
 84

Proc. Estonian Acad. Sci. Phys. Math., 2004, 53, 2, 84–91 

 
 
 
 
 
 

Singular  and  hypersingular  integral  equations  
with  the  Hilbert  kernel,  delta-function,  and  

method  of  discrete  vortices 
 

Nina V. Lebedeva and Ivan K. Lifanov 
 

Department of Mathematics, N. E. Joukovsky Air Force Engineering Academy, Planetnaya St. 3, 
Moscow 125190, Russia; lifanov_ik@mail.ru 
 
Received 20 November 2003 
 
Abstract. The singular and hypersingular integral equations with the Hilbert kernel, having the 
delta-function in their right-hand sides, are studied. For these equations a method of discrete 
vortices type is constructed and justified. 
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The present paper develops further the joint results by G. Vainikko and 

I. K. Lifanov (see [1–3]). In these works the singular integral equations on closed 
and open curves in the weighted Sobolev spaces λ

ρH  for distributions are 
studied. Here these equations are considered on a segment and with the Hilbert 
kernel in the case when there is a delta-function in the right-hand side. For 
example: 
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 Q  is an arbitrary real number, 
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Problems of aerodynamics of ideal incompressible fluid flow around a profile 

having suction of external flow can be reduced to such equations. In 
aerodynamics these problems have been solved numerically by the discrete 
vortices method. The introduction of the delta-function in the right-hand side of 
the singular integral equations allows us to simplify the algorithms of numerical 
solution of Eqs. (1) and (4) with the help of the discrete vortices method. The 
justification of the convergence of numerical solutions by the discrete vortices 
method for Eq. (1) is given in [2]. 

In this paper numerical algorithms for solving Eq. (4) by the discrete vortices 
method are presented and the justification of the convergence of numerical 
solutions to exact one is given. Analogous results are presented also for the 
equation 
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So, let us consider Eq. (4), where )(θf  belongs to the Hölder class ),(αH  

,10 ≤<α  on ]2,0[ π  and which is periodic with the period π2  (as all functions 
in this paper). Equation (4) has a solution only when the equality 
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holds. Since due to (3) we have 
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it follows from equalities (6) and (7) that the equality 
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is the condition for solvability of Eq. (4). 
If equality (6) holds, then the solution of Eq. (4) is given by the formula 
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Let us construct a method for numerical solution of Eq. (4) using the ideas  

of the discrete vortices method. Let the segment ]2,0[ π  be divided by two  
sets of points },,2,1,{ nkE k K== θ  and },,,2,1,{ 00 njE j K== θ  so that 

,21 nhkk πθθ ==−
+

 ,,,2,1 nk K=  ,11 θθ =
+n  ,20 hjj +=θθ  and ,0Eq∈  

.0 qj
q θ=  Now we replace Eq. (4) by the following system of linear algebraic 
equations: 
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where ,0)( =− qh θδ  ),,( 100 +

∈ jj θθθ  ,qjj ≠  and ,1)( hqh =−θδ  
),,( 100 +

∈
qq jj θθθ  .2 nh π=  Summing the first n  equations in (11), we obtain 
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From equality (8) it follows that the condition 00 →nγ  as ∞→n  holds if and 
only if equality (8) holds. 

 
Theorem 1. Let function )(θf  belong to ),(αH  ,10 ≤<α  and it be periodic 
with the period .2π  Then for the solution of system (11) and function )(θγ  from 
(9) the following inequality holds: 
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Proof. There is some analogy with the corresponding proof from [4]. We 
transform system (11) in the following way: 
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As it was shown in [4], system (15) implies 
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Using the notations of system (15), we now have 
 

∑
=














−

−
−=

n

j

jk
kn

i

1

0

2 22
cot

2

11
)(

θθ

π
θγ  

 

          ( )
n

Ci
Q

h
fqQf

n

k
kjhj

π

π

π

θθδθπ
2

2
2

)(
2
1

)()(
1

000












−















+−−+× ∑

=

 

 

∑∑
==

+

−

−

−

−=

n

j
j

jk

j

n

j

jk

h
f

iQ

n
f q

1
0

0

0
1

0 2
)(

22
cot

2

2
)(

2
cot

2

1 π

θ
π

θθ

π

π
θ

θθ

π
       

 

                 CQ
i

h
f

i
Q

i n

k
k +−−+ ∑

=

π

π

θ
ππ 2

2
)(

22 1
0                                           (17) 

 

              ,
2

cot
2

2
)(

2
cot

2

1 0

0
1

0 C
Q

n
f qjk

j

n

j

jk
+

−

−

−

−= ∑
=

θθ

π

π
θ

θθ

π
 

 

.,,2,1 nk K=  
 
Now inequality (13) follows from the quadrature formulas for the discrete 
vortices method for the integral with the Hilbert kernel [4]. 

In [1] it is shown that, for the Hilbert operator extended by continuity onto the 
periodic Sobolev space ,λH  there holds the equality 
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Fig. 1. Numerical solution of Eq. (4) for q = 1.57. � numerical solution n = 50; – exact solution. 
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Therefore the solution of Eq. (4) is given by the formula 
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when the right-hand side of this equation has the form as the right-hand side of 
equality (18) and 0=C  in (10). Just in this case we have considered the 
numerical solution of Eq. (4) with .57.1=q  The result is good (see Fig. 1). 

Now we consider Eq. (5) with the hypersingular periodic kernel. Equation (5) 
is equivalent to the equation 
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Integrating equality (23), we obtain 
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For the numerical solution of Eq. (5) we again consider two sets E  and 0E  of 
the points setting ,0Eq∈  .0 qj

q θ=  Now we replace Eq. (5) by the following 
system of linear algebraic equations: 
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System (25) can be written in the form 
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Similarly as for Eq. (4) it may be shown that 
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Now we consider the equation 
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where the functions )(),( 0,0 θθ
δ qff  are the same as in (4) and the function 

),( 0 θθK  belongs to )(αH  on ]2,0[]2,0[ ππ ×  and has period π2  with respect 
to 0θ  and .θ  

The solution )(θγ  of Eq. (28) we will seek in the form 
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From equality (18) it follows that function )(θψ  satisfies the equation 
 

.]2,0[

,d
2

cot),(
22

)(

d)(),(d)(
2

cot
2

1

0

2

0
0

2

0
0

2

0

0

πθ

θ
θ

θθ
ππ

θ

θθψθθθθψ
θθ

π

π

ππ

∈

−
++=

+

−

∫

∫∫

q
K

QQ
f

K

                       (30) 

 
Now the condition for the solvability of Eq. (30) obtains the form 
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We will assume that Eq. (28) has a unique solution under condition (10). Then 
for numerical solution of Eq. (28) we take a system of type (11), adding to the 
left-hand side for nj ,,2,1 K=  the member  
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Hilberti  tuumaga  singulaarne  ja  hüpersingulaarne  
integraalvõrrand,  deltafunktsioon  ja  diskreetsete  keeriste  

meetod 
 

Nina V. Lebedeva ja Ivan K. Lifanov 
 
Käsitletakse Hilberti tuumaga singulaarset ja hüpersingulaarset integraal-

võrrandit, mille vabaliige sisaldab deltafunktsiooni. Esitatakse diskreetsete kee-
riste meetod taoliste ülesannete lahendamiseks ning tõestatakse meetodi koon-
duvus. 

 


