
Proc. Estonian Acad. Sci. Phys. Math., 2004,53, 2, 107–115

Stability analysis of the fast Legendre transform
algorithm based on the fast multipole method

Reiji Suda

Department of Computer Science, the University of Tokyo/CREST of JST, Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan; reiji@is.s.u-tokyo.ac.jp

Received 20 November 2003, in revised form 7 January 2004

Abstract. The fast Legendre transform algorithm based on the fast multipole method proposed
by Suda and Takami (Math. Comput., 2002,71, 703–715) is discussed. The alpha-beta product
is introduced as an indicator of instability, and the effects of the interpolations, splits, and
shifts on the alpha-beta products are evaluated. The interpolations are proved to be stable. The
instability of the splits and the shifts are evaluated numerically, and the stability is shown to
be sufficient for practical use. The fast transform scheme must be applicable to other functions
that are stable in the recurrence formula and the Clenshaw summation formula.

Key words: fast Legendre transform, fast multipole method, polynomial interpolation, matrix
computation, matrix product, stability analysis, alpha-beta product.

1. INTRODUCTION

We have proposed a fast Legendre transform algorithm based on the fast
multipole method (FMM) in [1]. Our algorithm has several similarities with the
Driscoll–Healy algorithm [2,3]. Both have the divide-and-conquer strategy and
use fast polynomial interpolation. However, the stability characteristics of the
two algorithms show a vivid contrast. Our algorithm runs quite stably, while the
Driscoll–Healy algorithm is severely unstable for large orderm. The source
of the instability of the Driscoll–Healy algorithm is quite clear: the use of the
FFT for fast polynomial interpolations. The FFT requires equispaced points, and
polynomial interpolations with equispaced points tend to be unstable (known as
Runge’s phenomena). Our algorithm uses the FMM for polynomial interpolations,
which accepts any distribution of points. However, that is not enough to guarantee
the stability of the algorithm. This paper analyses the stability of our algorithm
theoretically and experimentally.

107

First, our fast transform algorithm is explained. There the fast polynomial
interpolation, the split of the Legendre functions, and the shift of the split points
affect the stability. The alpha-beta product is introduced as the indicator of
instability. A small alpha-beta product is a necessary condition of the stability of a
linear computation. Then the stability of our algorithm is analysed in terms of the
alpha-beta product. We prove that there is a set of the sampling points that limits
the increase in the alpha-beta products, and thus numerically stable interpolations
are always possible. The splits and the shifts sometimes increase the alpha-beta
products, and the increasing factor depends on the scaling of the functions. Those
increasing factors are evaluated numerically, and it is shown that the stabilityof our
algorithm is sufficient for practice.

2. THE FAST TRANSFORM ALGORITHM

This section briefly reviews our fast transform algorithm. A fuller description
is in the original paper [1].

Let us consider the inverse associated Legendre function transform

gm(µk) =
N

∑

n=m

gm
n Pm

n (µk). (1)

The forward transform, given as

gm
n =

∑

k

ωkg
m(µk)P

m
n (µk),

whereµk are Gaussian nodes andωk are the corresponding weights, is a trans-
position of the inverse transform. Thus it is enough to consider the inversetrans-
form (1). We refer to{µk} as theevaluation points.

2.1. Fast polynomial interpolation

The associated Legendre function can be factorized as

Pm
n (x) = pm

n−m(x)Pm
m (x),

wherepm
n−m(x) is a polynomial of degreen − m. Thusgm(µk)/Pm

m (µk) is a
polynomial of degreeN − m, and the transformgm(µ) at any pointµ can be
computed from the values at a set ofN − m + 1 points{µi} by the polynomial
interpolation (the Lagrange formula)

gm(µ) =
∑

i

Pm
m (µ)ωi(µ)

Pm
m (µi)ωi(µi)

gm(µi), (2)

108

whereωi(µ) is a polynomial of degreeN − m:

ωi(µ) =
∏

j 6=i

(µ − µj).

Based on the above observation, our algorithm chooses a set of sampling
points {µi} and evaluates the transform (1) on the other evaluation points
(called interpolation points) by the interpolation (2). The interpolation can be
approximately computed in timeO(N) by the FMM [4], whereN is the number of
the evaluation points.

2.2. Divide-and-conquer

In order to apply the fast polynomial interpolation by the FMM repeatedly, our
algorithm divides the summation of (1) as

N
∑

n=m

gm
n Pm

n (µk) =
ν−1
∑

n=m

gm
n Pm

n (µk) +
N

∑

n=ν

gm
n Pm

n (µk), (3)

whereν ≈ (m + N)/2.
The first term of the right-hand side is a Legendre transform of a half size. Thus

it accepts polynomial interpolation again.

2.3. Split Legendre functions

The second term of the right-hand side of (3) does not accept polynomial
interpolation as it is. To solve that difficulty, our algorithm splits the associated
Legendre functions as

Pm
n (x) = Pm,0

n,ν (x) + Pm,1
n,ν (x),

where eachsplit Legendre function Pm,l
n,ν (x) (l = 0, 1) is the product of a

polynomial and an associated Legendre function

Pm,l
n,ν (x) = qm,l

n,ν (x)Pm
ν+l(x).

The polynomialqm,l
n,ν (x) vanishes (i.e.≡ 0) for n − ν + l − 1 = 0, otherwise

deg(qm,l
n,ν (x)) = |n − ν + l − 1| − 1. That split can be easily derived from the

recurrence formula

(n − m)Pm
n (x) = (2n − 1)xPm

n−1(x) − (n + m − 1)Pm
n−2(x),

109

which already gives the split forν = n − 2. The parameterν is called thesplit
point. The split point can be different from the lower bound of the summation,
but that choice is the best for numerical stability. This is because a split with
n < ν corresponds to the backward recurrence, which is unstable for the associated
Legendre functions.

The second term of the right-hand side of (3) is split as

N
∑

n=ν

gm
n Pm

n (µk) =
N

∑

n=ν

gm
n Pm,0

n,ν (µk) +
N

∑

n=ν

gm
n Pm,1

nν (µk).

Then each term of the split sum can be interpolated as a polynomial.

2.4. Shift of the split point

Our algorithm divides the partial sums recursively. After dividing a split sum

N
∑

n=ν

gm
n Pm,l

n,ν (µk) =
ν′−1
∑

n=ν

gm
n Pm,l

n,ν (µk) +
N

∑

n=ν′

gm
n Pm,l

n,ν (µk),

the second term of the right-hand side does not accept polynomial interpolation
again. The split point needs to be shifted to the lower bound of the sumν ′ as

N
∑

n=ν′

gm
n Pm,l

n,ν (µk) = Tm,0l
ν,ν′

N
∑

n=ν′

gm
n Pm,0

n,ν′ (µk) + Tm,1l
ν,ν′

N
∑

n=ν′

gm
n Pm,1

n,ν′ (µk)

Tm,λl
ν,ν′ (x) = Pm,l

ν+λ,ν′(x)/Pm
ν+λ(x).

It is easy to show that the shift operation is equivalent to an application of the
Clenshaw summation formula (with zero coefficients).

2.5. Computational complexity

Using splits and shifts, the transform (1) can be divided and interpolated
arbitrarily many times. The recursion of the divide-and-conquer scheme stops when
the evaluation–interpolation scheme needs more computational costs than the direct
computation.

Every operation (interpolation via FMM, summation, and shift) in each level
can be computed in linear time, and the recursion stops inO(log N) levels.
Thus, assuming that the number of evaluation points{µk} is O(N), the total
computational complexity for the transform (1) isO(N log N). The spherical
harmonic transform consists ofO(N) Legendre transforms (m = 0 to N), thus
it can be done in timeO(N2 log N). Here, the precision required for the FMM is
assumed to be constant.

110

3. STABILITY ANALYSIS

The stability of numerical algorithms has been investigated in various ways.
However, our algorithm is too complex to analyse with the conventional schemes
of numerical error analysis. I propose a simpler analysis based on thealpha-beta
products, which make a necessary condition of numerical stability.

3.1. The alpha-beta product

The Legendre transform is a linear transform, and any part of that mustalso
be a linear transform. Such an algorithm can be expressed as a series oflinear
transforms

y = F0F1 · · ·FQx,

where eachFq (for q = 0, . . . , Q) is a matrix that represents the numerical
computation of theqth step of the algorithm. Let us define

G(q) = F0F2 · · ·Fq−1, H(q) = FqFq+1 · · ·FQ,

so that we have
y = G(q)H(q)x for q = 1, · · · , Q.

Let x(q) = H(q)x be the precise value of the intermediate vector. Assume that the
computed valuẽx(q) is given by roundingx(q). Then we have

|x̃
(q)
i − x

(q)
i | ≤ ε|x

(q)
i | = ε|h

(q)
i x| ≤ εβ

(q)
i ‖x‖,

whereε is the machine epsilon andβ(q)
i = ‖h

(q)
i ‖.

The final result vectory is affected by that rounding as

‖ỹ − y‖ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i

g
(q)
i (x̃

(q)
i − x

(q)
i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∑

i

α
(q)
i |x̃

(q)
i − x

(q)
i |

≤ ε‖x‖
∑

i

α
(q)
i β

(q)
i ,

whereα
(q)
i = ‖g

(q)
i ‖. The above arguments show that a large value of

∑

i α
(q)
i β

(q)
i

allows a large error on the result vectory. Thus the value of
∑

i α
(q)
i β

(q)
i works as

an indicator of instability. Let us call that thealpha-beta product.

3.2. The alpha-beta products after interpolation

Let C be an interpolation in our algorithm, andy = ACBx be the whole
transform. Define the alpha-beta productbefore the interpolation̄αiβ̄i as

ᾱi = ‖Ai‖, β̄i = ‖ciB‖,

111

whereAi is theith column ofA andci is theith row ofC. The alpha-beta product
after the interpolationαiβi should be defined as

αi = ‖ACi‖, βi = ‖bi‖,

whereCi is theith column ofC andbi is the ith row of B. Then we can prove
the following theorem, which guarantees that numerically stable interpolation is
always possible.

Theorem. For any interpolation C in the form of (2), one can choose the sampl-
ing points so that

αiβi ≤ (1 + J)ᾱiβ̄i,

where J is the number of the interpolation points.

Proof. LetI be the set of indices of the sampling points andJ be the set of indices of
the interpolation points. First note thatβi = β̄i for i ∈ I andcik = δik (Kronecker
delta) fori, k ∈ I. Also we have

αi ≤ ᾱi +
∑

j∈J

ᾱj |cji| . (4)

The computationACB can be rewritten as

(AI AJ)

(

BI

BJ

)

= (AI AJ)

(

I
Θ

)

BI

= (AIS
−1
I AJS−1

J
)

(

I
SJΘS−1

I

)

SIBI ,

whereSI = diag(ᾱi) andSJ = diag(ᾱj) are scaling matrices. Here we have
SJΘS−1

I = SJBJ(SIBI)
−1 and from the Cramer rule

(SJΘS−1
I)ji =

det(SJBJ)(ji)

det(SIBI)
,

where(SJBJ)(ji) is defined fromSJBJ by replacing itsjth row by theith row of
SIBI . Now choose the sampling pointsI so that|det(SIBI)| is maximized. Then
we have

|(SJΘS−1
I)ji| = ᾱj |cji|ᾱ

−1
i ≤ 1.

From (4) we obtain the desired result

αiβi ≤ (1 + |J |)ᾱiβ̄i.

112

3.3. The alpha-beta products after split and shift

Our algorithm consists of interpolation, division, split, and shift. The effects of
the interpolation on the alpha-beta products were discussed above. The division is
easy:α does not change after division, andβ is computed for a smaller range of
n’s. Thus the alpha-beta products become smaller after division. The remaining
part of this section discusses the effects of the splits and shifts on the alpha-beta
products.

3.3.1.The alpha-beta products after split

After a split theα values remain the same. Theβ value before the split is
defined as

βi =

√

∑

n

|Pm
n (µi)|2

in the case of the 2-norm, and after the split as

βl
i =

√

∑

n

|Pm,l
n,ν (µi)|2.

From the equationPm
n (µ) = Pm,0

n,ν (µ) + Pm,1
n,ν (µ), we have

βi ≤ β0
i + β1

i .

If the right-hand side is much larger than the left-hand side, then the alpha-beta
product increases after the split, and thus the stability is lost. So let us definethe
instability factor for the split γi as

γi =
β0

i + β1
i

βi

.

3.3.2.The alpha-beta products after shift

Next consider theαβ values after a shift. Let theith alpha-beta product before
the shift beᾱl

iβ̄
l
i and that after the shift beαl

iβ
l
i. We have

αl
i ≤ ᾱ0

i |T
m,l0
n,ν (µi)| + ᾱ1

i |T
m,l1
n,ν (µi)|,

and thus
1

∑

l=0

αl
iβ

l
i ≤

1
∑

l=0

γl
iᾱ

l
iβ̄

l
i,

whereγl
i is theinstability factor for the shift defined as

γl
i =

|Tm,0l
n,ν (µi)|β

0
i + |Tm,1l

n,ν (µi)|β
1
i

β̄l
i

.

113

3.3.3.Magnitudes of the instability factors

Currently we have no theory to bound the instability factors. Table 1 shows
the numerically computed maximum values of the instability factors. For the upper
half of the table, the Legendre functions are normalized as

∫ 1

−1
|Pm

n (x)|dx = 2,

and the 2-norm is used. Both instability factors are almost proportional toN .
For the lower half of the table, the Legendre functions aredamped asP̃m

n (x) =
n−1Pm

n (x), wherePm
n (x) is the normalized one. The instability factors are much

smaller than the normalized case and almost proportional tolog N . Thus the
damping greatly reduces the numerical instability, but it depends on the application
problem whether it is acceptable or not. The damping factor should be chosen
carefully for each application problem, to balance the approximation precision and
the numerical stability.

4. SUMMARY

This paper analysed the stability of the fast Legendre transform algorithm.
The alpha-beta product was introduced as an indicator of instability. The effects
of interpolation, the split of the associated Legendre functions, and the shift of
the split points on the alpha-beta products were investigated theoretically and
experimentally. The interpolation was proved to be always stable, and the stability
of the split/shift was examined through numerical experiments.

Our scheme of the fast Legendre transform is applicable to other transforms by
functions of similar recurrence formulae. We can show that the instability factors
for the split/shift also work as instability measures for the recurrence formula and
the Clenshaw summation formula. Therefore it is implied that our scheme will

114

provide fast function transforms if the recurrence formula (actually, either forward
or backward) of the functions is numerically stable in terms of the above-defined
instability factors.

ACKNOWLEDGEMENTS

This research was partly supported by Research for the Future Program (JSPS),
CREST (JST), the 21st Century COE program, and Grants-in-Aid for Scientific
Research (MEXT).

REFERENCES

1. Suda, R. and Takami, M. A fast spherical harmonics transform algorithm.Math. Comput.,
2002,71, 703–715.

2. Healy, D. M. Jr., Rockmore, D. and Moore, S. S. B. FFTs for 2-Sphere – Improvements
and Variations. Tech. Rep. PCS-TR96-292, Dartmouth Univ.,1996.

3. Potts, D., Steidl, G. and Tasche, M. Fast and stable algorithms for discrete spherical Fourier
transforms.Linear Algebra Appl., 1998,275–276, 433–450.

4. Greengard, L. and Rokhlin, V. A fast algorithm for particle simulations.J. Comput. Phys.,
1987,73, 325–348.

FMM-meetodil põhineva kiire Legendre’i teisenduse
algoritmi stabiilsuse analüüs

Reiji Suda

Artiklis vaadeldakse Suda ja Takami [1] poolt välja töötatud FMM-meetodil
põhinevat kiiret Legendre’i teisenduse algoritmi. Mittestabiilsuse indikaatoriks
defineeritakse alfa-beeta korrutis ning hinnatakse interpolatsioonide, tükelduste ja
nihete mõju sellele. Näidatakse, et interpolatsioonid on stabiilsed. Tükelduste ja
nihete ebastabiilsust hinnatakse numbriliselt ning näidatakse, et üldine stabiilsus on
praktiliste rakenduste jaoks piisav. Kiire teisenduse skeem peab olema rakendatav
ka teistele funktsioonidele, mis on stabiilsed rekursioonivalemi ning Clenshaw’
summeerimisvalemi suhtes.

115

