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Abstract. We consider pseudosymmetric and pseudo Ricci symmetric manifolds in the sense
of M. C. Chaki. The cas@/ is assumed to be a contact metric manifold withelonging to
(k, p)-nullity distribution.
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1. INTRODUCTION

Throughout this paper we use the notations and terminology-4f [Let M
be a(2n + 1)-dimensional Riemanniad’> manifold. M?"*lis said to be a
contact manifoldf it admits a global differential 1-forny such that) A (dn)™ # 0
everywhere om\/?"+1. Given a contact formy, we have a unique vector field
which is called the characteristic vector field satisfying

n() =1, dn(X) =0 (1)

for any vector fieldX. It is well known that there exists a Riemannian megrand
a (1,1)-tensor fielgp such that

n(X) = g(X,€), dn(X,Y) = g(X,9Y), andp’X = —X + n(X)¢, (2)
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whereX andY are vector fields od/. From (2) it follows that

0E=0,n0p=0, g(eX,pY)=g(X,Y) —n(X)n(). 3)

A Riemannian manifold}M, equipped with structure tensofsp,&,n,9)
satisfying (2), is said to be eontact metric manifoldand is denoted bW/ =

(M 0,6, 9).
Given a contact metric manifold/, we can define &1, 1)-tensor fieldh by

h = %Lgtp, whereL denotes Lie differentiation. Then we may observe thi
symmetric and satisfies
h& = 0 andhy = —ph, 4)
Vx§=—pX — phX, (5)
whereV is the Levi—Civita connectior?].
We denote byk the Riemannian curvature tensor fiettéfined by

R(X,Y)Z = Vx(VyZ) — Vy(VxZ) -~ Vixv|Z (6)

for all vector fieldsX, Y, Z.

For a contact metric manifold/ one may define naturally an almost complex
structure onM/ x R . If this almost complex structure is integrablé, is said to be
a Sasakian manifoldA Sasakian manifold is characterized by the condition

(Vxp)Y =g(X,Y){ —n(X)Y (7)

for all vector fieldsX andY on the manifold {].
Let M be a contact metric manifold. It is well known thi&f is Sasakian if and
only if
R(X,Y)¢ =n(Y)X —n(X)Y (8)

for all vector fieldsX andY [!].
A contact metric manifold\/ is said to be;-Einsteinif

Q=alg+nRE, 9)

whereQ is the Ricci operator and, b are smooth functions oh/ [?].

2. KNOWN RESULTS

In this section we give some well-known results.
Let M be a contact metric manifold. Thé,(u)-nullity distribution of M for
the pair &, 1) is a distribution
N(k,p) :p — Ny(k,u) ={Z € T,M | R(X,Y, Z) = k[g(Y, Z)X — g(X, Z)Y]
+ ulg(Y, 2)hX — g(X, Z)hY]}, (10)
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wherek, n € R andk < 1 (see P4]). If k = 1, thenh = 0 and M is a Sasakian
manifold !]. So if the characteristic vector fielgl belongs to the X, u)-nullity
distribution, we have

R(X,Y)§ =k(n(Y)X —n(X)Y) + u(n(Y)hX —n(X)RY). (11)

Lemma 2.1(see [?]). Let M be a contact metric manifold withbelonging to the
(k, p)-nullity distribution. Then
() (Vxh)Y = [(1-k)g(X,9Y) —g(X,hoY)]E + n(Y)h(pX + phX)
(i) h2 = (k — 1)p?, k < 1,andh = 1iff M is Sasakian
(i) RS, X)Y = k(9(X,Y)§ —n(Y)X) + pu(g(hX,Y)E — n(Y)hX),
(iv) Q€ = 2nk¢,
whereX andY are any vector fieldsof Mankl n € R .

Lemma 2.2 (see[?]). Let M2+ (n > 1) be a contact metric manifold with
belonging to thgk, p)-nullity distribution (¢ < 1). For any vector fieldX, the
Ricci operatorQ is given by

QX =2(n—1)—nu] X +2(n—1)+pulhX +2(1—n)+n(2k+p)n(X)E. (12)

Using Lemma 2.2, we obtain the following result.

Lemma 2.3.Let M be a contact metric manifold. {belongs to thék, u)-nullity
distribution(k < 1), then

(VxS)(Y, Z2) =[2(n = 1) + plg(Vxh)(Y, Z)

+ [2(1 = n) +n2k + )| {g(Y, VxEn(Z) + 9(Z, fo)n(zi)g})-

Proof. By the covariant differentiation of with respect taX we obtain
(VxS)(Y,Z2) =VxS(Y,2) - S(VxY,Z) - S(Y,Vx Z). (14)

Using the fact thab (Y, Z) = ¢(QY, Z) and differentiating this with respect f§
and using (12), we get

VxS(Y, 2) =[2(n —1) —nu] [g(VxY, Z) + g(Y, Vx Z)]
+ 20 = 1) + pl [g(Vx(hY), Z) + g(hY,Vx Z)]
+ 201 =n) + 02k + )] [9(VxY,£) + 9(Y, Vx| 1(Z)
n( (

+2(1=n) +n(2k + )] [9(Vx Z,§) + 9(Z,V x§)] n(Y)(-15)
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In virtue of (12) we obtain

—8(VxY,Z) = — g(Q(VxY), 2)

=—[2(n—1) —nulg(VxY, 2)
—[2(n = 1) + plg(hVxY, Z)
—[2(

2(1 = n) +n(2k + wWn(VxY)n(2) (16)
and, similarly,

—S(Y,VxZ)=—[12(n—1) —nulg(Y,VxZ2)
—[2(n = 1) + plg(hY, Vx Z)
—2(1 = n) +n(2k + W n(Y)N(VxZ). (17)

Hence, substituting (15)—(17) into (14), we obtain (13), which completes the proof.

3. PSEUDOSYMMETRIC CONTACT MANIFOLDS OF CHAKI TYPE

The notion of pseudosymmetric manifolds was introduced by M. C. Chaki.
A non-flat Riemannian manifoldA/2"+!, ¢) is called pseudosymmetriof
Chaki type if its curvature tensor satisfies

(VxR)(Y, Z,W) = 2a(X)R(Y, Z)W + a(Y)R(X, Z)W + a(Z)R(Y, X)W
+a(W)R(Y, Z, X) + g(R(Y, Z)W, X) A,
(18)

wherea is a non-zero 1-form, called the associated 1-form, and
9(X, A) = a(X) (19)

for any vector fieldX [°]; see also{].
We have the following result.

Theorem 3.1.Let M be a(2n + 1)-dimensional contact manifold withbelonging
to a(k, w)-nullity distribution. If M is pseudosymmetric of Chaki typlen

(i) M is locally isometric to the produd”+! x S™(4), or

(i) M has vanishing scalar curvaturer

(iii) M is a u-Einstein manifoldor

- - - L k(2n—1)
(iv) M is a(k, u)-contact manifold withy = T wherek # 1.

Proof. Since M is a contact manifold with¢ belonging to a &, u)-nullity
distribution, making use of (11) we get

a(R(X,Y)E) = g(R(X,Y)E, A)
=k [a(X)n(Y) — a(Y)n(X)] + pla(hX)n(Y) — Oé(hY)n()(fz)%)
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and, similarly,

a(R(X,)Y) = g(R(X,¢

)
T [n(Y)a(hX) — g(hX,Y)n(A)], (21)

wheren(£) = 1 andn(Y) = g(Y, &).
If M is a pseudosymmetric manifold of Chaki type, then by (18) we get

(VxS)(Y, Z) = 2a(X)S(Y, Z) + a(Y)S(X, Z) + a(Z)S(Y, X)
+a(R(X,Y)Z) + a(R(X,2)Y).  (22)

ReplacingZ with ¢ in Eq. (22), we have

(VxS)(Y;€) = 2(X)S(Y, €) + a(Y)S(X, ) + a(§)S(Y, X)
+a(R(X,Y)E) + a(R(X,6Y).  (23)

Substituting (20), (21), and (11) into (23) and using (19), we get

(VxS)(Y,§) = dnka(X)n(Y) 4 2nka(Y)n(X) + a(§)S(Y, X)
+k[n(Y)a(X) — a(Y)n(X)] + p[a(hX)n(Y) — a(hY)n(X)]
+kn(Y)a(X) - g(X,Y)a(§)] + un(Y)a(hX) — g(hX, Y)n(A)]m)

ReplacingX with &, we get Eq. (24) as follows:

(VeS)(Y,€) = dnka(§n(Y) + 2nka(Y)n(€) + a(§)S(Y,€)
+k n(Y)a(§) — a(Y)n(E)] + pl-a(hY)n(€)]. (25)

On the other hand, replacing andZ with £ in Eq. (14), we get
(VeS)(Y,€) = VeS(Y,€) — S(VeY, ) — S(Y, Ved). (26)

By using the equatio)¢ = 2nk¢, after some computation Eq. (26) reduces to
(VeS)(Y,€) = 0. Therefore Eq. (25) becomes

6nka()n(Y) + k(2n — Da(Y) + kn(Y)a(€) — pa(hY) =0.  (27)
SubstitutingZ with £ in (27), we get
8nka(¢) = 0. (28)
So we have the following possible cases:
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Case l.a(&) =0; k # 0,
Case ll.«a(&) #0; k =0,
Caselll. a(§) = 0; k = 0.

Let us consider these in turn.
Case I.If «(§) = 0; k # 0, then by (27) we have

k(2n —1)a(Y) — pa(hY) = 0. (29)
ReplacingY” with AY" in EqQ. (29), we obtain
k(2n — Da(hY) — pa(h?Y) = 0. (30)

On the other hand, substituting the equatiéi¥ = (k — 1)©?Y, k < 1, and
©’Y = —Y +n(Y)¢ into (30), we get

k(2n — 1)a(hY) + u(k — 1)a(Y) = 0. (31)
Using (29) and (31), we also get
[K*(2n — 1)? + 12 (k — 1)] a(Y) = 0. (32)
However,a(Y) = 0 is inadmissible. Therefore
E2(2n —1)% — p2(1 — k) = 0. (33)

If £ =1, then by (33 = % which contradicts the fact thate Z . Thusk # 1

and hence: = :Fk(jg).

Case ll.If k = 0, then by (27) we havea(hY') = 0. So we have the following
subcases:

@p=0,or

(b) a(hY) =0, or

() up=0anda(hY) = 0.

Let us consider these in turn.

Case ll(a). If k = 0 andu = 0, thenR(X,Y){ = 0. Therefore by Theorem
2.1in['] M is locally isometric to the produd@™*! x S™(4).

Case lI(b). If £ = 0 anda(hY') = 0, then, replacingX with ¢ and after some
calculation we have Egs. (13) and (22) in the form

(VeS)(Y, Z) = p[2(n — 1) + p] g(RY, p2), (34)
(VeS)(Y, Z) =2a(§)S(Y, 2). (35)
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The left-hand sides of Egs. (34) and (35) are equal, so

p2(n = 1) + plg(hY, 92) = 2a(§)S(Y, Z). (36)
ReplacingZ with Y in Eq. (36), we get

2a(§)S(Y,Y) = p[2(n — 1) + pl g (Y, Y). @37

Further, let us replac¥ with Y and usep?Y = —Y + n(Y)¢. Hence Eq. (37)
takes the form

2a(§)S (Y, pY) = —p[2(n — 1) + p g(pY, hY). (38)
Now, using (37) and (38), we obtain
20(&) [S(Y,Y) + S(¢Y,¢Y)] = 0. (39)
Sincea(§) # 0 andk = 0, we get
SY,Y)+ S(¢Y,¢Y) =0, (40)
5(&,€) = 0. (41)

So, by the definition of scalar curvature (ség p. 445) M has vanishing scalar
curvature, i.e.r = 0.

Case ll(c).If £ = p = 0 anda(hY) = 0, againM is locally isometric to the
productE™+! x S"(4).

Case lll. If a(¢) = 0 andk = 0, then by (27) we havga(hY) = 0. So we
come back to Case Il. This completes the proof of the theorem.

4. PSEUDO RICCI SYMMETRIC MANIFOLDS OF CHAKI TYPE

In this section we consider pseudo Ricci symmetric manifolds which were
introduced by M. C. Chaki.

A non-flat Riemannian manifold\(?"**, ¢) is calledpseudo Ricci symmetric
of Chaki type if its Ricci tensof is not identically zero and satisfies the condition

(Vx9S (Y, Z) =2a(X)S(Y, Z) + a(Y)S(X, Z) + a(2)S(Y, X), (42)

wherea is a non-singular 1-form defined as in (19) (s&.[

Theorem 4.1.Let M be a(2n+ 1)-dimensional contact manifold withbelonging
to a(k, w)-nullity distribution. If M is pseudo Ricci symmetric of Chaki tyfeen
(i) M is locally isometric to the produd@”+! x S™(4), or
(i) M has vanishing scalar curvatuge., 7 = 0) with . = 2(”7*1), or
(i) M is a u-Einstein manifold.
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Proof. If M is pseudo Ricci symmetric of Chaki type, by the use of (41) we get
(VxS)(Y, ) = 2a(X)S(Y, ) + a(Y)S(X, ) + a(§)S(Y, X).  (43)
Substituting the equatio®¢ = 2nké into (43), we get
(VxS) (Y, &) = dnka(X)n(Y) + 2nka(Y)n(X) + a(§)S(Y, X).  (44)

Further, let us replac& with ¢ and use the relationg¢) = 1, Q¢ = 2nk&. Then
Eq. (42) becomes
6nka(&)n(Y) + 2nka(Y) = 0. (45)

Now we shall replac&” with ¢, and Eq. (45) become®ika (&) = 0. So we have
the following possible cases:

Case l.a(§) =0; k #0, 0or
Case ll.a(§) #0; k=0, 0r
Case lll. a(§) = 0; k = 0.

Let us consider these in turn.

Case L.If a(§) = 0, then by (45) we have(Y') = 0, which is inadmissible.
So this case does not occur.

Case ll.If £ = 0, then by Egs. (42) and (13) we get
(VeS)(Y, Z2) = 2a(8)S(Y, Z), (46)

(VeS)(Y, Z2) = [2(n = 1) + plg((Veh)Y, Z). (47)
By the use of Lemma 2.1, Eq. (47) turns into

(VeS)(Y, Z) = —p[2(n — 1) + plg(phY, Z). (48)
From the right-hand sides of (46) and (47) we obtain
20(€)S(Y, Z) = u[2(n — 1) + ] g(hY, ). (49)

From the discussion given in the proof of Theorem 3.1 Case IlI(b) we can conclude
that = 0.
By Theorem 2 of {] we haver = 2n (2(n — 1) + k — nu). Sincer = 0, we
getp =2 (1),
Case lll. If & = «() = 0, then by the use of (49) one get$2(n — 1)
+ ulg(ehY, Z) = 0. So we have the following subcases:
@p=0,or
(b)2(n—1)+p=0,o0r
(©) g(hY,pZ) = 0.
Let us consider these in turn.
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Case lli(a). If &k = pu = 0, then M is locally isometric to the product
Entl x S(4).

Case lli(b). If £ = «a(§) = 0and2(n — 1) + u = 0, then by (12)
QX =2[(n—1)(n+ D](X — ¢p(X)E). ThereforeM is an-Einstein manifold.

Case lll(c). If k = a(§) = 0andg(hY, ¢(Z)) = 0, then by (12)

9(QY,¢(Z)) = (2(n — 1) —nu)g(Y, p(2)). (50)

Replacingp(Z) with Z in (50) we can see after an easy calculation fhais
n-Einstein. This completes the proof of the theorem.

ACKNOWLEDGEMENTS

The authors thank the referees for their useful comments and contributions to
the paper. This study was supported by the UuDaiversity Research Fund.

REFERENCES

1. Blair, D. Contact manifolds in Riemannian Geomelmgcture Notes in Math1976,509.

2. Blair, D., Koufogiorgos, T. and Papantoniou, B. J. Contact metric manifolds satisfying a
nullity condition.Israel J. Math, 1995,91, 189-214.

3. Papantoniou, B. J. Contact metric manifolds satisfyi{g, X) - R = 0 and¢ € (k, u)-
nullity distribution. Yokohama Math. J1993,40, 149-161.

4. Koufogiorgos, T. Contact Riemannian manifolds with cons{asectional curvature. In
Geometry and Topology of Submanifolds, \(Dlillen, F., ed.). World-Scientific,
1996, 195-197.

5. Chaki, M. C. On pseudosymmetric manifoldsalele Stiint. Univ. “AL | Cuza” lasi
(Romania) 1987,33, 53-58.

6. De, U. C,, Ghoss, J. C. and Barua, B. On pseudosymmetric and pseudo Ricci symmetric
contact manifoldsBull. Cal. Math. S0¢.1997,89, 305-310.

7. Tanno, S. Ricci curvatures of contact Riemannian manifdiolsoku Math. J.1988,40,
441-448.

8. Chaki, M. C. On pseudo Ricci symmetric manifolBsilg. J. Phys.1988,15, 526-531.

PSEUDOSUMMEETRILISED KONTAKTSED MEETRILISED
MUUTKONNAD M. C. CHAKI MOTTES

Kadri ARSLAN, Cengizhan MURATHAN, Cihan OZGUR ja Ahmet YILDIZ

(2n + 1)-md6tmelisi kontaktseid — meetrilisi muutkondd/, mis on
pseudosimmeetrilised M. C. Chaki méttes, on uuritud eeldusef, staldub
(k, p)-defektsuse alamruumivaljas. On tBestatud, et sel pdiudn kas mitte-

Sasaki muutkond ja = q:kgg) vdi isomeetriline korrutiseg&”™+! x S™(4) voi

nulliga vBrduva skalaarkdverusega. Kui pseudosiimmeetrilisuse asemel on pseudo-
Ricci simmeetria ndue, siis on v8imalik ainult kolmas variant.
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