Some summability methods *b*-equivalent to the Cesàro methods

Olga Meronen and Anne Tali

Department of Mathematics, Tallinn Pedagogical University, Narva mnt. 25, 10120 Tallinn, Estonia; atali@tpu.ee

Received 3 January 2002, in revised form 8 May 2002

Abstract. The paper deals with summability methods which are equivalent for summing bounded sequences (*b*-equivalent). It is well known that the Cesàro methods C_{α} ($\alpha > 0$) and the Abel method A are *b*-equivalent. More generally, different authors have proved that generalized Nörlund methods (N, a, b) and Abel-type power series methods J_q are *b*-equivalent under certain conditions on these methods. It turns out that quite often these conditions imply the *b*-equivalence of the methods (N, a, b) and J_q to C_{α} ($\alpha > 0$) as well. The idea of this paper is to investigate the *b*-equivalence of the methods (N, a, b), J_q , and C_{α} ($\alpha > 0$).

Key words: summability methods, generalized Nörlund methods, Cesàro methods, power series methods, *b*-equivalence of methods.

1. INTRODUCTION AND PRELIMINARIES

We begin with the definition of generalized Nörlund summability methods and power series methods of Abel type. Let (ξ_n) denote throughout the paper a complex sequence and $q = (q_n)$ a non-negative sequence with $q_0 > 0$ ($n \in \mathbf{N} = \{0, 1, 2, ...\}$). For the definition of the power series method J_q (see [¹]) we suppose that

the power series $q(x) = \sum_{n=0}^{\infty} q_n x^n$ has the radius of convergence R = 1. (1)

We say that (ξ_n) is summable to ξ by the power series summability method J_q and write $\xi_n \to \xi(J_q)$ if

$$q_{\xi}(x) = \sum_{n=0}^{\infty} \xi_n q_n x^n$$
 converges for $|x| < 1$

$$\frac{q_{\xi}(x)}{q(x)} \to \xi \text{ as } x \to 1-$$
.

In particular, if $q_n \equiv 1$, then J_q is the Abel method, i.e. $J_q = A$. If $q = A^{\alpha} = (A_n^{\alpha}) = (\binom{n+\alpha}{n})$, $\alpha > -1$, then J_q is the generalized Abel method A_{α} . Therefore we say that the power series method J_q is an Abel-type method (in contrast to the case with $R = \infty$ where we speak of Borel-type methods).

In the sequel the following restrictions on (q_n) will be important:

$$\sum_{k=0}^{n} q_k \to \infty \quad (n \to \infty), \tag{2}$$

$$nq_n = O\left(\sum_{k=0}^n q_k\right) \quad (n \to \infty),\tag{3}$$

$$\sum_{k=0}^{n} q_k = O(nq_n) \quad (n \to \infty).$$
(4)

We note that (4) implies (2), and the conditions (2) and (3) imply (1) as $R \leq 1$ by (2) and $R \geq 1$ by (3). By Theorem 5 in [²] the method J_q is regular, i.e. $\xi_n \to \xi \quad (n \to \infty)$ implies $\xi_n \to \xi(J_q)$, if and only if (2) holds. Notice that (3) is satisfied, for example, in case of a non-increasing and (4) in case of a non-decreasing sequence (q_n) . If, in particular, $q_n = A_n^{\gamma} (\gamma > -1)$, then (3) and (4) both are satisfied. The conditions (3) and (4) are satisfied also in case of $q_n = n^{\gamma}L(n)$ $(n > n_0)$, where $\gamma > -1$ and L(.) is a slowly varying function (i.e., in case of regularly varying weights q_n , see [³] for definitions) because of the relation

$$\sum_{k=0}^{n} A_{n-k}^{\alpha-1} k^{\gamma} L(k) \sim \frac{\Gamma(\gamma+1)}{\Gamma(\gamma+\alpha+1)} n^{\alpha+\gamma} L(n) \quad (n \to \infty, \ \alpha > 0, \ \gamma > -1)$$
(5)

(see [⁴], Lemma A 1), where $\Gamma(.)$ is the gamma function.

The definition of a generalized Nörlund method (N, a, b) was given in [⁵] and is as follows:

Let $a = (a_n)$ and $b = (b_n)$ be real sequences with the convoluted sequence

$$(a * b)_n = \sum_{k=0}^n a_{n-k} b_k \neq 0 \qquad (n \in \mathbf{N}).$$

We say that (ξ_n) is summable by the generalized Nörlund method (N, a, b) to ξ and write $\xi_n \to \xi(N, a, b)$ if

$$\eta_n = \frac{1}{(a*b)_n} \sum_{k=0}^n a_{n-k} b_k \xi_k \to \xi \qquad (n \to \infty).$$

138

and

The theorem of Toeplitz (see Theorem 2 in $[^2]$) says that the method (N, a, b) is regular if and only if the following two conditions are satisfied:

$$\frac{a_{n-k}b_k}{(a*b)_n} \to 0 \qquad (n \to \infty, \ k \in \mathbf{N}),$$

$$\sum_{k=0}^n |a_{n-k}b_k| = O((a*b)_n) \ (n \to \infty).$$
(6)

In particular, if $b_n \equiv 1$, then we have the Nörlund method (N, a) = (N, a, 1), if also $a_n = A_n^{\alpha-1}$, then we have the Cesàro methods $(N, A^{\alpha-1}, 1) = (C, \alpha) = C_{\alpha}$. If $b_n = A_n^{\gamma}$ and $a_n = A_n^{\alpha-1}$, then we get the generalized Cesàro methods $(N, A^{\alpha-1}, A^{\gamma}) = (C, \alpha, \gamma)$. If $a_n \equiv 1$, then we have the Riesz methods $(N, 1, b) = (\overline{N}, b)$ (for more examples see [⁶⁻¹³]).

For any two summability methods A and B we say that B is not weaker than A and write $A \subset B$ if $\xi_n \to \xi(B)$ whenever $\xi_n \to \xi(A)$. We say that methods A and B are equivalent and write $A \sim B$ if both the relations $A \subset B$ and $B \subset A$ hold. If the relation

$$\xi_n \to \xi(A) \Leftrightarrow \xi_n \to \xi(B)$$

is true for all bounded sequences (ξ_n) , then we say that A and B are b-equivalent (or, A is b-equivalent to B).

Relations between the methods (N, a, q) and J_q were investigated in [¹⁴] and [¹⁵] in general and, in more or less general cases, also in all papers listed in References to our paper. In particular, some families of methods (N, a^{α}, q) , where α is a discrete or continuous parameter and a^{α} is defined as convolution of sequences, have been constructed and relations between the methods (N, a^{α}, q) themselves, and between these methods and related power series methods J_q have been investigated (see [^{7–13}]). Among other results the mentioned papers present sufficient conditions for the *b*-equivalence of the methods (N, a^{α}, q) to each other and to J_q . It turns out that quite often these conditions are sufficient (or almost sufficient) for the *b*-equivalence of the considered methods to the Cesàro methods C_{α} ($\alpha > 0$) as well.

The idea of the present paper is to extend these investigations by studying the *b*-equivalence of the methods (N, a, q), J_q , and C_{α} ($\alpha > 0$). Different sets of sufficient conditions for the *b*-equivalence of these methods will be found here.

The following inclusion relations are quite well known (see Theorem 43 in $[^2]$ and Theorem 2 in $[^{16}]$):

$$C_{\alpha} \subset C_{\beta} \subset A_{\gamma} \qquad (\beta > \alpha > -1, \ \gamma > -1), \tag{7}$$

$$A_{\gamma} \subset A_{\delta} \qquad (\gamma > \delta > -1). \tag{8}$$

Also (see [¹⁷]),

$$(\overline{N},q) \subset J_q \tag{9}$$

provided that (1) holds.

Note that the inclusion relations (7), (8), and (9) are strict, i.e. the methods compared there are not equivalent.

We take for our starting-point the following three theorems (see Theorem 92 in $[^2]$ and Theorem 4.3 in $[^{18}]$ together with (7) and (9), respectively, and Lemma 2 in $[^{19}]$).

Theorem A. The Cesàro methods C_{α} ($\alpha > 0$) and the Abel method A are *b*-equivalent.

Theorem B. If the conditions (2) and (3) are satisfied, then the methods (\overline{N}, q) and J_q are b-equivalent.

Theorem C. Let (q_n) satisfy the conditions (1) and (2) and be positive for all large n. If (g_n) is a non-negative sequence with $g_0 > 0$ such that $g_n/q_n \to 1 \ (n \to \infty)$, then the method J_g is b-equivalent to J_q .

2. MAIN THEOREMS

We will present here two theorems.

Let $c = (c_n)$ and $p = (p_n)$ be two non-negative sequences such that $c_0, p_0 > 0$ and $(c * p) * q = (r_n)$ is a positive sequence. Consider the generalized Nörlund method (N, c * p, q) and the power series method J_q .

Theorem 1. Let us suppose that (c_n) satisfies the condition

$$n c_n = O\left(\sum_{k=0}^n c_k\right) \qquad (n \to \infty) \tag{10}$$

and either

(i) (q_n) is non-decreasing and satisfies (3) or

(ii) (q_n) is non-increasing and satisfies (4). Suppose also that either

(iii) (p_n) is non-decreasing and

$$n p_n = O\left(\sum_{k=0}^n p_k\right) \qquad (n \to \infty) \tag{11}$$

or

(iv) (p_n) is non-increasing and

$$\sum_{k=0}^{n} q_k = O((p * q)_n) \qquad (n \to \infty).$$
(12)

Then the method (N, c * p, q) is b-equivalent to J_q and to the Cesàro methods C_{α} $(\alpha > 0)$ as well.

Remark 1. Notice that the method (N, c * p, q) turns into the method (N, p, q) if $c_n = \delta_{0,n}$. Thus, Theorem 1 says that the method (N, p, q) is *b*-equivalent to the Cesàro methods C_{α} ($\alpha > 0$) if conditions (i) or (ii) and (iii) or (iv) of Theorem 1 are satisfied. In particular, the method (\overline{N}, q) is *b*-equivalent to the Cesàro methods C_{α} ($\alpha > 0$) if (i) or (ii) is satisfied.

In particular, if $c_n = A_n^{\alpha-1}$, then the restrictions on p_n and q_n in Theorem 1 can be weakened. Thus we get another theorem.

Denote $p_n^{\alpha} = (A^{\alpha-1} * p)_n$ and consider the methods

$$(N, p^{\alpha}, q) = (N, A^{\alpha - 1} * p, q) = (N, c * p, q),$$

where α is a continuous parameter with values $\alpha > \alpha_0$ and α_0 is such a number that $p^{\alpha} * q = (A^{\alpha-1} * p) * q = (r_n^{\alpha})$ are positive sequences. Notice that the last condition is surely satisfied if $\alpha_0 = 0$, and the relation

$$p^{\beta} = A^{\beta - \alpha - 1} * p^{\alpha} \quad (\beta > \alpha_0, \ \alpha > \alpha_0) \tag{13}$$

holds by the properties of convolutions and the Cesàro numbers A_n^{α} .

The structure of the family of methods (N, p^{α}, q) was observed in [^{10,12,13}] in the general case and in partial cases also in [^{6,8,11}]. In this paper we will prove the following theorem.

Theorem 2. Let us consider the methods $(N, p^{\alpha}, q) = (N, A^{\alpha-1} * p, q)$ with $\alpha > 0$. Suppose that (q_n) and (p_n) satisfy the conditions (1), (3), and (11), respectively.

(i) Then the methods (N, p^{α}, q) $(\alpha > 0)$ are b-equivalent to J_q .

(ii) If, in addition, (q_n) is non-decreasing or (q_n) is non-increasing and satisfies (4), then the methods (N, p^{α}, q) $(\alpha > 0)$ are b-equivalent to the Cesàro methods C_{δ} $(\delta > 0)$.

To prove Theorems 1 and 2 we need some auxiliary results.

3. AUXILIARY PROPOSITIONS

Proposition 1. If (q_n) satisfies conditions (i) or (ii) of Theorem 1, then the methods J_q and C_α ($\alpha > 0$) are b-equivalent. In particular, the generalized Abel methods $J_q = A_\gamma (\gamma > -1)$ and $C_\alpha (\alpha > 0)$ are b-equivalent.

Proof. The methods J_q and (\overline{N}, q) are *b*-equivalent by Theorem B because the conditions (2) and (3) both are satisfied. Further, $(\overline{N}, q) \sim C_1$ by Theorem 14 in $[^2]$ and C_1 is *b*-equivalent to C_{α} ($\alpha > 0$) by Theorem A. It remains to note that $q_n = A_n^{\gamma}$ satisfies condition (i) if $\gamma \ge 0$ and condition (ii) if $-1 < \gamma \le 0$.

Proposition 2. Suppose that (g_n) is a non-negative sequence with $g_0 > 0$ and $g_n \sim n^{\gamma}L(n) \ (n \to \infty, \ \gamma > -1)$, where L(.) is a slowly varying function. If $(n^{\gamma}L(n))$ is monotonic, then the methods J_g and $C_{\alpha} \ (\alpha > 0)$ are b-equivalent.

Proof. Our proposition is a direct conclusion from the previous one and Theorem C. Denote $q_n = n^{\gamma}L(n)$ $(n > n_0)$ and see from (5) that (q_n) satisfies (3) and (4). Thus conditions (i) or (ii) of Theorem 1 are satisfied and J_q is *b*-equivalent to C_{α} $(\alpha > 0)$. It follows now from Theorem C that J_g is *b*-equivalent to C_{α} $(\alpha > 0)$. \Box

Remark 2. (i) Notice that if (q_n) is monotonic and satisfies (2) and (3), then the relation $C_1 \subset J_q$ holds (use (9) and Theorem 14 in [²]).

(ii) If $q_n = \frac{1}{n+1}$, then J_q is not *b*-equivalent to C_{α} ($\alpha > 0$) because there exists a bounded sequence (ξ_n) summable by J_q but not by C_1 (see [²], Section 3.8 and Theorem 82).

The next proposition is proved in $[^{12}]$ as Lemma 1.1(h).

Proposition 3. Let (q_n) satisfy (1) and the power series $\sum_{n=0}^{\infty} (c * p)_n x^n$ have the radius of convergence $R \ge 1$. If

$$\sum_{k=0}^{n} \left((c * p) * q \right)_k \to \infty \qquad (n \to \infty)$$
(14)

and

$$\sum_{n=0}^{\infty} (c*p)_n z^n \neq 0 \tag{15}$$

in the unit disc |z| < 1 on the complex plane then ¹

$$(N, c * p, q) \subset J_q$$

Remark 3. In particular, if we consider the methods (N, p^{α}, q) $(\alpha > \alpha_0)$, then we have by Proposition 3

$$(N, p^{\alpha}, q) \subset J_q,$$

provided that (q_n) satisfies (1),

the power series
$$\sum_{n=0}^{\infty} p_n z^n$$
 has $R \ge 1$ (16)

and $\sum_{n=0}^{\infty} p_n z^n \neq 0$ in the unit disc on the complex plane (cf. [¹²], Proposition 2.5). The last restriction is redundant if we apply our inclusion relation to bounded sequences (ξ_n) only.

¹ If we consider the following inclusion relation only for bounded sequences (ξ_n) , then the condition (15) can be dropped. Note that c_n may be also negative for some n in this proposition.

Proposition 4. If (c_n) satisfies (10) and either

(i) (q_n) is non-decreasing

or

(ii) (q_n) is non-increasing and satisfies (4), then the method (N, c, p * q) is regular.

Proof. Since the matrix (N, c, p * q) is non-negative, we have to verify only the first regularity condition (6). In case (i) we have:

$$\frac{c_{n-k}}{r_n} \le \frac{c_{n-k}}{p_0 q_0 \sum_{\nu=0}^n c_\nu} \le \frac{M \sum_{\nu=0}^n c_\nu}{(n-k) \sum_{\nu=0}^n c_\nu} = O\left(\frac{1}{n-k}\right) = o_k(1) \quad (n \to \infty).$$

In case (ii) we get analogously that

$$\frac{c_{n-k}}{r_n} \le \frac{c_{n-k}}{p_0 q_n \sum_{k=0}^n c_k} \le \frac{K n c_{n-k}}{Q_n \sum_{k=0}^n c_k} = O\left(\frac{n}{(n-k)Q_n}\right) = o_k(1) \quad (n \to \infty).$$

Proposition 5. If the conditions of Proposition 4 are satisfied, then the relation

$$(N, p, q) \subset (N, c * p, q)$$

holds.

Proof. Let us verify the equality

$$(N, c * p, q) = (N, c, p * q) \circ (N, p, q),$$
(17)

where the right side can be read as superposition of two transforms. Indeed, for a sequence (ξ_n) we have:

$$\frac{1}{r_n} \sum_{k=0}^n (c*p)_{n-k} q_k \xi_k = \frac{1}{r_n} \sum_{k=0}^n \sum_{\nu=0}^{n-k} c_{n-k-\nu} p_\nu q_k \xi_k$$
$$= \frac{1}{r_n} \sum_{\nu=0}^n c_{n-\nu} (p*q)_\nu \frac{1}{(p*q)_\nu} \sum_{k=0}^\nu p_{\nu-k} q_k \xi_k.$$

As the method (N, c, p * q) is regular by Proposition 4, our statement follows from (17).

Remark 4. It follows from (17) and (13) with the help of Proposition 4 that

$$(N, p^{\alpha}, q) \subset (N, p^{\beta}, q) \qquad (\beta > \alpha > \alpha_0)$$

(cf. Proposition 2.2 in $[1^2]$). Indeed, it is sufficient to notice that the method

$$(N, A^{\beta - \alpha - 1}, p^{\alpha} * q) = (N, A^{\beta - \alpha - 1}, (p^{\alpha'} * q) * A^{\alpha - \alpha' - 1})$$
$$(\beta > \alpha > \alpha_0, \ \alpha' = (\alpha + \alpha_0)/2)$$

satisfies the conditions of Proposition 4 if we take $c_n = A_n^{\beta-\alpha-1}$ and replace q_n by $A_n^{\alpha-\alpha'-1}$ and p_n by $(p^{\alpha'} * q)_n$ in it.

The following result was proved in $[^{12}]$ by Proposition 2.7.

Proposition 6. If the methods $(N, p^{\alpha}, q) = (a_{nk}^{\alpha}) (\alpha > \alpha_0)$ satisfy the conditions (1), (16),

$$\sum_{k=0}^{n} |a_{nk}^{\alpha}| = O(1) \qquad (n \to \infty)$$
(18)

and

$$M_1 n^{\beta - \alpha} \le \frac{r_n^{\beta}}{r_n^{\alpha}} \le M_2 n^{\beta - \alpha} \qquad (n = 1, 2, ...)$$
 (19)

for all $\beta > \alpha > \alpha_0$, then the implication

$$\xi_n = O(1), \ \xi_n \to \xi(J_q) \Rightarrow \xi_n \to \xi(N, p^{\alpha}, q)$$
 (20)

is true for any $\alpha > \alpha_0$ *.*

We need also the following proposition.

Proposition 7. If p_n and q_n satisfy the conditions (11) and (3), respectively, then $(p * q)_n$ satisfies the condition

$$n(p*q)_n = O\left(\sum_{k=0}^n (p*q)_k\right).$$
 (21)

Proof. With the help of (11) and (3) we get:

$$n\sum_{k=0}^{n} p_{n-k}q_{k} = n\sum_{k=0}^{[n/2]} p_{n-k}q_{k} + n\sum_{k=[n/2]+1}^{n} p_{n-k}q_{k}$$

$$\leq n\sum_{k=0}^{[n/2]} p_{n-k}q_{k} + n\sum_{k=0}^{[n/2]} q_{n-k}p_{k}$$

$$= n\sum_{k=0}^{[n/2]} p_{n-k}\frac{n-k}{n-k}q_{k} + n\sum_{k=0}^{[n/2]} q_{n-k}\frac{n-k}{n-k}p_{k}$$

$$\leq 2M_{1}\sum_{k=0}^{n} P_{n-k}q_{k} + 2M_{2}\sum_{k=0}^{n} Q_{n-k}p_{k}$$

$$= 2M_{1}\sum_{\nu=0}^{n} (p*q)_{\nu} + 2M_{2}\sum_{\nu=0}^{n} (p*q)_{\nu} = O\left(\sum_{\nu=0}^{n} (p*q)_{\nu}\right).$$

Thus we have proved that (21) holds.

4. PROOFS OF MAIN THEOREMS

Let us prove now Theorems 1 and 2.

Proof of Theorem 1. The methods J_q and C_α ($\alpha > 0$) are *b*-equivalent by Proposition 1. It remains to prove that (N, c * p, q) and J_q are *b*-equivalent. Notice that the power series $\sum_{n=0}^{\infty} (c * p)_n x^n$ has the radius of convergence $R \ge 1$, because this series can be seen as the product of the power series $\sum_{n=0}^{\infty} c_n x^n$ and $\sum_{n=0}^{\infty} p_n x^n$ which both have $R \ge 1$ due to the restrictions (10) and (11). Also, the condition (14) holds as

$$\sum_{k=0}^{n} \left((c * p) * q \right)_{k} \ge c_0 p_0 \sum_{k=0}^{n} q_k \qquad (n \in \mathbf{N})$$

and (2) is satisfied. Thus the conditions of Proposition 3 are satisfied and we have by this proposition that the implication

$$\xi_n \to \xi(N, c * p, q) \Rightarrow \xi_n \to \xi(J_q)$$

is true for any bounded sequence (ξ_n) . To complete the proof, we have to show that also the implication

$$\xi_n \to \xi(J_q) \Rightarrow \xi_n \to \xi(N, c * p, q)$$

is true for the bounded sequences (ξ_n) . Indeed,

$$\xi_n \to \xi(J_q) \Rightarrow \xi_n \to \xi(\overline{N}, q)$$

by Theorem B. As the method (N, p, q) is regular (use Proposition 4), the implication

$$\xi_n \to \xi(\overline{N}, q) \Rightarrow \xi_n \to \xi(N, p, q)$$

is true by Theorem 3 in $[^{15}]$. Finally, we have:

$$\xi_n \to \xi(N, p, q) \Rightarrow \xi_n \to \xi(N, c * p, q)$$

by Proposition 5. Our theorem is proved.

Remark 5. (i) It can be seen from the proof of Theorem 1 that also the relations

$$C_1 \subset (N, p, q) \subset (N, c * p, q)$$

hold under the conditions of Theorem 1.

(ii) Note that we needed Theorem 3 from $[1^5]$ and Theorem 14 from $[2^2]$ in the proof of Theorem 1. That is why we could not weaken the restrictions on (p_n) and (q_n) in this theorem. These restrictions are weakened in Theorem 2, where the special sequences (c_n) are considered.

Proof of Theorem 2. Let us show first that all the conditions of Proposition 6 are satisfied with $\alpha_0 = 0$. Notice that if $\alpha > 0$, then $A_n^{\alpha-1} > 0$ ($n \in \mathbb{N}$), and thus (18) is satisfied by the definition of methods (N, p^{α}, q) . Also, the conditions (3) and (11) imply the inequalities (19) for all $\beta > \alpha > \alpha_0$ by Lemma 2.1 in [¹²], and (16) is satisfied due to (11). Thus the implication (20) is true by Proposition 6, and our statement (i) follows now from Proposition 3 (see also Remark 3). Statement (ii) is a direct conclusion from (i) and Proposition 1.

Remark 6. Suppose that (q_n) is as in Theorem 1 or 2 and (g_n) is a non-negative sequence with $g_0 > 0$ such that $g_n/q_n \to 1$ $(n \to \infty)$. It can be seen from proofs of Theorems 1 and 2 (with the help of Theorem C) that in the conditions of these theorems also the methods J_g and (N, c * p, g) or (N, p^{α}, g) $(\alpha > 0)$, respectively, are *b*-equivalent to C_{δ} ($\delta > 0$). For example, this case works if $g_n \sim q_n = n^{\gamma}L(n)$ $(\gamma > -1)$ and (q_n) is monotonic.

5. SOME CONCLUSIONS

We derive now some corollaries from Theorems 1 and 2.

Denote $p^{*\alpha} = p * p^{*(\alpha-1)}$ and $p^{*1} = p$ ($\alpha = 1, 2, ...$) supposing that $(p^{*2})_n = (p * p)_n > 0$ ($n \in \mathbf{N}$). Realize that

$$p^{*\beta} = p^{*(\beta - \alpha)} * p^{*\alpha} \quad (\beta > \alpha, \ \beta, \alpha = 1, 2, \ldots).$$

Consider the methods $(N, p^{*\alpha}, q)$. The following result can be obtained as a corollary from Theorem 1.

Corollary 1. Let us consider the methods $(N, p^{*\alpha}, q)$ $(\alpha = 1, 2, ...)$. If (q_n) and (p_n) satisfy the conditions of Theorem 1, then the methods $(N, p^{*\alpha}, q)$ $(\alpha = 1, 2, ...)$ are b-equivalent to J_q and to the Cesàro methods C_{δ} $(\delta > 0)$ as well.

Proof. If $\alpha = 1$, then our statement follows directly from Theorem 1 if we take $c_n = \delta_{0,n}$ in it. If $\alpha > 1$, then our statement can be also derived immediately from Theorem 1 by taking $c_n = p_n^{*(\alpha-1)}$ in it and realizing that (11) implies here (10) by Proposition 7.

In particular, if $q = p^{*\gamma}$, then Corollary 1 says as follows.

Corollary 2. Let us consider the methods $(N, p^{*\alpha}, p^{*\gamma})$, where $\alpha, \gamma = 1, 2, ...$ If (p_n) is non-decreasing and satisfies (11), then the methods $(N, p^{*\alpha}, p^{*\gamma})$ and $J_{p^{*\gamma}}$ $(\alpha, \gamma = 1, 2, ...)$ are b-equivalent to the Cesàro methods C_{δ} ($\delta > 0$).

Proof. Our statement can be derived from Corollary 1 as a direct conclusion, because the sequence $(q_n) = (p_n^{*\gamma})$ ($\gamma = 1, 2, 3, ...$) satisfies (3) due to (11) (see Proposition 7) and is also non-decreasing:

$$p_{n+1}^{*\gamma} = \sum_{k=0}^{n+1} p_{n+1-k} p_k^{*(\gamma-1)} \ge \sum_{k=0}^n p_{n+1-k} p_k^{*(\gamma-1)} \ge \sum_{k=0}^n p_{n-k} p_k^{*(\gamma-1)} = p_n^{*\gamma}.$$

Remark 7. The methods $(N, p^{*\alpha}, p^{*\gamma})$ $(\alpha, \gamma = 1, 2, ...)$ obeying the conditions of Corollary 2 were considered in $[^{7,9,12}]$, where certain inclusion, convexity and Tauberian theorems implying the *b*-equivalence of the methods $(N, p^{*\alpha}, p^{*\gamma})$ and $J_{p^{*\gamma}}$ were proved. The *b*-equivalence of these methods in the conditions of Corollary 2 was proved in $[^{12}]$ by Theorem 3.5(b) and Proposition 2.5. In papers $[^{7}]$ and $[^{9}]$ the restrictions on (p_n) are presented in the form $p_n = n^{\delta}L(n)$ (more precisely, $p_n \sim n^{\delta}L(n), n \to \infty$), where $\delta \ge 0, L(.)$ is a regularly varying function and $(n^{\delta}L(n))$ is non-decreasing; in $[^{12}]$ also the case $-1 < \delta < 0$ is included. The *b*-equivalence of the methods $(N, p^{*\alpha}, p^{*\gamma})$ to the Cesàro methods was not noticed in these papers.

Finishing our paper we derive a corollary from Theorem 2.

Corollary 3. Consider the methods $(N, A^{\alpha-1}, q)$ with $\alpha > 0$. Suppose that (q_n) satisfies (1) and (3).

(i) Then the methods $(N, A^{\alpha-1}, q)$ $(\alpha > 0)$ and J_q are b-equivalent.

(ii) If, in addition, (q_n) is non-decreasing or (q_n) is non-increasing and satisfies (4), then the methods $(N, A^{\alpha-1}, q)$ ($\alpha > 0$) are b-equivalent to the Cesàro methods C_{δ} ($\delta > 0$).

This corollary is the immediate conclusion from Theorem 2 for the case $p_n = \delta_{0,n}$. Note that statement (i) was proved in [⁸] in stronger conditions (2) and (3) (see Theorem 1 and Proposition 1 in [⁸]).

Remark 8. If $q_n = \frac{1}{n+1}$ and (p_n) satisfies the condition (11), then (N, p^{α}, q) $(\alpha > 0)$ and J_q are *b*-equivalent by Theorem 2. It should be mentioned that the methods (N, p^{α}, q) are not *b*-equivalent to C_{δ} ($\delta > 0$) (see Remark 2). In particular, the method (\overline{N}, q) is *b*-equivalent to J_q but not to C_{δ} ($\delta > 0$).

ACKNOWLEDGEMENT

This research was supported by the Estonian Science Foundation (grant No. 3620).

REFERENCES

- Borwein, D. On summability methods based on power series. Proc. Roy. Soc. Edinburgh, 1957, 64, 342–349.
- 2. Hardy, G. H. Divergent Series. Oxford Univ. Press, London, 1949.
- 3. Bingham, N. H., Goldie, C. M. and Teugels, J. L. *Regular Variation*. Cambridge Univ. Press, 1987.
- 4. Kiesel, R. The law of the iterated logarithm for certain power series and generalized Nörlund methods. *Math. Proc. Cambridge Phil. Soc.*, 1996, **120**, 735–753.
- 5. Borwein, D. On products of sequences. J. London Math. Soc., 1958, 33, 352-357.
- 6. Das, G., Panda, K. and Sahoo, S. On two new methods of summability. *Indian J. Pure Appl. Math.*, 1984, **15**, 1340–1351.
- 7. Kiesel, R. General Nörlund transforms and power series methods. *Math. Z.*, 1993, **214**, 273–286.
- 8. Kiesel, R. On scales of summability methods. *Math. Nachr.*, 1995, 176, 129–138.
- 9. Kiesel, R. and Stadtmüller, U. Tauberian- and convexity theorems for certain (N, p, q)-means. *Can. J. Math.*, 1994, **46**, 982–994.
- 10. Sinha, R. Convexity theorem for (N, p, q) summability. *Kyungpook Math. J.*, 1973, **13**, 37–40.
- Cass, F. P. Convexity theorems for Nörlund and strong Nörlund summability. *Math. Z.*, 1968, **112**, 357–363.
- Stadtmüller, U. and Tali, A. On certain families of generalized Nörlund methods and power series methods. J. Math. Anal. Appl., 1999, 238, 44–46.
- 13. Tali, A. Convexity conditions for families of summability methods. *Acta Comment. Univ. Tartuensis*, 1993, **960**, 117–138.
- 14. Das, G. On some methods of summability. Quart. J. Math. Oxford, 1966, 17, 244-256.
- 15. Das, G. On some methods of summability II. Quart. J. Math. Oxford, 1968, 19, 417-438.
- Borwein, D. On a scale of Abel-type summability methods. *Proc. Cambridge Phil. Soc.*, 1957, 53, 318–322.
- 17. Ishiguro, K. A Tauberian theorem for (J, p_n) summability. *Proc. Japan Acad.*, 1964, **40**, 807–812.
- Tietz, H. and Trautner, R. Tauber-Sätze für Potenzreihenverfahren. Arch. Math., 1988, 50, 164–174.
- 19. Kratz, W. and Stadtmüller, U. O-Tauberian theorems for J_q -methods with rapidly increasing weights. J. London Math. Soc., 1990, **41**, 489–502.

Cesàro menetlustega *b*-ekvivalentsetest summeerimismenetlustest

Olga Meronen ja Anne Tali

Artiklis on käsitletud summeerimismenetlusi, mis on tõkestatud jadade summeerimisel ekvivalentsed (*b*-ekvivalentsed). On hästi teada, et Cesàro menetlused C_{α} ($\alpha > 0$) ja Abeli menetlus A on *b*-ekvivalentsed. Üldisemalt, mitmed autorid on tõestanud, et üldistatud Nörlundi menetlus (N, a, b) ja Abeli tüüpi astmerea menetlus J_q on teatavatel tingimustel *b*-ekvivalentsed. Osutub, et küllalt sageli on saadud tingimustel menetlused (N, a, b) ja J_q *b*-ekvivalentsed ühtlasi ka Cesàro menetlustega C_{α} ($\alpha > 0$). Käesolevas töös on leitud erinevaid piisavaid tingimusi nimetatud menetluste *b*-ekvivalentsuseks.