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Abstract. Let X be a Banach space with an orthogonal system of projections. ZLet
(r > 0) be the method of Zygmund,M?¥ = (p(k/(n + 1))) the triangular method of
summation, generated by the differentiable functigrand Z]x, MYz be Z"- and M ¥-
means of Fourier expansionsofe X, respectively. The author of this paper has proved the
theorem (sedacta Univ. NiS. Ser. Math. Inform1997,12, 233-238) that gives sufficient
conditions for(n + 1)*™ =1 || M¥%xy — xo ||= O(1) (zo € X) if it is assumed that
(n+1)% || Zrzg—z0 ||= O(1) for the samerq, andg(t) = t1="¢'(t) € Lipv (v €]0, 1])

on |0, 1[. In the present paper this theorem is applied in the cases, wiiérés either the
method of Riesz, Jackson—de La Vallée Poussin, Bohman—Korovkin, Zhuk or Favard.
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Everywhere in this paper we suppose thatis a Banach space, where
there exists a total sequence of mutually orthogonal continuous projecfiphs
(k=0,1,...) on X. It means thaf}, is a bounded linear operator &f into itself,
Tyx = 0 for all k impliesz = 0, and7}T}, = §;,T}, whered;; is the Kronecker
symbol. Then, with each € X one may associate its formal Fourier expansion

k

It is known (cf. ['], pp. 74-75, 85-86) that the sequence of projectid@i$ exists

in several Banach spaces. For exampl& i= Co, is the space of alkr-periodic

and continuous functions dn- co,0o[ or X = L5 (1 < p < o) is the space of

all 2zr-periodic functions, Lebesgue integrable to tiie power overl — 7, 7[, then

the projections are formed by the Fourier coefficients multiplied with associated
trigonometric harmonics.
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Let us consider now the sequence of projectidfii) in LP(—oo,c0)
(1 < p < o0) — the space of all functions, Lebesgue integrable topthepower
over] — oo, oo[ . For this purpose we consider the Hermite polynomials defined by

k e—t2
() = (-1t T )

(k> 0).

If we set

o(t) = (2FkIVm) V2 2 (1),

(¢1) is an orthonormal sequence of functions]on oo, o[ (cf. ['], pp. 85-86).
Thus the projections

o0

Trz(t) = {/ 37(3)%(3)6@] ek (t)

are mutually orthogonal. One can define the sequence of projedtigns for
example, also with the help of Laguerre or Jacobi polynomials respectively in
LP(0,00) (1 < p < o) — the space of all functions, Lebesgue integrable to the
pth power over]0, co[, and inC[—1,1] — the space of all measurable functions,
continuous ori—1, 1] (cf. ['], pp. 84, 87).

The summability method of Zygmund” (r > 0) is defined by the equality

-3 [i- (5) e o

k=0

Let the summability method/¥ be defined by a functiop, continuous ono0, 1]
and differentiable of0, 1[, wherep(0) = 1 andy(1) = 0, as follows:

. k
fo:ng(n_i_l)Tkx. 2
k=0

fX=CyrorX = L7‘2’7r (1 < p < ), then it is well known that for the classical
trigonometric systeniZ},) and fora € ]0, 1] the relation

(n+1)* || Zyz — 2 ||= 0:(1)
holds if and only if
v €Lipa={z € X| || x(t+h) - x(t) |= Oa(h®)}

(cf. [?], p. 106). Several results, where the order of approximation can be
characterized via Lipschitz conditions, are known (&, pp. 67—88, 106-107).
In [?] the order of approximation of the elementc X by M¥-means of Fourier
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expansions was described via the order of approximatiod’byneans of Fourier
expansions, i.e. the following result (ség pp. 236-237) holds

Theorem A. Let Z" (r > 0) and M, be defined by(1) and (2), respectively.
Assume that fog(t) = t'="¢'(t) on]0, 1] we havey € Lip~, wherey €]0,1]. If
for somezry € X and fora € ]1 — v, r[ the estimation

(n+ 1" || Zpzo — 20 [|= O(1) ®3)

holds then
(n+1)* 1| Mfxo — o [|= O(1).

The cases, wherk! ¥ is the method of Zygmund or the method of Rogosinski,
are studied in 4] and [’], respectively. Now we consider the functiogs
(i =1,...,5), defined or0, 1] as follows:

p1(t) = (1 -17)7 (w,0 > 0); (4)
wo- i et
o3(t) = (1 — ) cos(rt) + %sin(mﬁ); ©6)
eatt) =1 -t () )

1 (t=0),
ws(t) = {7;’ cot <7;t> (t €]0,1)). ®

In this paper we apply Theorem A in the case, wheffé = M%i (i = 1,...,5).
The methodM #! is called the method of Riesz (cf?][ pp. 265, 475), M+ the
method of Jackson—de La Vallée Poussin (¢, p. 205), M3 the method of
Bohman—Korovkin (cf. {], p. 305),M ¥+ the method of Zhuk (cf.9], p. 319), and
M¥5 the method of Favard (cf’T, p. 161).

Theorem. Let M ¥ (i = 1,...,5) be the summation methods defined (8y—(8).
Assume that for some) € X and fora €0, r[ the estimatior(3) is valid.

S ()]

k=0

() The estimation

(TL + 1)o¢+'yfl

=0(1)

holds if at least one of the following conditioris-6is fulfilled:
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vy=1,0>2andw>r+1orw=r>1,

max{0,1 —a} <y=w—r<lando > 2,

max{0,l —a}<y=c—-1<landw>r+1orw=r>1,
max{0,1 —a} <y =min{w —r,0 — 1} andmax{w —r,c — 1} < 1,
max{0,1 —a} <y=w=r < lando > 2,

max{0,1 — a} <y =min{w,o — 1}, max{w,oc — 1} < 1 andw = r.

ok wn Pk

(I) The estimation
(n+ D)7 Mz — a0 = 0i(1) 9)

holds fori = 2, 3, 4 if at least one of the following conditio’s-9is fulfilled:
7. y=1landr <1,

8. max{0,1 —a} <vy=2—-1r <1,

9. y=1andr = 2.

(1) The estimatiorf9) holds for: = 5 if condition 7 or condition8 is fulfilled.

Proof. Let the estimation (3) be fulfilled. It is sufficient to show that the validity of
at least one of conditions 1-9 implies the validity of the conditions of Theorem A
for suitablep = ¢;. As the method of proof for all conditions 1-9 is quite similar,
we give the proof of this theorem only partly, for example, for conditions 1, 3, 6,
and for condition 8 ifi = 2, 3.

First assume condition 1 is fulfilled and denote

gi(t) =t ol(t) (t€]0,1], i=1,...,5).

g1(t) = —ow(1 — )7 17" (¢t €]0, 1[).

gh () = 0wt (1 = )7 2w — 1)1 — tw) — (o — Dwt*] (¢ €]0,1]),

g; forw > r + 1 is bounded o010, 1]. Also, ¢} is bounded o0, 1| for w = r,
because in this case

g1 (t) = o(c — Dt 1 —t*)72 (¢t €]o,1]).

Thereforeg; € Lip 1 on|0, 1[. Thus the conditions of Theorem A are fulfilled.

Suppose condition 3 is fulfilled and let €]0,1[. Then due tav > 1, the
derivative ¢} is bounded on0,a|. Hence,g; € Lip1l on 0,a]. Moreover,
g1 € Lip(oc — 1) on]a, 1], becausey; is equivalent to—ow(1 — t°)°~! in the
limit processt — 1—if w > r 4+ 1, and

g1(t) = —ow(l —t*)7"1 (t€]0,1]) (10)
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if w = r. Thereforeg; € Lip (¢ — 1) on]0, 1[. Consequently, the conditions of
Theorem A are fulfilled.

Let condition 6 be fulfilled. Then by (10) we haye € Lip (¢ — 1) on]a, 1]
for a €10, 1[. Moreover, g; € Lipw on]0, a|, becauset” € Lipw on]0,a] for
w €]0,1[. Thereforeg; € Lip (min{w,o — 1}) on]0, 1[. Thus the conditions of
Theorem A are fulfilled.

Suppose condition 8 is fulfilled for= 2 andi = 3. Then
0, 30),
b

)

N —6t277(2 - 3t) (t€]
92(t) = —6t1T(1— )2 (t€]

and
g3(t) = w(t — D)t! " sin(wt) (t €]0,1]).

As we have now

o —6t1T[(2 = r)(2 — 3t) — 31 (telo
W= Z6trl0 - -2 —20 -1 (teld,

and

sin(7rt)

gh(t) = mt!™" |:7T(t +(1-r)(t—1)) +7(t — 1) cos(nt)| (¢t €]0,1]),

7t

the derivativesg), and g5 are bounded orja, 1[ for eacha €]0,1[. Hence,
92,93 € Lip1l on|a, 1] for a €]0,1]. In addition, in the limit process — 0+ the
function g, is equivalent to-12¢>~" andgs to —72t2~", because we can rewritg

as
sin(mt)

g3(t) = w2 (t — )t (t €]0,1).

Tt
Therefore,g2, g3 € Lip (2 — r) on]0, 1[. Thus the conditions of Theorem A are

fulfilled.
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Fourier’ arenduste summeeruvusest Banachi ruumides
Ants Aasma

Olgu X Banachi ruum, milles eksisteerib projektorite ortogonaalne sisteem.
uZz" (r > 0) Zygmundi meetod)M ¥ = (p(k/(n+ 1))) kolmnurkne maatriks-

meetod, mis on defineeritud mingi diferentseeruva funktsigabil, kusy(0) = 1
jae(1) = 0, ning Z"x, My, x olgu vastavalt elemendi € X Zygmundi jaM¥

kes

kmised. Autori varasemas t63$ pn tdestatud teoreem, mis annab piisavad

tingimused selleks, et hinnangust + 1)* || Z.xo — zo ||= O(1) (zo € X)
jarelduks samay jaoks hinnangn + 1)1 || My z¢ — z0 ||= O(1) eeldusel,
etg(t) = t1"Y/(t) € Lipy (0 < v < 1) vahemikus|0,1]. Siinses artiklis
rakendatakse seda teoreemi juhtudel,kifi on kas Rieszi, Jacksoni—de La Vallée
Poussini, Bohmani—Korovkini, Zhuki vdi Favardi menetlus.
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