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Abstract. We study the problem of solving ill-posed problems with linear operators acting
between Hilbert spaces, where instead of exact data noisy data with a known noise level are
given. Regularized approximations are obtained by a general regularization scheme. Assuming
the unknown solution belongs to some general source set, we prove that the regularized
approximations are order optimal on this set provided the regularization parameter is chosen
eithera priori or a posterioriby the Raus–Gfrerer rule or the monotone error rule. Our results
cover the special cases of finitely and infinitely smoothing operators.
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1. INTRODUCTION

In this paper we are interested in the minimum-norm solutionx† ∈ X of the
ill-posed problem

Ax = y, (1)

whereA ∈ L(X, Y ) is a linear, injective, and bounded operator with non-closed
rangeR(A) of A, andX, Y are Hilbert spaces. Throughout the paper we assume
thatyδ ∈ Y are the available noisy data with

‖y − yδ‖ ≤ δ (2)

and a known noise levelδ. The numerical treatment of ill-posed problems (1),
(2) requires the application of special regularization methods. A large class of

116



such methods fit into ageneral regularization schemein which a regularized
approximationxδ

α is given by

xδ
α = gα(A∗A)A∗yδ (3)

with some properly chosen operator functiongα. Note that the choicegα(λ) = 1
λ+α

in (3) leads to the method of Tikhonov regularization [1].
The paper is organized as follows. In Section 2 we discuss some facts on

optimality and order optimality. In Sections 3 and 4 we prove that under certain
conditions concerninggα the regularized approximations (3) are order optimal on
some general source setM provided the regularization parameterα is chosen either
a priori or a posterioriby the Raus–Gfrerer rule or the monotone error rule.

2. OPTIMALITY AND ORDER OPTIMALITY

In order to guarantee convergence rates for‖xδ
α − x†‖, source conditions are

necessary. In this paper we are interested in order optimality results undergeneral
source conditionsx† ∈ Mϕ,E with Mϕ,E given by

Mϕ,E =
{

x ∈ X
∣

∣

∣
x = [ϕ(A∗A)]1/2v , ‖v‖ ≤ E

}

(4)

andgeneral source functionsϕ satisfying

Assumption A1. ϕ : (0, a] → (0,∞) with ‖A∗A‖ ≤ a is continuous and satisfies

(i) ϕ is strictly monotonically increasing withlimλ→0 ϕ(λ) = 0,

(ii) ρ, implicitly defined byρ(ϕ(λ)) = λϕ(λ), is convex.

In (4) the functionϕ is well defined viaϕ(A∗A) =
∫ a
0 ϕ(λ) dEλ, whereA∗A =

∫ a
0 λ dEλ is the spectral resolution ofA∗A and‖A∗A‖ ≤ a. Typically, for Eqs. (1)

with finitely smoothing operators,polynomial source conditionswith ϕ(λ) = λp

andp > 0 are exploited (see [2−6]). For infinitely smoothing operators, polynomial
source conditions are too restrictive. In this case it is natural to uselogarithmic
source conditionswith ϕ(λ) =

[

ln 1
λ

]−p
andp > 0, see [7−9].

Any operatorR : Y → X can be considered as a special method for solving (1).
The approximate solution to (1) is then given byRyδ. Let us consider theworst
case errorof the methodR defined by

∆(δ, R) = sup
{

‖Ryδ − x†‖
∣

∣

∣
x† ∈ Mϕ,E , yδ ∈ Y , ‖y − yδ‖ ≤ δ

}

.

This worst case error characterizes the maximal error of the methodR if the
minimum-norm solutionx† of problem (1) varies in the setMϕ,E . An optimal

117



methodRopt is characterized by∆(δ, Ropt) = infR ∆(δ, R). It can easily be
realized thatinfR ∆(δ, R) ≥ ω(δ, Mϕ,E) with

ω(δ, Mϕ,E) = sup
{

‖x‖
∣

∣

∣
x ∈ Mϕ,E , ‖Ax‖ ≤ δ

}

.

Under Assumption A1, themodulus of continuityω(δ, Mϕ,E) of the inverse
operatorA−1 on the setMϕ,E can be estimated as follows.

Theorem 1. Let Mϕ,E be given by(4) and let Assumption A1 be satisfied. Ifδ/E
is sufficiently small such thatδ2/E2 ≤ aϕ(a), then

ω(δ, Mϕ,E) ≤ E
√

ρ−1(δ2/E2) . (5)

If δ2/E2 ∈ σ(A∗Aϕ(A∗A)), then there holds equality in(5).

In Theorem 1,σ(A∗A) denotes the spectrum of the operatorA∗A. For the proof
of Theorem 1 in the case of compact operatorsA see [10], in the general case where
the operatorA is not necessarily compact see [9], and in the special case of source
sets (4) withϕ(λ) = λp see [6]. Due to Theorem 1, any regularized approximation
xδ

α = Rδ
αyδ for problem (1), (2) is called

(i) optimal on the setMϕ,E if ‖xδ
α − x†‖ ≤ E

√

ρ−1(δ2/E2),

(ii) order optimal on the setMϕ,E if ‖xδ
α − x†‖ ≤ c E

√

ρ−1(δ2/E2),

wherec ≥ 1 is a constant. Note that for polynomial source sets withϕ(λ) = λp

estimate (5) attains the formω(δ, Mϕ,E) ≤ E1/(p+1)δp/(p+1) and that in the

case of logarithmic source sets withϕ(λ) =
[

ln 1
λ

]−p
estimate (5) provides

ω(δ, Mϕ,E) ≤ E
[

ln E2

δ2

]−p/2
(1 + o(1)) for δ → 0.

3. A PRIORI PARAMETER CHOICE

We assume in this section thatgα : [0, a] → IR with ‖A∗A‖ ≤ a is piecewise
continuous withlimα→0 gα(λ) = 1/λ. For studying scheme (3), besides A1 the
following additional assumption is required, which has been exploited in [6] for
polynomial source sets, in [7] for logarithmic source sets, and in [11,12] for general
source sets.

Assumption A2. There exist constantsγ1 andγ2 such that

(i) sup
λ≥0

∣

∣

∣

√
λgα(λ)

∣

∣

∣
≤ γ1√

α
,

(ii) sup
λ≥0

∣

∣

∣
1 − λgα(λ)

∣

∣

∣

√

ϕ(λ) ≤ γ2

√

ϕ(α) .
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Our next theorem shows that the regularized approximations (3) provideorder
optimal error bounds providedα is chosena priori.

Theorem 2. Let x† ∈ Mϕ,E with ϕ satisfying Assumption A1. Let xδ
α be the

regularized approximation(3) satisfying Assumption A2 and letα be chosen by

α = ϕ−1(ρ−1(δ2/E2)) . (6)

Then,
‖xδ

α − x†‖ ≤ (γ1 + γ2)E
√

ρ−1(δ2/E2) . (7)

Proof. Due to the definition ofρ according to Assumption A1 (ii) and due to the
choice ofα according to (6), we have

δ/
√

α = E
√

ρ−1 (δ2/E2) . (8)

Let xα = gα(A∗A)A∗y. Exploiting Assumption A2 (i) and (8), we obtain

‖xδ
α − xα‖ ≤ δ sup

λ≥0

∣

∣

∣

√
λgα(λ)

∣

∣

∣
≤ γ1

δ√
α

= Eγ1

√

ρ−1(δ2/E2) . (9)

Sincex† ∈ Mϕ,E , we have due to Assumption A2 (ii) and (6) that

‖xα − x†‖ ≤ E sup
λ≥0

∣

∣

∣
1 − λgα(λ)

∣

∣

∣

√

ϕ(λ) ≤ Eγ2

√

ρ−1(δ2/E2) . (10)

Now (7) follows from (9), (10) and the triangle inequality.

Let us discuss Assumption A2 for special regularization methods that fit into
the framework of methods (3).

Example 3. (Tikhonov regularization of orderm). These methods are

characterized by (3) withgα(λ) = 1
λ

[

1 −
(

α
λ+α

)m]

. In this method,xδ
α := xδ

α,m

can be obtained by solving them operator equations

(A∗A + αI)xδ
α,k = A∗yδ + αxδ

α,k−1 , k = 1, ..., m , xδ
α,0 = 0 . (11)

Assumption A2 (i) is satisfied with constantγ1 = 1
2 for m = 1 andγ1 =

√
m for

m ≥ 2 (see [6]). It can be shown that Assumption A2 (ii) holds true withγ2 = 1
providedϕ1/(2m) is concave. For polynomial source sets (4) withϕ(λ) = λp, the
functionϕ1/(2m) is concave forp ≤ 2m.

Example 4. (Spectral methods). Consider two methods (3) with

gα(λ) =

{

1/λ for λ ≥ α

1/α for λ < α
and gα(λ) =

{

1/λ for λ ≥ α

0 for λ < α .

For both methods, Assumption A2 (i) is satisfied withγ1 = 1 and Assumption A2
(ii) is satisfied withγ2 = 1 providedϕ is increasing. For polynomial source sets
(4) with ϕ(λ) = λp, the functionϕ is increasing for arbitraryp < ∞.
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4. A POSTERIORI RULES FOR TIKHONOV REGULARIZATION

The a priori parameter choice (6) requires the knowledge of the function
ϕ, which is generally unknown. One prominenta posteriori rule for choosing
α, which does not require to knowϕ, is Morozov’s discrepancy principle
(see [6,13,14]). In this principleα is chosen as the solution of the nonlinear equation
‖Axδ

α − yδ‖ = Cδ with C ≥ 1, and order optimality on the source set (4)
with ϕ(λ) = λp has been established for the rangep ∈ (0, 1] (see [6,13,14]). For
order optimality results of the discrepancy principle on general source sets (4) with
concave source functionsϕ see [12].

In this section we restrict our studies to the method of Tikhonov regularization
of orderm discussed in Example 3 and consider the Raus–Gfrerer rule (see [15,16])
and the monotone error rule (see [3]). As Morozov’s discrepancy principle, these
rules do not require to know the functionϕ which characterizes the source setMϕ,E

given by (4).

Rule R1 (Raus–Gfrerer rule). Let Rα = α(AA∗ + αI)−1. For a given constant
C ≥ 1, chooseα = αRG from the equation

dRG(α) := ‖R1/2
α (Axδ

α − yδ)‖ = Cδ . (12)

Rule R2 (Monotone-error rule). Let Rα = α(AA∗ + αI)−1. For a given constant
C ≥ 1, chooseα = αME from the equation

dME(α) :=
‖R1/2

α (Axδ
α − yδ)‖2

‖Rα(Axδ
α − yδ)‖ = Cδ . (13)

The nonlinear scalar equations (12) and (13) possess unique solutionsprovided
‖Pyδ‖ < Cδ < ‖yδ‖, whereP is the orthoprojection ofY ontoN(A∗) = R(A)⊥

(see, e.g., [3]). Note that Rule R2 always provides more accurate regularized
approximations than Rule R1 and that the choiceC = 1 in Rules R1 and R2 is
the best possible (see [3]).

In our subsequent considerations we prove that for concave functionsϕ1/(2m)

the method of Tikhonov regularization of orderm combined with Rule R1 or
Rule R2 isorder optimalon the source setMϕ,E given by (4). We start our studies
with providing some monotonicity property for Rules R1 and R2 which may be
found in [3].

Proposition 5. Letxδ
α := xδ

α,m be defined by(11)and letαRG andαME be chosen
by Rule R1 and Rule R2, respectively. Then,

αRG ≥ αME and
d

dα
‖xδ

α − x†‖2 ≥ 0 for α ≥ αME .

Now we estimate‖xα − x†‖, wherexα is the approximation (11) with exact
data andα is chosen either by Rule R1 or by Rule R2.
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Proposition 6. Let x† ∈ Mϕ,E with ϕ satisfying Assumption A1. Let xδ
α :=

xδ
α,m be the regularized approximation(11) andxα the corresponding regularized

approximation withyδ replaced byy. Let α be chosen either by Rule R1 or by
Rule R2. If ϕ1/(2m) is concave, then

‖xα − x†‖ ≤ (C + 1)E
√

ρ−1(δ2/E2) . (14)

Proof. Due to Proposition 5 it is sufficient to prove (14) forα = αRG. Let us
use the notationsRα = α(AA∗ + αI)−1 and rα(λ) = α

λ+α . Sinceϕ1/(2m)

is concave withlimλ→0 ϕ(λ) = 0, we havetϕ1/(2m)(λ) ≤ ϕ1/(2m)(tλ) for
t ∈ [0, 1], or equivalently,ϕ−1(t2mϕ(λ)) ≤ tλ. We multiply by t2mϕ(λ) and
obtainρ(t2mϕ(λ)) ≤ t2m+1λϕ(λ). Choosingt = rα(λ) yields

ρ
(

r2m
α (λ)ϕ(λ)

)

≤ λr2m+1
α (λ)ϕ(λ) . (15)

Let α be chosen by Rule R1. SincedRG(α) = ‖Rm+1/2
α yδ‖, we obtain

‖Rm+1/2
α y‖ ≤ ‖Rm+1/2

α yδ‖ + ‖Rm+1/2
α (y − yδ)‖ ≤ (C + 1)δ . (16)

We use Assumption A1, (15), (16) and obtain by exploiting Jensen’s inequality

ρ

(‖xα − x†‖2

‖v‖2

)

≤
∫ a
0 ρ(r2m

α (λ)ϕ(λ)) d‖Eλv‖2

∫ a
0 d‖Eλv‖2

≤ (C + 1)2δ2

‖v‖2
. (17)

From the monotonicity ofϕ−1, the definition ofρ and (17) we obtain

ϕ−1

( ‖xα − x†‖2

(C + 1)2E2

)

≤ ϕ−1

(‖xα − x†‖2

‖v‖2

)

≤ (C + 1)2δ2

‖xα − x†‖2
.

Due toρ(λ) = λϕ−1(λ), this estimate provides (14).

Exploiting Proposition 6, we obtain order optimal error bounds providedα is
chosena posteriorieither by Rule R1 or by Rule R2.

Theorem 7. Let x† ∈ Mϕ,E with ϕ satisfying Assumption A1. Let xδ
α := xδ

α,m

be the regularized approximation(11) and letα be chosen either by Rule R1 or by
Rule R2. If ϕ1/(2m) is concave, then

‖xδ
α − x†‖ ≤ c0E

√

ρ−1(δ2/E2) (18)

with c0 = C + 1 + γ1, γ1 = 1
2 for m = 1, andγ1 =

√
m for m ≥ 2.
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Proof. Due to Proposition 5, it is sufficient to prove (18) forα = αRG. We use the
decompositionxδ

α −x† = (xα −x†)+(xδ
α −xα) and obtain from (14) and the first

part of (9) that

‖xδ
αRG

− x†‖ ≤ (C + 1)E
√

ρ−1(δ2/E2) +
γ1δ√
αRG

. (19)

We distinguish afirst caseαRG ≥ ϕ−1
(

ρ−1(δ2/E2)
)

:= α0 and asecond case
αRG ≤ α0. In thefirst casewe obtain from (19) and (8) that

‖xδ
αRG

− x†‖ ≤ (C + 1 + γ1)E
√

ρ−1(δ2/E2) . (20)

In thesecond casewe use the estimate‖xδ
αRG

− x†‖ ≤ ‖xδ
α0

− x†‖ which follows
from Proposition 5, exploit Theorem 2 and obtain

‖xδ
αRG

− x†‖ ≤ ‖xδ
α0

− x†‖ ≤ (1 + γ1)E
√

ρ−1(δ2/E2) . (21)

Now (18) follows from (20) and (21).
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Optimaalse järguga regulariseerimisest üldise
allikatingimuse korral

Ulrich Tautenhahn

On vaadeldud regulariseerimismeetodite klassi mittekorrektse ülesande lahen-
damiseks lähteandmete teadaoleva veataseme korral. Eeldatakse, et täpsellahendil
on üldistatud allikataoline esitus. Näidatakse, et regulariseerimisparameetri valik
Rausi–Gfrereri reegli või monotoonse vea reegli kohaselt tagab lähislahendile opti-
maalse järguga veahinnangu.
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