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Abstract. The fast Legendre transform algorithm based on the fasipoldtmethod proposed
by Suda and TakamMath. Compuit., 2002,71, 703—715) is discussed. The alpha-beta product
is introduced as an indicator of instability, and the effect the interpolations, splits, and
shifts on the alpha-beta products are evaluated. The oitgipns are proved to be stable. The
instability of the splits and the shifts are evaluated nucadly, and the stability is shown to
be sufficient for practical use. The fast transform schemst tnei applicable to other functions
that are stable in the recurrence formula and the Clenshaunstion formula.
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1. INTRODUCTION

We have proposed a fast Legendre transform algorithm based orashe f
multipole method (FMM) in {]. Our algorithm has several similarities with the
Driscoll-Healy algorithm §3]. Both have the divide-and-conquer strategy and
use fast polynomial interpolation. However, the stability characteristics @f th
two algorithms show a vivid contrast. Our algorithm runs quite stably, while the
Driscoll-Healy algorithm is severely unstable for large order The source
of the instability of the Driscoll-Healy algorithm is quite clear: the use of the
FFT for fast polynomial interpolations. The FFT requires equispacédgand
polynomial interpolations with equispaced points tend to be unstable (known as
Runge’s phenomena). Our algorithm uses the FMM for polynomial intelipolg
which accepts any distribution of points. However, that is not enoughdcagtee
the stability of the algorithm. This paper analyses the stability of our algorithm
theoretically and experimentally.
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First, our fast transform algorithm is explained. There the fast polynomia
interpolation, the split of the Legendre functions, and the shift of the spiittp
affect the stability. The alpha-beta product is introduced as the indicdtor o
instability. A small alpha-beta product is a hecessary condition of the stalility o
linear computation. Then the stability of our algorithm is analysed in terms of the
alpha-beta product. We prove that there is a set of the sampling points that limits
the increase in the alpha-beta products, and thus numerically stable intiersola
are always possible. The splits and the shifts sometimes increase the atpha-b
products, and the increasing factor depends on the scaling of the fumclibose
increasing factors are evaluated numerically, and it is shown that the stabiity
algorithm is sufficient for practice.

2. THE FAST TRANSFORM ALGORITHM

This section briefly reviews our fast transform algorithm. A fuller degimnip
is in the original paper'].
Let us consider the inverse associated Legendre function transform

N
9" (k) = Y g P (k)- 1)
The forward transform, given as

g =" wrg™ (k) P (),
p

where i, are Gaussian nodes ang are the corresponding weights, is a trans-
position of the inverse transform. Thus it is enough to consider the intenss-
form (1). We refer tof .} as theevaluation points.

2.1. Fast polynomial interpolation
The associated Legendre function can be factorized as

P (@) = pptpm(2) Py (),
wherep!  (x) is a polynomial of degree — m. Thusg" (ux)/Pl (1) IS @
polynomial of degreeV — m, and the transforny™(x) at any pointy can be
computed from the values at a set@f— m + 1 points{u;} by the polynomial
interpolation (the Lagrange formula)

() = 3 A ), @)

i
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wherew; () is a polynomial of degre& — m:
wi(p) = [ [ (e = my)-
J#i

Based on the above observation, our algorithm chooses a set of sampling
points {x;} and evaluates the transform (1) on the other evaluation points
(called interpolation points) by the interpolation (2). The interpolation can be
approximately computed in tim@(N) by the FMM [*], whereN is the number of
the evaluation points.

2.2. Divide-and-conquer

In order to apply the fast polynomial interpolation by the FMM repeatedly, ou
algorithm divides the summation of (1) as

Z g P Z g P () + Z g P 3)

wherer ~ (m + N)/2.
The first term of the right-hand side is a Legendre transform of a half Sizus
it accepts polynomial interpolation again.

2.3. Split Legendre functions

The second term of the right-hand side of (3) does not accept polyhomia
interpolation as it is. To solve that difficulty, our algorithm splits the associated
Legendre functions as

P (x) = Py (x) + Pyl (x),

n

where eachsplit Legendre function PZZ?;,Z(:U) (I = 0,1) is the product of a
polynomial and an associated Legendre function

Pl () = anty (@) Py ().
The polynomiaquf;,l(x) vanishes (i.e.= 0) forn — v + [ — 1 = 0, otherwise
deg(qﬁf;f(x)) = |n —v + 1 — 1] — 1. That split can be easily derived from the
recurrence formula

(n—m)B"(x) = (2n — Da Py () — (n+m — 1) By (x),
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which already gives the split far = n — 2. The parameter is called thesplit
point. The split point can be different from the lower bound of the summation,
but that choice is the best for numerical stability. This is because a split with
n < v corresponds to the backward recurrence, which is unstable forgbeiated
Legendre functions.

The second term of the right-hand side of (3) is split as

Zgr’?P’” k) Zgl?Pﬁ"VO 1) + Zgﬂ"‘Pﬁll
Then each term of the split sum can be interpolated as a polynomial.

2.4. Shift of the split point

Our algorithm divides the partial sums recursively. After dividing a spiibs

v'—1

N
ZQTTPVTVZ Zgglpgnyl /’Lk' +Zgrnfprrznul

the second term of the right-hand side does not accept polynomial ifggopo
again. The split point needs to be shifted to the lower bound of thee$am

Ol 0 1 1
ZgZ”PqTJ = T ZQVTPZZ )+ T Zgnmpﬁ (rex)

T;Z;%l(x) = VW( x)/ Py ().

It is easy to show that the shift operation is equivalent to an applicationeof th
Clenshaw summation formula (with zero coefficients).

2.5. Computational complexity

Using splits and shifts, the transform (1) can be divided and interpolated
arbitrarily many times. The recursion of the divide-and-conquer schtops when
the evaluation—interpolation scheme needs more computational costs thaethe dir
computation.

Every operation (interpolation via FMM, summation, and shift) in each level
can be computed in linear time, and the recursion stopé(log N) levels.
Thus, assuming that the number of evaluation poinig} is O(N), the total
computational complexity for the transform (1) @3(N log N). The spherical
harmonic transform consists 6f(N) Legendre transformsi{ = 0 to N), thus
it can be done in tim&(N?2log N). Here, the precision required for the FMM is
assumed to be constant.
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3. STABILITY ANALYSIS

The stability of numerical algorithms has been investigated in various ways.
However, our algorithm is too complex to analyse with the conventional scheme
of numerical error analysis. | propose a simpler analysis based adpha beta
products, which make a necessary condition of numerical stability.

3.1. The alpha-beta product

The Legendre transform is a linear transform, and any part of that afsrst
be a linear transform. Such an algorithm can be expressed as a selifg=aof
transforms

Yy = FOF1 < -FQCL‘,

where eachF, (for ¢ = 0,...,Q) is a matrix that represents the numerical
computation of theth step of the algorithm. Let us define

GY9 = FyF, - -Fy1, H@ — F,Fyy1--- Fg,

so that we have
y:G(Q)H(Q):E forqzl’...’Q_

Let 29 = H(@z be the precise value of the intermediate vector. Assume that the
computed valug(@ is given by rounding:(?). Then we have

2D — 2] < al?| = n V2| < 8|2,

wheree is the machine epsilon antf? = ||n\?||.
The final result vectoy is affected by that rounding as

Zgz(q) (j,z(q) . xz(q)) Z O‘z(‘q)|5~ﬂz(‘Q) - xz(f])|

< ezl > a8,

IN

17—yl = ‘

wherea!? = ||¢? . The above arguments show that a large valug of\? 3¢

allows a large error on the result veciprThus the value of _; a§q>5§q> works as
an indicator of instability. Let us call that ttaépha-beta product.

3.2. The alpha-beta products after interpolation

Let C be an interpolation in our algorithm, and = ACBz be the whole
transform. Define the alpha-beta prodbefore the interpolatiorw; 5; as

ai = Al Bi = llei Bl
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whereA; is theith column ofA andg; is theith row of C. The alpha-beta product
after the interpolatior; 3; should be defined as

where(; is theith column of C andb; is theith row of B. Then we can prove
the following theorem, which guarantees that numerically stable interpolation is
always possible.

Theorem. For any interpolation C' in the form of (2), one can choose the sampl-
ing points so that

;B < (1+ J)af;,
where J isthe number of the interpolation points.

Proof. Let I be the set of indices of the sampling points arae the set of indices of
the interpolation points. First note thét = 3; for i € I andc;, = é;; (Kronecker
delta) fori, k € I. Also we have

a; < @i+z@j|cﬂ|- (4)
jeJ

The computatiolAC B can be rewritten as

B I
(A AJ)<B§> = (A AJ)<@>BI
_ _ I
= ((A;S;! AJSJ1)<SJ@SI1>SIBI,

whereS; = diag(a;) andS; = diag(a;) are scaling matrices. Here we have
S;08;' = S;B,;(S;Br)~" and from the Cramer rule

_ det(SJBJ)(‘ji)
1y
(SJGSI )jl det(S[B[) ’

where(S;B,)U9 is defined fromS; B by replacing itsjth row by theith row of
S1Br. Now choose the sampling pointsso that| det(S;B;)| is maximized. Then
we have

(5105 1)jil = ajlejilag ' < 1.

From (4) we obtain the desired result

;B < (1+ |J|)aup;.
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3.3. The alpha-beta products after split and shift

Our algorithm consists of interpolation, division, split, and shift. The éffet
the interpolation on the alpha-beta products were discussed aboveividiends
easy:«a does not change after division, afids computed for a smaller range of
n’s. Thus the alpha-beta products become smaller after division. The riegain
part of this section discusses the effects of the splits and shifts on thelzdda
products.

3.3.1.The alpha-beta products after split

After a split thea values remain the same. Tlikevalue before the split is
defined as

Bi= > 1P ()l

n

in the case of the 2-norm, and after the split as

m,l
8= D IP (ua)2

From the equatio®™ (1) = P%° (1) + Pa%' (1), we have

Bi < B+ Bt

If the right-hand side is much larger than the left-hand side, then the aktha-b
product increases after the split, and thus the stability is lost. So let us dedine
instability factor for the split ~; as

B+t
Yi = —,31 .

3.3.2.The alpha-beta products after shift

Next consider thev3 values after a shift. Let thith alpha-beta product before
the shift bea!3! and that after the shift be! 3. We have

of < aQ| T ()| + @i 1T (i)l
and thus
1 1
> alBl <> qials;,
1=0 1=0
where%l. is theinstability factor for the shift defined as

l l
T ()| B0 4 T ()18
Vi = Bl' :
(]
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Table 1. The maximum values of the instability factors

N

127 255 511 1023 2047 4095
Normal max 7, 10849 21926  440.86 88410  1770.59  3543.59
Normal max 7: 7255  147.19  297.88 60128 121145  2438.90
Damped max 7, 5.88 7.00 8.14 9.29 10.44 11.61
Damped max 7; 2.29 2.49 2.69 2.92 3.14 338

3.3.3.Magnitudes of the instability factors

Currently we have no theory to bound the instability factors. Table 1 shows
the numerically computed maximum values of the instability factors. For the upper
half of the table, the Legendre functions are normalized as

1
/ P ()| = 2,
—1

and the 2-norm is used. Both instability factors are almost proportionsl to

For the lower half of the table, the Legendre functionsdareped as P (z) =
n~1P™(x), whereP(z) is the normalized one. The instability factors are much
smaller than the normalized case and almost proportion&gd. Thus the
damping greatly reduces the numerical instability, but it depends on the aipgtic
problem whether it is acceptable or not. The damping factor should berthos
carefully for each application problem, to balance the approximation praecsio
the numerical stability.

4. SUMMARY

This paper analysed the stability of the fast Legendre transform algorithm.
The alpha-beta product was introduced as an indicator of instability. ffbete
of interpolation, the split of the associated Legendre functions, and ifteogh
the split points on the alpha-beta products were investigated theoretically and
experimentally. The interpolation was proved to be always stable, and thktgta
of the split/shift was examined through numerical experiments.

Our scheme of the fast Legendre transform is applicable to other trarstiy
functions of similar recurrence formulae. We can show that the instabilitpriac
for the split/shift also work as instability measures for the recurrence faramd
the Clenshaw summation formula. Therefore it is implied that our scheme will
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provide fast function transforms if the recurrence formula (actuallygefibrward
or backward) of the functions is numerically stable in terms of the abovaetkfi
instability factors.
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FMM-meetodil pdhineva kiire Legendre’i teisenduse
algoritmi stabiilsuse analtts

Reiji Suda

Artiklis vaadeldakse Suda ja Takanti] [poolt vélja toétatud FMM-meetodil
pdhinevat kiiret Legendre’i teisenduse algoritmi. Mittestabiilsuse indikéator
defineeritakse alfa-beeta korrutis ning hinnatakse interpolatsioonidsdtiste ja
nihete moju sellele. Naidatakse, et interpolatsioonid on stabiilsed. Tikelduste ja
nihete ebastabiilsust hinnatakse numbiriliselt ning ndidatakse, et Uldine si&abiils
praktiliste rakenduste jaoks piisav. Kiire teisenduse skeem peab olenmelsdie
ka teistele funktsioonidele, mis on stabiilsed rekursioonivalemi ning Clerishaw
summeerimisvalemi suhtes.
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