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Abstract. Let X be a Banach space with an orthogonal system of projections. LetZr

(r > 0) be the method of Zygmund,Mϕ = (ϕ(k/(n + 1))) the triangular method of
summation, generated by the differentiable functionϕ, and Zr

nx, Mϕ
n x be Zr- andMϕ-

means of Fourier expansions ofx ∈ X, respectively. The author of this paper has proved the
theorem (seeFacta Univ. Niš. Ser. Math. Inform., 1997,12, 233–238) that gives sufficient
conditions for(n + 1)α+γ−1 ‖ Mϕ

n x0 − x0 ‖= O(1) (x0 ∈ X) if it is assumed that
(n+1)α ‖ Zr

nx0−x0 ‖= O(1) for the samex0, andg(t) = t1−rϕ′(t) ∈ Lip γ (γ ∈ ]0, 1])
on ]0, 1[. In the present paper this theorem is applied in the cases, whereMϕ is either the
method of Riesz, Jackson–de La Vallée Poussin, Bohman–Korovkin, Zhuk or Favard.
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Everywhere in this paper we suppose thatX is a Banach space, where
there exists a total sequence of mutually orthogonal continuous projections(Tk)
(k = 0, 1, ...) onX. It means thatTk is a bounded linear operator ofX into itself,
Tkx = 0 for all k impliesx = 0, andTjTk = δjkTk, whereδjk is the Kronecker
symbol. Then, with eachx ∈ X one may associate its formal Fourier expansion

x ∼
∑

k

Tkx.

It is known (cf. [1], pp. 74–75, 85–86) that the sequence of projections(Tk) exists
in several Banach spaces. For example, ifX = C2π is the space of all2π-periodic
and continuous functions on]−∞,∞[ or X = Lp

2π (1 ≤ p < ∞) is the space of
all 2π-periodic functions, Lebesgue integrable to thepth power over]− π, π[, then
the projections are formed by the Fourier coefficients multiplied with associated
trigonometric harmonics.
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Let us consider now the sequence of projections(Tk) in Lp(−∞,∞)
(1 ≤ p < ∞) – the space of all functions, Lebesgue integrable to thepth power
over]−∞,∞[ . For this purpose we consider the Hermite polynomials defined by

Hk(t) = (−1)ket2 dk(e−t2)
dtk

(k ≥ 0).

If we set

ϕk(t) = (2kk!
√

π)−1/2e−t2/2Hk(t),

(ϕk) is an orthonormal sequence of functions on] −∞,∞[ (cf. [1], pp. 85–86).
Thus the projections

Tkx(t) =

 ∞∫
−∞

x(s)ϕk(s)ds

ϕk(t)

are mutually orthogonal. One can define the sequence of projections(Tk), for
example, also with the help of Laguerre or Jacobi polynomials respectively in
Lp(0,∞) (1 ≤ p < ∞) – the space of all functions, Lebesgue integrable to the
pth power over]0,∞[, and inC[−1, 1] – the space of all measurable functions,
continuous on[−1, 1] (cf. [1], pp. 84, 87).

The summability method of ZygmundZr (r > 0) is defined by the equality

Zr
nx =

n∑
k=0

[
1−

(
k

n + 1

)r]
Tkx. (1)

Let the summability methodMϕ be defined by a functionϕ, continuous on[0, 1]
and differentiable on]0, 1[, whereϕ(0) = 1 andϕ(1) = 0, as follows:

Mϕ
n x =

n∑
k=0

ϕ

(
k

n + 1

)
Tkx. (2)

If X = C2π or X = Lp
2π (1 ≤ p < ∞), then it is well known that for the classical

trigonometric system(Tk) and forα ∈ ]0, 1[ the relation

(n + 1)α ‖ Z1
nx− x ‖= Ox(1)

holds if and only if

x ∈ Lipα = {x ∈ X| ‖ x(t + h)− x(t) ‖= Ox(hα)}

(cf. [2], p. 106). Several results, where the order of approximation can be
characterized via Lipschitz conditions, are known (cf. [2], pp. 67–88, 106–107).
In [3] the order of approximation of the elementx ∈ X by Mϕ-means of Fourier
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expansions was described via the order of approximation byZr-means of Fourier
expansions, i.e. the following result (see [3], pp. 236–237) holds

Theorem A. Let Zr
n (r > 0) and Mϕ

n be defined by(1) and (2), respectively.
Assume that forg(t) = t1−rϕ′(t) on ]0, 1[ we haveg ∈ Lip γ, whereγ ∈ ]0, 1]. If
for somex0 ∈ X and forα ∈ ]1− γ, r[ the estimation

(n + 1)α ‖ Zr
nx0 − x0 ‖= O(1) (3)

holds, then
(n + 1)α+γ−1 ‖ Mϕ

n x0 − x0 ‖= O(1).

The cases, whereMϕ is the method of Zygmund or the method of Rogosinski,
are studied in [4] and [3], respectively. Now we consider the functionsϕi

(i = 1, ..., 5), defined on[0, 1] as follows:

ϕ1(t) = (1− tω)σ (ω, σ > 0); (4)

ϕ2(t) =

{
1− 6t2 + 6t3 (t ∈ [0, 1

2 ]),
2(1− t)3 (t ∈ [12 , 1]);

(5)

ϕ3(t) = (1− t) cos(πt) +
1
π

sin(πt); (6)

ϕ4(t) = 1− tan2

(
πt

4

)
; (7)

ϕ5(t) =

1 (t = 0),
πt

2
cot

(
πt

2

)
(t ∈ ]0, 1]).

(8)

In this paper we apply Theorem A in the case, whereMϕ = Mϕi (i = 1, ..., 5).
The methodMϕ1 is called the method of Riesz (cf. [2], pp. 265, 475),Mϕ2 the
method of Jackson–de La Vallée Poussin (cf. [2], p. 205),Mϕ3 the method of
Bohman–Korovkin (cf. [5], p. 305),Mϕ4 the method of Zhuk (cf. [6], p. 319), and
Mϕ5 the method of Favard (cf. [7], p. 161).

Theorem. Let Mϕi (i = 1, . . . , 5) be the summation methods defined by(4)–(8).
Assume that for somex0 ∈ X and forα ∈ ]0, r[ the estimation(3) is valid.

(I) The estimation

(n + 1)α+γ−1

∣∣∣∣∣
∣∣∣∣∣

n∑
k=0

[
1−

(
k

n + 1

)ω]σ

Tkx0 − x0

∣∣∣∣∣
∣∣∣∣∣ = O(1)

holds if at least one of the following conditions1–6 is fulfilled:
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1. γ = 1, σ ≥ 2 andω ≥ r + 1 or ω = r ≥ 1,
2. max{0, 1− α} < γ = ω − r < 1 andσ ≥ 2,
3. max{0, 1− α} < γ = σ − 1 < 1 andω ≥ r + 1 or ω = r ≥ 1,
4. max{0, 1− α} < γ = min{ω − r, σ − 1} andmax{ω − r, σ − 1} < 1 ,
5. max{0, 1− α} < γ = ω = r < 1 andσ ≥ 2,
6. max{0, 1− α} < γ = min{ω, σ − 1}, max{ω, σ − 1} < 1 andω = r.

(II) The estimation

(n + 1)α+γ−1 ‖ Mϕi
n x0 − x0 ‖= Oi(1) (9)

holds fori = 2, 3, 4 if at least one of the following conditions7–9 is fulfilled:
7. γ = 1 andr ≤ 1,
8. max{0, 1− α} < γ = 2− r < 1,
9. γ = 1 andr = 2.

(III) The estimation(9) holds fori = 5 if condition 7 or condition8 is fulfilled.

Proof. Let the estimation (3) be fulfilled. It is sufficient to show that the validity of
at least one of conditions 1–9 implies the validity of the conditions of Theorem A
for suitableϕ = ϕi. As the method of proof for all conditions 1–9 is quite similar,
we give the proof of this theorem only partly, for example, for conditions 1, 3, 6,
and for condition 8 ifi = 2, 3.

First assume condition 1 is fulfilled and denote

gi(t) = t1−rϕ′i(t) (t ∈ ]0, 1[, i = 1, . . . , 5).

Then
g1(t) = −σω(1− tω)σ−1tω−r (t ∈ ]0, 1[).

As now

g′1(t) = −σωtω−r−1(1− tω)σ−2[(ω − r)(1− tω)− (σ − 1)ωtω] (t ∈ ]0, 1[),

g′1 for ω ≥ r + 1 is bounded on]0, 1[. Also, g′1 is bounded on]0, 1[ for ω = r,
because in this case

g′1(t) = σ(σ − 1)ω2tω−1(1− tω)σ−2 (t ∈ ]0, 1[).

Therefore,g1 ∈ Lip 1 on ]0, 1[. Thus the conditions of Theorem A are fulfilled.

Suppose condition 3 is fulfilled and leta ∈ ]0, 1[. Then due toω ≥ 1, the
derivative g′1 is bounded on]0, a]. Hence,g1 ∈ Lip 1 on ]0, a]. Moreover,
g1 ∈ Lip (σ − 1) on ]a, 1[, becauseg1 is equivalent to−σω(1 − tω)σ−1 in the
limit processt → 1− if ω > r + 1, and

g1(t) = −σω(1− tω)σ−1 (t ∈ ]0, 1[) (10)
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if ω = r. Therefore,g1 ∈ Lip (σ − 1) on ]0, 1[. Consequently, the conditions of
Theorem A are fulfilled.

Let condition 6 be fulfilled. Then by (10) we haveg1 ∈ Lip (σ − 1) on ]a, 1[
for a ∈ ]0, 1[. Moreover, g1 ∈ Lipω on ]0, a], becausetω ∈ Lipω on ]0, a] for
ω ∈ ]0, 1[. Thereforeg1 ∈ Lip (min{ω, σ − 1}) on ]0, 1[. Thus the conditions of
Theorem A are fulfilled.

Suppose condition 8 is fulfilled fori = 2 andi = 3. Then

g2(t) =

{
−6t2−r(2− 3t) (t ∈ ]0, 1

2 ]),
−6t1−r(1− t)2 (t ∈ ]12 , 1[)

and
g3(t) = π(t− 1)t1−r sin(πt) (t ∈ ]0, 1[).

As we have now

g′2(t) =

{
−6t1−r[(2− r)(2− 3t)− 3t] (t ∈ ]0, 1

2 ]),
−6t−r[(1− r)(1− t)2 − 2(1− t)t] (t ∈ ]12 , 1[)

and

g′3(t) = πt1−r

[
π(t + (1− r)(t− 1))

sin(πt)
πt

+ π(t− 1) cos(πt)
]

(t ∈ ]0, 1[),

the derivativesg′2 and g′3 are bounded on[a, 1[ for each a ∈]0, 1[. Hence,
g2, g3 ∈ Lip 1 on [a, 1[ for a ∈]0, 1[. In addition, in the limit processt → 0+ the
functiong2 is equivalent to−12t2−r andg3 to−π2t2−r, because we can rewriteg3

as

g3(t) = π2(t− 1)t2−r sin(πt)
πt

(t ∈ ]0, 1[).

Therefore,g2, g3 ∈ Lip (2 − r) on ]0, 1[. Thus the conditions of Theorem A are
fulfilled.
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Fourier’ arenduste summeeruvusest Banachi ruumides
Ants Aasma

Olgu X Banachi ruum, milles eksisteerib projektorite ortogonaalne süsteem.
OlguZr (r > 0) Zygmundi meetod,Mϕ = (ϕ(k/(n + 1))) kolmnurkne maatriks-
meetod, mis on defineeritud mingi diferentseeruva funktsiooniϕ abil, kusϕ(0) = 1
ja ϕ(1) = 0, ning Zr

nx, Mϕ
n x olgu vastavalt elemendix ∈ X Zygmundi jaMϕ

keskmised. Autori varasemas töös [3] on tõestatud teoreem, mis annab piisavad
tingimused selleks, et hinnangust(n + 1)α ‖ Zr

nx0 − x0 ‖= O(1) ( x0 ∈ X)
järelduks samax0 jaoks hinnang(n + 1)α+γ−1 ‖ Mϕ

n x0 − x0 ‖= O(1) eeldusel,
et g(t) = t1−rϕ′(t) ∈ Lip γ (0 < γ ≤ 1) vahemikus]0, 1[. Siinses artiklis
rakendatakse seda teoreemi juhtudel, kuiMϕ on kas Rieszi, Jacksoni–de La Vallée
Poussini, Bohmani–Korovkini, Zhuki või Favardi menetlus.
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