent taCs (6 > 0). For example, this case worksgf ~ ¢, = n?L(n)

(v > —1) and(g,) is monotonic.

5. SOME CONCLUSIONS

We derive now some corollaries from Theorems 1 and 2.

Denote p*©

; = pxp* @D andp! = p (@ = 1,2,..) supposing that
(p*)n = (*p), >0

(n € N). Realize that
p*ﬁ = p*(ﬁfo‘) xp* (B>a, fa=1,2,..).

Consider the methodgNV, p*“,¢q). The following result can be obtained as a
corollary from Theorem 1.

Corollary 1. Let us consider the methodsV,p*®,q) (a« =1,2,...). If (¢gn)
and (p,) satisfy the conditions of Theoremy then the methodg§N,p**,q)
(e =1,2,...) are b-equivalent toJ, and to the Cesaro methods; (6 > 0) as
well.

Proof. If o = 1, then our statement follows directly from Theorem 1 if we take
cn = 0o, iNit. If « > 1, then our statement can be also derived immediately from

Theorem 1 by taking,, = pZ(a_l) in it and realizing that (11) implies here (10) by
Proposition 7. O

In particular, ifg = p*7, then Corollary 1 says as follows.

Corollary 2. Let us consider the method®/, p**, p*7), wherea,y = 1,2, ... If
(pn) is non-decreasing and satisfigkl ), then the method&V, p*, p*7) and Jp«
(a,y =1,2,...) are b-equivalent to the Cesaro methads (s > 0).
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Proof. Our statement can be derived from Corollary 1 as a direct conclusion,
because the sequengg,) = (p') (y = 1,2,3,...) satisfies (3) due to (11) (see
Proposition 7) and is also non-decreasing:

n+1

n
P = purropy Y > an+1 Y >N pap Y =
= k=0 k=0

O

Remark 7. The methodg N, p**, p*7) (a,y = 1,2,...) obeying the conditions
of Corollary 2 were considered in{:'2], where certain inclusion, convexity
and Tauberian theorems implying theequivalence of the methodsv, p**, p*7)

and J,~» were proved. Thé-equivalence of these methods in the conditions of
Corollary 2 was proved in'f] by Theorem 3.5(b) and Proposition 2.5. In papers
[7] and [] the restrictions or{p,,) are presented in the form, = n’L(n) (more
precisely,p, ~ n’L(n), n — oo), whered > 0, L(.) is a regularly varying
function and(n’L(n)) is non-decreasing; in'f] also the case-1 < § < 0 is
included. Theb-equivalence of the method#v, p**, p*7) to the Cesaro methods
was not noticed in these papers.

Finishing our paper we derive a corollary from Theorem 2.

Corollary 3. Consider the methodsV, A*~!, ¢) with « > 0. Suppose thag,)
satisfieg'1) and(3).

(i) Then the methodsV, A%, ) (o > 0) and.J, are b-equivalent.

(i) If, in addition, (¢, ) is non-decreasing ofg,, ) is non-increasing and satisfies
(4), then the methodsV, A*~!, ¢) (a > 0) are b-equivalent to the Cesaro methods
Cs (0 > 0).

This corollary is the immediate conclusion from Theorem 2 for the case
pn = don. Note that statement (i) was proved ffi [n stronger conditions (2)
and (3) (see Theorem 1 and Proposition 15[

Remark 8. If ¢, = n+1 and (p,) satisfies the condition (11), theV, p®, q)
(o« > 0) andJ, areb-equivalent by Theorem 2. It should be mentioned that the
methodg NV, p*, q) are not-equivalent ta”s (6 > 0) (see Remark 2). In particular,

the method N, ¢) is b-equivalent toJ, but not toCj (§ > 0).
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Cesaro menetlustega-ekvivalentsetest
summeerimismenetlustest

Olga Meronen ja Anne Tali

Artiklis on kasitletud summeerimismenetlusi, mis on tdkestatud jadade
summeerimisel ekvivalentsebt-€kvivalentsed). On hasti teada, et Cesaro menet-
lusedC,, (o« > 0) ja Abeli menetlusA on b-ekvivalentsed. Uldisemalt, mitmed
autorid on tBestanud, et Uldistatud Norlundi menetld§ a,b) ja Abeli thupi
astmerea menetlug, on teatavatel tingimustd-ekvivalentsed. Osutub, et killalt
sageli on saadud tingimustel menetlu$éd a, b) ja J, b-ekvivalentsed htlasi ka
Cesaro menetlustedd, (o« > 0). Kéesolevas toos on leitud erinevaid piisavaid
tingimusi nimetatud menetlusbeekvivalentsuseks.
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