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Abstract. We study the problem of solving ill-posed problems with ein@perators acting

between Hilbert spaces, where instead of exact data notsyvdth a known noise level are

given. Regularized approximations are obtained by a géregralarization scheme. Assuming
the unknown solution belongs to some general source set, roxe ghat the regularized

approximations are order optimal on this set provided tigeillezization parameter is chosen
eithera priori or a posterioriby the Raus—Gfrerer rule or the monotone error rule. Ourtesu
cover the special cases of finitely and infinitely smoothipgrators.
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1. INTRODUCTION

In this paper we are interested in the minimum-norm soluiibre X of the
ill-posed problem
Az =y, 1)

whereA € L(X,Y) is a linear, injective, and bounded operator with non-closed
rangeR(A) of A, andX,Y are Hilbert spaces. Throughout the paper we assume
thaty® € Y are the available noisy data with

ly =’ <6 )

and a known noise level. The numerical treatment of ill-posed problems (1),
(2) requires the application of special regularization methods. A large ofas
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such methods fit into @eneral regularization schemia which a regularized
approximationz?, is given by
0 = goé(A*A)A*y(S 3)

«

with some properly chosen operator functign Note that the choicg, (\) =

Ma
in (3) leads to the method of Tikhonov regularizatioh [

The paper is organized as follows. In Section 2 we discuss some facts on
optimality and order optimality. In Sections 3 and 4 we prove that under certain
conditions concerning,, the regularized approximations (3) are order optimal on
some general source et provided the regularization parameteis chosen either
a priori or a posterioriby the Raus—Gfrerer rule or the monotone error rule.

2. OPTIMALITY AND ORDER OPTIMALITY

In order to guarantee convergence rates|fgf — ='||, source conditions are
necessary. In this paper we are interested in order optimality results gewcieral
source conditions! € M,, i with M., g given by

My = { € X |o = [p(4"A)] %0, o] < B} (4)

andgeneral source functiong satisfying
Assumption Al. ¢ : (0,a] — (0,00) with ||A*A|| < ais continuous and satisfies

(i) ¢ is strictly monotonically increasing withimy_,o ¢(\) = 0,

(i) p, implicitly defined byp(¢(\)) = Ap(A), is convex.

In (4) the functiony is well defined viap(A*A) = [ ¢()) dEy, whereA*A =
fO“ AdE) is the spectral resolution of* A and||A*A|| < a. Typically, for Egs. (1)
with finitely smoothing operatorgolynomial source conditionsith ¢(\) = AP
andp > 0 are exploited (se€{°]). For infinitely smoothing operators, polynomial
source conditions are too restrictive. In this case it is natural tdagsgithmic
source conditionsvith ¢(\) = [In ] * andp > 0, see [7].

Any operatorR : Y — X can be considered as a special method for solving (1).
The approximate solution to (1) is then given By?®. Let us consider thevorst
case errorof the methodR defined by

AG.R) = sup {|Ry’ | |a' € Myp., " €V, |y~ <3} -

This worst case error characterizes the maximal error of the mekhdfdthe
minimum-norm solutionz’ of problem (1) varies in the setl, ;. An optimal
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method R, is characterized byA(d, Ropt) = infr A(6, R). It can easily be
realized thainfr A(J, R) > w(6, M, g) with

w(d, My g) = sup {HxH ‘x € My g, ||Az|| < (5} .

Under Assumption Al, themodulus of continuityw(d, M, ) of the inverse
operatorA~! on the set\/,, z can be estimated as follows.

Theorem 1. Let M, i be given by4) and let Assumption Abe satisfied. 16 /F
is sufficiently small such that /E? < ap(a), then

w(0, My p) < E~/p~1(82/E?). (5)
If 62/E? € o(A* Ap(A* A)), then there holds equality i(5).

In Theorem 1¢(A* A) denotes the spectrum of the operatdrA. For the proof
of Theorem 1 in the case of compact operatdsee [Y], in the general case where
the operatord is not necessarily compact sé, [and in the special case of source
sets (4) withp(\) = \? see f]. Due to Theorem 1, any regularized approximation
% = RSy’ for problem (1), (2) is called

(i) optimal on the sedl,  if |20, — 2T|| < E/p~1(62/E?),
(i) order optimal on the setl,, g if ||z, — zf|| < c E \/p~1(02/E?),

wherec > 1 is a constant. Note that for polynomial source sets with) = \P
estimate (5) attains the form(s, M, z) < EY®+Usp/+1) and that in the

case of logarithmic source sets with(\) = [ln %]_p estimate (5) provides

—p/2
w(d, My p) < E [1n g—j} v (1+o(1)) for 6 — 0.

3. APRIORI PARAMETER CHOICE

We assume in this section that : [0,a] — R with ||A*A|| < a is piecewise
continuous withlim,_,g go(A) = 1/A. For studying scheme (3), besides Al the
following additional assumption is required, which has been exploited]ifof
polynomial source sets, iff][for logarithmic source sets, and ih'{*?] for general
source sets.

Assumption A2. There exist constantg and~, such that

- n

(i) iglg‘ﬁga()‘)‘ <o

(i) sup|1 = Aga (V)| VoY) < 12/(a)
A>0
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Our next theorem shows that the regularized approximations (3) prowite
optimal error bounds provided is chosera priori.

Theorem 2. Let zf ¢ M, g with ¢ satisfying AssumptionlA Let z% be the
regularized approximatio(3) satisfying Assumption2tand leta: be chosen by

a=¢ (p T (*/E?)). (6)

|28 — 2T|| < (71 + 1) Ev/p~1(02/E?). ©)

Proof. Due to the definition op according to Assumption Al (ii) and due to the
choice ofa according to (6), we have

5/v/a = B/p L (7] E7). ()

Letz, = ga(A*A)A*y. Exploiting Assumption A2 (i) and (8), we obtain

Then

0
2 = zall < dsup|[VAga(N)| £ 11—= = Bnv/p (/B (9)
A>0 Va

Sincex! € M., g, we have due to Assumption A2 (i) and (6) that
70 =1l < Esup[1 = Aga(N)| V(N < Brav/p (/7). (10)

Now (7) follows from (9), (10) and the triangle inequality. 0

Let us discuss Assumption A2 for special regularization methods that fit into
the framework of methods (3).

Example 3. (Tikhonov regularization of orderm). These methods are
characterized by (3) ith, (A) = 4 [1 - (A%a) } In this methodz?, := 2,
can be obtained by solving the operator equations

(A*A+al)2l = A" +aal,y, k=1,..m, z0,=0. (11)
Assumption A2 (i) is satisfied with constamt = 3 for m = 1 and~; = /m for
m > 2 (see f]). It can be shown that Assumption A2 (ii) holds true with = 1

providedy!/(>™) is concave. For polynomial source sets (4) with\) = \?, the
function!/(2™) is concave fop < 2m.

Example 4. (Spectral methodsConsider two methods (3) with
/A for A >« 1/ for A\ >«
ga(N) = and g, (\) =
1/a for A<« 0 for A< a.

For both methods, Assumption A2 (i) is satisfied with= 1 and Assumption A2
(i) is satisfied withy, = 1 providedy is increasing. For polynomial source sets
(4) with p(X) = AP, the functiony is increasing for arbitrary < oo.
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4. APOSTERIORI RULES FOR TIKHONOV REGULARIZATION

The a priori parameter choice (6) requires the knowledge of the function
o, which is generally unknown. One promineatposteriorirule for choosing
«, which does not require to knowp, is Morozov’s discrepancy principle
(see f-1314]). In this principlea is chosen as the solution of the nonlinear equation
|Azd, — 4°|| = C§ with C > 1, and order optimality on the source set (4)
with () = M\? has been established for the range (0,1] (see p'314]). For
order optimality results of the discrepancy principle on general souts¢4ewith
concave source functionssee [?].

In this section we restrict our studies to the method of Tikhonov regularization
of orderm discussed in Example 3 and consider the Raus—Gfrerer rule'{sé@)[
and the monotone error rule (se)] As Morozov’s discrepancy principle, these
rules do not require to know the functignwhich characterizes the source 3€t
given by (4).

Rule R1 (Raus—Gfrerer rulp Let R, = a(AA* + «l)~!. For a given constant
C > 1, choosex = arg from the equation

dra(@) = || Ry* (A, — )| = C6. (12)

Rule R2 (Monotone-error rulg. Let R, = a(AA* 4+ oI)~!. For a given constant
C > 1, choosex = ayg from the equation

R (Al — )2
e TR ] I 13)

The nonlinear scalar equations (12) and (13) possess unique solurtimied
|Py0| < C§ < ||y°||, whereP is the orthoprojection of onto N (A*) = R(A) +
(see, e.g.,q). Note that Rule R2 always provides more accurate regularized
approximations than Rule R1 and that the chdite= 1 in Rules R1 and R2 is
the best possible (sed].

In our subsequent considerations we prove that for concave fasctid (2™
the method of Tikhonov regularization of order combined with Rule R1 or
Rule R2 isorder optimalon the source sel/,,  given by (4). We start our studies
with providing some monotonicity property for Rules R1 and R2 which may be
found in P].

Proposition 5. Letz), := 29, ,, be defined by11)and letarg andaye be chosen
by Rule R and Rule R, respectively. Then

d
QRG = OME and d—Hxi — :L‘THQ >0 for « > QME -
[0}

Now we estimaté|z,, — ='||, wherez,, is the approximation (11) with exact
data andx is chosen either by Rule R1 or by Rule R2.
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Proposition 6. Let zT € M,  with ¢ satisfying Assumption1A Let 29 :=
z® . be the regularized approximatiqd 1) andz,, the corresponding regularized

approximation withy? replaced byy. Let« be chosen either by RulelRr by
Rule R. If »1/(2m) js concavethen

lza — 2|l < (C+ 1) EV/p~1(82/E?). (14)

Proof. Due to Proposition 5 it is sufficient to prove (14) far = agrg. Let us
use the notationdt, = a(AA* + ol)~! andra(A) = ;. Sincey!/(m)
is concave withlimy_op(A) = 0, we havetp!/?™(\) < /™) (t)) for
t € [0,1], or equivalently,o~1(£2™p()\)) < tA. We multiply by t*™¢()\) and
obtainp(t2™p(\)) < 21 \p(\). Choosingt = () yields

p (ra" (Ne(N) < Ard™H(A)e(A) - (15)

Let « be chosen by Rule R1. Sindgg(a) = || Ra
RG22yl < |REH2 + | RS2y =)l < (C+1)5. (16)

We use Assumption Al, (15), (16) and obtain by exploiting Jensen’s aligygu

<|xa—:ﬂ||2) J§ PR N dIE? _ (€118
o] B fo OIHEwll2 vl
From the monotonicity ofp~!, the definition ofp and (17) we obtain
_ 12 _ 12 252
ot (Jra =P _ o (e —alIPY _ (€18
(C+1)2E? ]2 e — T2
Due top(A\) = Ao~ 1(\), this estimate provides (14). 0

Exploiting Proposition 6, we obtain order optimal error bounds providesi
chosera posteriorieither by Rule R1 or by Rule R2.

Theorem 7. Letz € M, g with ¢ satisfying AssumptionlA Letz? := 29,

be the regularized approximatiqd1) and leta: be chosen either by RuléLI@r by
Rule R. If /(™) is concavethen

25 = 2™|| < coB\/p~1(6%/ E?) (18)
Witheg =C+ 1+, 71 = %form: 1,and~; = /mform > 2.
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Proof. Due to Proposition 5, it is sufficient to prove (18) for= arg. We use the
decomposition?, — =" = (2, —27) + (2% — 2,) and obtain from (14) and the first
part of (9) that

120 —at] < (C+1)E/p 1075 + 10 (19)

ARG /aRG

We distinguish dirst casearg > ¢! (p71(6%/E?)) := ap and asecond case
ara < ag. In thefirst casewe obtain from (19) and (8) that

|28, — 21| < (C+1+7)Ey/p1(02/E?). (20)

ORG

In thesecond caswe use the estimater?, . — 2'|| < ||« — = which follows
from Proposition 5, exploit Theorem 2 and obtain

|20 — 2T < 28, =2 < (L +7)EVp~1(6%/E?). (21)
Now (18) follows from (20) and (21). =
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Optimaalse jarguga regulariseerimisest uldise
allikatingimuse korral

Ulrich Tautenhahn

On vaadeldud regulariseerimismeetodite klassi mittekorrektse llesande lahen

damiseks lahteandmete teadaoleva veataseme korral. Eeldatakse, dhitépsil
on Uldistatud allikataoline esitus. Naidatakse, et regulariseerimisparameétri v
Rausi—Gfrereri reegli vbi monotoonse vea reegli kohaselt tagabidbkisdile opti-
maalse jarguga veahinnangu.
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