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a Department of Mathematics, Uludaǧ University, 16059, Görükle, Bursa, Turkey;
arslan@uludag.edu.tr

b Department of Mathematics, Dumlupınar University, Kütahya, Turkey

Received 23 February 2001, in revised form 12 June 2001

Abstract. We consider pseudosymmetric and pseudo Ricci symmetric manifolds in the sense
of M. C. Chaki. The caseM is assumed to be a contact metric manifold withξ belonging to
(k, µ)-nullity distribution.
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1. INTRODUCTION

Throughout this paper we use the notations and terminology of [1,2]. Let M
be a (2n + 1)-dimensional RiemannianC∞ manifold. M2n+1 is said to be a
contact manifoldif it admits a global differential 1-formη such thatη ∧ (dη)n 6= 0
everywhere onM2n+1. Given a contact formη, we have a unique vector fieldξ,
which is called the characteristic vector field satisfying

η(ξ) = 1, dη(ξ, X) = 0 (1)

for any vector fieldX. It is well known that there exists a Riemannian metricg and
a (1,1)-tensor fieldϕ such that

η(X) = g(X, ξ), dη(X, Y ) = g(X, ϕY ), andϕ2X = −X + η(X)ξ, (2)
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whereX andY are vector fields onM. From (2) it follows that

ϕξ = 0, η ◦ ϕ = 0, g(ϕX,ϕY ) = g(X, Y )− η(X)η(Y ). (3)

A Riemannian manifoldM , equipped with structure tensors(ϕ, ξ, η, g)
satisfying (2), is said to be acontact metric manifoldand is denoted byM =
(M2n+1 , ϕ, ξ, η, g).

Given a contact metric manifoldM , we can define a(1, 1)-tensor fieldh by
h = 1

2Lξϕ, whereL denotes Lie differentiation. Then we may observe thath is
symmetric and satisfies

hξ = 0 andhϕ = −ϕh, (4)

∇Xξ = −ϕX − ϕhX, (5)

where∇ is the Levi–Civita connection [2].
We denote byR theRiemannian curvature tensor fielddefined by

R(X, Y )Z = ∇X(∇Y Z)−∇Y (∇XZ)−∇[X, Y ]Z (6)

for all vector fieldsX, Y, Z.
For a contact metric manifoldM one may define naturally an almost complex

structure onM ×R . If this almost complex structure is integrable,M is said to be
aSasakian manifold. A Sasakian manifold is characterized by the condition

(∇Xϕ)Y = g(X, Y )ξ − η(X)Y (7)

for all vector fieldsX andY on the manifold [1].
Let M be a contact metric manifold. It is well known thatM is Sasakian if and

only if
R(X, Y )ξ = η(Y )X − η(X)Y (8)

for all vector fieldsX andY [1].
A contact metric manifoldM is said to beη-Einsteinif

Q = aId + bη ⊗ ξ, (9)

whereQ is the Ricci operator anda, b are smooth functions onM [2].

2. KNOWN RESULTS

In this section we give some well-known results.
Let M be a contact metric manifold. The (k, µ)-nullity distribution of M for

the pair (k, µ) is a distribution

N(k, µ) : p → Np(k, µ) = {Z ∈ TpM | R(X, Y, Z) = k[g(Y, Z)X − g(X, Z)Y ]
+ µ[g(Y, Z)hX − g(X, Z)hY ]}, (10)
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wherek, µ ∈ R andk ≤ 1 (see [3,4]). If k = 1, thenh = 0 andM is a Sasakian
manifold [2]. So if the characteristic vector fieldξ belongs to the (k, µ)-nullity
distribution, we have

R(X, Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ). (11)

Lemma 2.1(see [2]). LetM be a contact metric manifold withξ belonging to the
(k, µ)-nullity distribution. Then

(i) (∇Xh)Y = [(1− k)g(X, ϕY )− g(X, hϕY )] ξ + η(Y )h(ϕX + ϕhX)
− µη(X)ϕhY,

(ii) h2 = (k − 1)ϕ2, k ≤ 1, andh = 1 iff M is Sasakian,
(iii) R(ξ,X)Y = k(g(X, Y )ξ − η(Y )X) + µ(g(hX, Y )ξ − η(Y )hX),
(iv) Qξ = 2nkξ,

whereX andY are any vector fields of M andk, µ ∈ R .

Lemma 2.2 (see[2]). Let M2n+1 (n ≥ 1) be a contact metric manifold withξ
belonging to the(k, µ)-nullity distribution (k < 1). For any vector fieldX, the
Ricci operatorQ is given by

QX = [2(n−1)−nµ]X+[2(n−1)+µ]hX+[2(1−n)+n(2k+µ)]η(X)ξ. (12)

Using Lemma 2.2, we obtain the following result.

Lemma 2.3.LetM be a contact metric manifold. Ifξ belongs to the(k, µ)-nullity
distribution(k < 1), then

(∇XS)(Y, Z) =[2(n− 1) + µ]g(∇Xh)(Y, Z)
+ [2(1− n) + n(2k + µ)] {g(Y,∇Xξ)η(Z) + g(Z,∇Xξ)η(Y )} .

(13)

Proof. By the covariant differentiation ofS with respect toX we obtain

(∇XS)(Y, Z) = ∇XS(Y, Z)− S(∇XY, Z)− S(Y,∇XZ). (14)

Using the fact thatS(Y, Z) = g(QY,Z) and differentiating this with respect toX
and using (12), we get

∇XS(Y, Z) =[2(n− 1)− nµ] [g(∇XY, Z) + g(Y,∇XZ)]
+ [2(n− 1) + µ] [g(∇X(hY ), Z) + g(hY,∇XZ)]
+ [2(1− n) + n(2k + µ)] [g(∇XY, ξ) + g(Y,∇Xξ)] η(Z)
+ [2(1− n) + n(2k + µ)] [g(∇XZ, ξ) + g(Z,∇Xξ)] η(Y ).

(15)
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In virtue of (12) we obtain

−S(∇XY, Z) =− g(Q(∇XY ), Z)
=− [2(n− 1)− nµ]g(∇XY, Z)
− [2(n− 1) + µ]g(h∇XY, Z)
− [2(1− n) + n(2k + µ)]η(∇XY )η(Z) (16)

and, similarly,

−S(Y,∇XZ) =− [2(n− 1)− nµ]g(Y,∇XZ)
− [2(n− 1) + µ]g(hY,∇XZ)
− [2(1− n) + n(2k + µ)]η(Y )η(∇XZ). (17)

Hence, substituting (15)–(17) into (14), we obtain (13), which completes the proof.

3. PSEUDOSYMMETRIC CONTACT MANIFOLDS OF CHAKI TYPE

The notion of pseudosymmetric manifolds was introduced by M. C. Chaki.
A non-flat Riemannian manifold(M2n+1, g) is called pseudosymmetricof

Chaki type if its curvature tensor satisfies

(∇XR)(Y, Z, W ) = 2α(X)R(Y, Z)W + α(Y )R(X, Z)W + α(Z)R(Y, X)W
+ α(W )R(Y, Z, X) + g(R(Y, Z)W,X)A,

(18)

whereα is a non-zero 1-form, called the associated 1-form, and

g(X, A) = α(X) (19)

for any vector fieldX [5]; see also [6].
We have the following result.

Theorem 3.1.LetM be a(2n+1)-dimensional contact manifold withξ belonging
to a (k, µ)-nullity distribution. IfM is pseudosymmetric of Chaki type, then

(i) M is locally isometric to the productEn+1 × Sn(4), or
(ii) M has vanishing scalar curvature, or
(iii) M is aµ-Einstein manifold, or
(iv) M is a (k, µ)-contact manifold withµ = ∓k(2n−1)√

1−k
, wherek 6= 1.

Proof. Since M is a contact manifold withξ belonging to a (k, µ)-nullity
distribution, making use of (11) we get

α(R(X, Y )ξ) = g(R(X, Y )ξ,A)
= k [α(X)η(Y )− α(Y )η(X)] + µ [α(hX)η(Y )− α(hY )η(X)]

(20)
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and, similarly,

α(R(X, ξ)Y ) = g(R(X, ξ)Y, A)
= k [η(Y )α(X)− g(X, Y )α(ξ)]

+µ [η(Y )α(hX)− g(hX, Y )η(A)] , (21)

whereη(ξ) = 1 andη(Y ) = g(Y, ξ).
If M is a pseudosymmetric manifold of Chaki type, then by (18) we get

(∇XS)(Y, Z) = 2α(X)S(Y, Z) + α(Y )S(X, Z) + α(Z)S(Y, X)
+ α(R(X, Y )Z) + α(R(X, Z)Y ). (22)

ReplacingZ with ξ in Eq. (22), we have

(∇XS)(Y, ξ) = 2α(X)S(Y, ξ) + α(Y )S(X, ξ) + α(ξ)S(Y, X)
+ α(R(X, Y )ξ) + α(R(X, ξ)Y ). (23)

Substituting (20), (21), and (11) into (23) and using (19), we get

(∇XS)(Y, ξ) = 4nkα(X)η(Y ) + 2nkα(Y )η(X) + α(ξ)S(Y, X)
+ k [η(Y )α(X)− α(Y )η(X)] + µ [α(hX)η(Y )− α(hY )η(X)]
+ k [η(Y )α(X)− g(X, Y )α(ξ)] + µ[η(Y )α(hX)− g(hX, Y )η(A)].

(24)

ReplacingX with ξ, we get Eq. (24) as follows:

(∇ξS)(Y, ξ) = 4nkα(ξ)η(Y ) + 2nkα(Y )η(ξ) + α(ξ)S(Y, ξ)
+k [η(Y )α(ξ)− α(Y )η(ξ)] + µ [−α(hY )η(ξ)] . (25)

On the other hand, replacingX andZ with ξ in Eq. (14), we get

(∇ξS)(Y, ξ) = ∇ξS(Y, ξ)− S(∇ξY, ξ)− S(Y,∇ξξ). (26)

By using the equationQξ = 2nkξ, after some computation Eq. (26) reduces to
(∇ξS)(Y, ξ) = 0. Therefore Eq. (25) becomes

6nkα(ξ)η(Y ) + k(2n− 1)α(Y ) + kη(Y )α(ξ)− µα(hY ) = 0. (27)

SubstitutingZ with ξ in (27), we get

8nkα(ξ) = 0. (28)

So we have the following possible cases:
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Case I.α(ξ) = 0; k 6= 0,
Case II. α(ξ) 6= 0; k = 0,
Case III. α(ξ) = 0; k = 0.

Let us consider these in turn.

Case I.If α(ξ) = 0; k 6= 0, then by (27) we have

k(2n− 1)α(Y )− µα(hY ) = 0. (29)

ReplacingY with hY in Eq. (29), we obtain

k(2n− 1)α(hY )− µα(h2Y ) = 0. (30)

On the other hand, substituting the equationsh2Y = (k − 1)ϕ2Y , k ≤ 1, and
ϕ2Y = −Y + η(Y )ξ into (30), we get

k(2n− 1)α(hY ) + µ(k − 1)α(Y ) = 0. (31)

Using (29) and (31), we also get[
k2(2n− 1)2 + µ2(k − 1)

]
α(Y ) = 0. (32)

However,α(Y ) = 0 is inadmissible. Therefore

k2(2n− 1)2 − µ2(1− k) = 0. (33)

If k = 1, then by (33)n = 1
2 , which contradicts the fact thatn ∈ Z . Thusk 6= 1

and henceµ = ∓k(2n−1)√
1−k

.

Case II. If k = 0, then by (27) we haveµα(hY ) = 0. So we have the following
subcases:

(a) µ = 0, or
(b) α(hY ) = 0, or
(c) µ = 0 andα(hY ) = 0.

Let us consider these in turn.

Case II(a). If k = 0 andµ = 0, thenR(X, Y )ξ = 0. Therefore by Theorem
2.1 in [1] M is locally isometric to the productEn+1 × Sn(4).

Case II(b). If k = 0 andα(hY ) = 0, then, replacingX with ξ and after some
calculation we have Eqs. (13) and (22) in the form

(∇ξS)(Y, Z) = µ [2(n− 1) + µ] g(hY, ϕZ), (34)

(∇ξS)(Y, Z) = 2α(ξ)S(Y, Z). (35)
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The left-hand sides of Eqs. (34) and (35) are equal, so

µ [2(n− 1) + µ] g(hY, ϕZ) = 2α(ξ)S(Y, Z). (36)

ReplacingZ with Y in Eq. (36), we get

2α(ξ)S(Y, Y ) = µ [2(n− 1) + µ] g(hY, ϕY ). (37)

Further, let us replaceY with ϕY and useϕ2Y = −Y + η(Y )ξ. Hence Eq. (37)
takes the form

2α(ξ)S(ϕY, ϕY ) = −µ [2(n− 1) + µ] g(ϕY, hY ). (38)

Now, using (37) and (38), we obtain

2α(ξ) [S(Y, Y ) + S(ϕY, ϕY )] = 0. (39)

Sinceα(ξ) 6= 0 andk = 0, we get

S(Y, Y ) + S(ϕY, ϕY ) = 0, (40)

S(ξ, ξ) = 0. (41)

So, by the definition of scalar curvature (see [7], p. 445)M has vanishing scalar
curvature, i.e.τ = 0.

Case II(c). If k = µ = 0 andα(hY ) = 0, againM is locally isometric to the
productEn+1 × Sn(4).

Case III. If α(ξ) = 0 andk = 0, then by (27) we haveµα(hY ) = 0. So we
come back to Case II. This completes the proof of the theorem.

4. PSEUDO RICCI SYMMETRIC MANIFOLDS OF CHAKI TYPE

In this section we consider pseudo Ricci symmetric manifolds which were
introduced by M. C. Chaki.

A non-flat Riemannian manifold (M2n+1, g) is calledpseudo Ricci symmetric
of Chaki type if its Ricci tensorS is not identically zero and satisfies the condition

(∇XS)(Y, Z) = 2α(X)S(Y, Z) + α(Y )S(X, Z) + α(Z)S(Y, X), (42)

whereα is a non-singular 1-form defined as in (19) (see [8]).

Theorem 4.1.LetM be a(2n+1)-dimensional contact manifold withξ belonging
to a (k, µ)-nullity distribution. IfM is pseudo Ricci symmetric of Chaki type, then

(i) M is locally isometric to the productEn+1 × Sn(4), or
(ii) M has vanishing scalar curvature(i.e., τ = 0) with µ = 2(n−1

n ), or
(iii) M is aµ-Einstein manifold.
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Proof. If M is pseudo Ricci symmetric of Chaki type, by the use of (41) we get

(∇XS)(Y, ξ) = 2α(X)S(Y, ξ) + α(Y )S(X, ξ) + α(ξ)S(Y, X). (43)

Substituting the equationQξ = 2nkξ into (43), we get

(∇XS)(Y, ξ) = 4nkα(X)η(Y ) + 2nkα(Y )η(X) + α(ξ)S(Y, X). (44)

Further, let us replaceX with ξ and use the relationsη(ξ) = 1, Qξ = 2nkξ. Then
Eq. (42) becomes

6nkα(ξ)η(Y ) + 2nkα(Y ) = 0. (45)

Now we shall replaceY with ξ, and Eq. (45) becomes8nkα(ξ) = 0. So we have
the following possible cases:

Case I.α(ξ) = 0; k 6= 0, or
Case II. α(ξ) 6= 0; k = 0, or
Case III. α(ξ) = 0; k = 0.

Let us consider these in turn.

Case I. If α(ξ) = 0, then by (45) we haveα(Y ) = 0, which is inadmissible.
So this case does not occur.

Case II. If k = 0, then by Eqs. (42) and (13) we get

(∇ξS)(Y, Z) = 2α(ξ)S(Y, Z), (46)

(∇ξS)(Y, Z) = [2(n− 1) + µ]g((∇ξh)Y, Z). (47)

By the use of Lemma 2.1, Eq. (47) turns into

(∇ξS)(Y, Z) = −µ[2(n− 1) + µ]g(ϕhY, Z). (48)

From the right-hand sides of (46) and (47) we obtain

2α(ξ)S(Y, Z) = µ [2(n− 1) + µ] g(hY, ϕZ). (49)

From the discussion given in the proof of Theorem 3.1 Case II(b) we can conclude
thatτ = 0.

By Theorem 2 of [5] we haveτ = 2n (2(n− 1) + k − nµ). Sinceτ = 0, we
getµ = 2

(
n−1

n

)
.

Case III. If k = α(ξ) = 0, then by the use of (49) one getsµ[2(n − 1)
+ µ]g(ϕhY, Z) = 0. So we have the following subcases:

(a) µ = 0, or
(b) 2(n− 1) + µ = 0, or
(c) g(hY, ϕZ) = 0.
Let us consider these in turn.
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Case III(a). If k = µ = 0, then M is locally isometric to the product
En+1 × Sn(4).

Case III(b). If k = α(ξ) = 0 and 2(n − 1) + µ = 0, then by (12)
QX = 2[(n− 1)(n + 1)](X − ϕ(X)ξ). ThereforeM is aη-Einstein manifold.

Case III(c). If k = α(ξ) = 0 andg(hY, ϕ(Z)) = 0, then by (12)

g(QY,ϕ(Z)) = (2(n− 1)− nµ)g(Y, ϕ(Z)). (50)

Replacingϕ(Z) with Z in (50) we can see after an easy calculation thatM is
η-Einstein. This completes the proof of the theorem.
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PSEUDOSÜMMEETRILISED KONTAKTSED MEETRILISED
MUUTKONNAD M. C. CHAKI MÕTTES

Kadri ARSLAN, Cengizhan MURATHAN, Cihan ÖZGÜR ja Ahmet YILDIZ

(2n + 1)-mõõtmelisi kontaktseid meetrilisi muutkondiM , mis on
pseudosümmeetrilised M. C. Chaki mõttes, on uuritud eeldusel, etξ sisaldub
(k, µ)-defektsuse alamruumiväljas. On tõestatud, et sel puhulM on kas mitte-
Sasaki muutkond jaµ = ∓k(2n−1)√

1−k
või isomeetriline korrutisegaEn+1×Sn(4) või

nulliga võrduva skalaarkõverusega. Kui pseudosümmeetrilisuse asemel on pseudo-
Ricci sümmeetria nõue, siis on võimalik ainult kolmas variant.
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