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Abstract. Some new stability margins for discrete-time systems are proposed in the system
characteristic polynomial coefficient space by making use of the so-called reflection vectors
of monic Schur polynomials. Reflection vector margins give the distance (not minimal) to
the stability boundary in directions @ reflection vectors of anth-degree polynomial. The
relations between the reflection vectors and the roots of a polynomial on the unit circle are
given.
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1. INTRODUCTION

The stability of linear dynamic systems is a well-studied topic of linear
differential equations. However, some serious problems of so-called robust stability
arise when the parameters of systems are not exactly knb#n [That is why
several stability margins are defined in different domains: the gain and phase
margin in the frequency domain, minimal distance from the imaginary axis in the
pole domain, the stability radius in the system parameter domain.

For robust pole placement the domain of characteristic polynomial coefficients
is of interest []. Here, a stability margin can be obtained by the Kharitonov
theorem {] or edge theorem?]. Unfortunately, the first one does not hold for
discrete-time systems.

An alternative approach is to use the boundary crossing theorem to define the
stability radius in the polynomial coefficient spacg. [ One needs to determine
the distances to the real pole boundary and to the complex poles boundary, and
select the minimal of them. The first task is simple but the second one is quite
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complicated for high-order systems, because the sweeping over the complex poles
phase domain is needed.

In this paper the reflection coefficient stability criteriof iis used to define a
Schur stability margin in the polynomial coefficient space. The reflection vectors
of an nth-order system will be introduced &s. specific points on the stability
boundary. The line segments between an arbitrary Schur polynomial (a point in
coefficient space) and its reflection vectors will be Schur stable. So the minimal
distance between a polynomial and its reflection vectors can be used as a stability
margin for linear discrete-time systems. The crucial reflection vector gives us the
critical direction also in the polynomial coefficient space.

The paper is organized as follows. In Section 2 we recall the stability
condition via reflection coefficients and introduce reflection vectors of a monic
Schur polynomial. Section 3 is devoted to the boundary surfaces of the stability
region. It turns out that most of the faces of the stability hypercube of reflection
coefficients will be transformed into the: — 1)-dimensional hyperplanes of
polynomial coefficients and only some of the crucial faces will be transformed
into then-dimensional surfaces. In Section 4 the placement of reflection vectors is
studied and the reflection vector stability margin introduced.

2. REFLECTION COEFFICIENTS OF SCHUR POLYNOMIALS

A polynomiala(z) of degreen with real coefficients;; € R,i =0,...,n,
a(z) = apz" + ... + a1z + ao,

is said to be a Schur polynomial if all its roots are placed inside the unit circle. A
linear discrete-time dynamical system is stable if its characteristic polynomial is a
Schur polynomial, i.e. if all its poles lie inside the unit circle.

Besides the unit circle criterion some other criteria are known for checking the
stability of a linear system. It is interesting to mention that the well-known Jury’s
stability test leads precisely to the stability hypercube of reflection coefficients. In
the following we use the stability criterion via reflection coefficients.

Let us recall the recursive definition of reflection coefficiehtse R of a
polynomiala(z) [°]:

ki = —al”, (1)
agn) _ ag—i’ i=1,..,n, (2)
(@) (@)
i a;” +kia;_; ) .
a; 1) = ‘71_7k;‘2j’ ] = 1,...,7,_1. (3)

Reflection coefficients are well known in signal processing and digital filters.
They are called also PARCOR coefficients dadoefficients §]. The stability
criterion via reflection coefficients is as followy .
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Lemma 1. A polynomiak:(z) will be a Schur polynomial if and only if its reflection
coefficients;;, i = 1, ..., n, lie within the interval—1 < k; < 1.

A polynomiala(z) lies on the stability boundary if somig¢ = +1,i = 1, ..., n.
For monic Schur polynomials,, = 1, there is one-to-one correspondence between
the vectorsi = (ag, ..., an_1)" andk = (ky, ..., k,)7.

The transformation from reflection coefficierits to polynomial coefficients
a;—1, i =1,...,n, is multilinear. For monic polynomials we obtain from (1)—(3)

D g,

; i1 i—1 ) ) )
a?) - agl ) — kiaz(‘l_j )’ t=1,.,n, g=1,..,1—1,

or, in the matrix form,

a=Rka", r=1,..n-1, 4)
T
m_1| O (r—1)
¢ [Rr(kzr) ]“ ’

where
a = [ag, ..., an_1, I}T,

a™ = [0,a7(f)7 ...,agr), 1}T,

a® =10,1]7,

OT OT
B(k) = B k) [ Ry (ko) ] { R, (k) ] |
Rj(kj) = Ljt1 — kjEji,
I, is ann x n unit matrix andE,, is a mirror image of/,,, i.e.,

o . . 1
E,=|. . . .
1 . .0
Lemma 2. ["] Through an arbitrary stable point = [ag,ay, ..., a,_1], With

reflection coefficients? € (—1,1),7 =1, ..., n, you can put: stable line segments
a'(+1) = conv{a|k = +1},

whereconv{al|k{ = +1} denotes the convex hull obtained by varying the reflection
coefficientt} between-1 and1.

188



Now let us introduce the reflection vectors of a monic polynomaial). They
will be useful for introducing some new stability margins in the polynomial
coefficient space.

Definition 1. Let us call the vectors
al(1) = (alk; =1), i=1,...,n,
positive reflection vectorand
a'(=1) = (alk; = -1), i=1,...,n,

negative reflection vectorf a monic polynomiad(z).

It means that reflection vectors are the extreme points of the Schur stable line
segment:‘(+1) through the point defined by Lemma 2. Due to the definition and
Lemmas 1 and 2 the following assertions hold:

(1) every Schur polynomial ha&: reflection vectors:’(1) anda’(—1), i =
1,...,n;

(2) all the reflection vectors lie on the stability boundaty € +1);

(3) the line segments between reflection vectdd) anda’(—1) are Schur
stable.

3. STABILITY REGION AND THE UNIT HYPERCUBE OF
REFLECTION COEFFICIENTS

The stability region in the reflection coefficient space is simply the
n-dimensional unit hypercub& = {k; € (—1,1),i = 1,..,n}. Because
the mapping (4) is continuous, we can find the boundary surfaces of the
stability region in the polynomial coefficient space starting from the faces
ki==1, ie{l,...,n}; kj € (-1,1), j=1,...,n; j #1i. The mapping (4) is
one-to-one for monic Schur polynomials. However, for the stability boundary
this transformation is not one-to-one because the mdt(ik;) will be singular
if kj ==£1.

Theorem 1. The stability boundary in the reflection coefficient space, which is
composed din facesk; = +1, i = 1, ..., n, of the hypercub&’, is transformed to
the following boundary surfaces in the polynomial coefficient space
(1) (n + 1)/2-dimensional hyperplane
ag = -1
{ G =—an g =l (n—1)/2, ®)
for &k, = 1 andn odd
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(2) n/2-dimensional hyperplane

apg = -1
CLn/z = 0 (6)

a; = —Aan—j, jzl,...,n/Q—l,

for k,, = 1 andn even
(3) (n+1)/2 (or n/2 + 1)-dimensional hyperplane

{ (l():l (7)

aj = On—j,

wherej = 1,...,(n —1)/2whennisodd orj = 1,...,n/2 — 1 whenn is even for
kn =—1;
(4) (n — 2)-dimensional hyperplane

ag+ar+..+a,1+1=0 (8)
ap+ ...+ ap 21+ an 241+ a1 +1=0
for k; = 1 and: even
(5) (n — 1)-dimensional hyperplane
ag+ar+..+a,_1+1=0 (9)
for k; = 1 and< odd
(6) (n — 1)-dimensional hyperplane
apg—ai + ...+ (—1)”_1an,1+1 =0 (10)

for k; = —1 and: odd
(7) n-dimensional hypersurface

T A A

for k; = —1,7 evenandi < n.
The proof of the theorem is given ifi][

Corollary 1.1. All the facesk; = 1, = 1,...,n, of the stability hypercub& are
transformed to the positive real root boundary hyperplée

Corollary 1.2. All the facesk; = —1, ¢ odd andk,, = —1, are transformed to the
negative real root boundary hyperplagt0).
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4. STABILITY MARGIN VIA REFLECTION VECTORS

In this section we study the placement of reflection vectors on the stability
boundary.

Lemma 3. The reflection vectors™(+1) of annth-order monic Schur polynomial
a(z) haven roots on the unit circle

Proof. First, let us mention that according to Theorem 1 the reflection vectors
a™(+1) have symmetric coefficient values. F6t(1) we have from (5) and (6)

a; = —an—j, j=1,...,n/2(or(n—1)/2),
and fora™(—1) from (7)
aj = an—j, j=1,...n/2(or(n —1)/2).

Second, for monic polynomials with symmetric coefficient values it is well known
that the number of roots inside the unit circle equals the number of roots outside
the unit circle. But all the reflection vectors of Schur polynomials are by definition
placed on the stability boundary. Henc¢&+1) has no root outside the unit circle,
and so all the: roots of it are placed on the unit circle. O

Lemma 4. Let us consider monic Schur polynomialg) andb(z) with reflection
coefficients = kj] = 1,...,i—1. Then the reflection vectot$(+1) andb*(+1)
have the sameroots on the unit circle

Proof. Let us start from an auxiliaryth-order polynomiala’(z) with reflection
coefficientsk;? = ki = k? j = 1,...,i. According to Lemma 3, the polynomial
a‘(z) hasi roots on the unit circle and its coefficients have symmetric values. For
k% = kb = —1 we have

di(z) =2 4 a12 Va2l a2t taz+ 1

_1.b _
and fork{ = ks =1
di(z) =2 a2 a4 — a2 — a2 — 1.

Our aim is to show that the polynomiai(z) is a common divisor of both(z) and
b(z). This can be easily done by increasing the order of polynomialsandb(z)
by transformation (4) and taking into account the symmetric coefficient values of
a'(z).
For example, let! = —1, i even, anch(a) =i + 1. Then
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_ 0 -
1
]. O 0 —ki+1 1— alki
: : ayp — CLQ/{JZ
a= 0 1—Fkiq1 0 )
—kiy1 O 0 1 az — ark;
a; —k;
L 1 i

and

Forn(a) =i + 2 we obtain
a(z) = [z2 + ki1 (kivo — 1)z — kiyo]a'(2).
In a similar way we can find for arbitrany(a) and|k;| < 1,j =i+ 1,...,n(a),
a(z) = a" 7' (2)a' (),

i.e.,a’(z) is a common divisor for alk(z) (and also fob(2)) with n(a) >i. O

Lemma 5. Let a monic polynomiak(z) of ordern have a real root of multiplicity

i on the Schur stability boundamy = ro = ... = r4, |r;] = 1, and all the other
roots be placed inside the unit circle;| < 1, j = i + 1,...,n. Then the first
i reflection coefficients oi(z) are placed on the stability boundafy;| = 1,

j = 1,...,4, and all the other reflection coefficients inside the unit hypercube
kil <1,j=i+1,..,n.

Proof. By Lemma 4 theth reflection coefficient ofi(z) must be of modulus equal
toone,|k;| =1, and|k;| < 1,j =i+ 1,...,n, because(z) has only: roots on the
stability boundary. Now let us rewritg(z) as

e
—~
N
~—
I
s}

3
|
<.
—~
N
S~—
l
<
—~
I
N~—
I

a" " (2)(z £ 1)%

Becausea’(z) has symmetric coefficient values, we can claim that the first
reflection coefficients ofi(2) are determined by'(z), i.e. k§ = k%, = 1,...,4.
By formulas (1)—(3) we can easily find th]&?\ =1,j=1,..,i. O

Theorem 2. Reflection vectors’(+1), i = 1,...,n, of a monic Schur polynomial
a(z) have the following rootsr(j), j = 1, ..., 4, on the stability boundary
(1) the reflection vectou’(1) has
—forievenr(l) =1, r(2) = —1, and(i — 2)/2 pairs of complex roots
on the unit circle
—forioddr(1) =1 and (i — 1)/2 pairs of complex roots on the unit
circle,
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(2) the reflection vectow’(—1) has
—for i eveni/2 pairs of complex roots on the unit cirgle
—forioddr(1) = —1and(i — 1)/2 pairs of complex roots on the unit
circle.

Proof. The assertion that a reflection vectdf+1) hasi roots on the unit circle
follows immediately from Lemmas 3 and 4.

Now the question is: which of the reflection vectors has a real root on the
stability boundary and of what sign is it? By Theorem 1 the hyperplanes (9) and
(10) are the real root boundaries for= 1 andr = —1, respectively, and (8) for
bothr = +1. Because all the reflection vectors of a Schur polynomial have by
definition only one reflection coefficient on the stability boundary, they do not have
by Lemma 5 any real multiple roots of modulus equal to one. Hence, all the rest of
the stability boundary roots must be complex roots on the unit circle. O

Now we can introduce some stability margins via reflection vectors of a Schur
polynomial.

Definition 2. Let us call the distance between a Schur stable polynomgigl and
its reflection vecton?(+1), i = 1, ..., n, the stability margin in coefficient space in
the direction of theth reflection vectaror simply the th reflection vector margin,
and denote it byl;(+1).

The reflection vector margins are useful for robust controller design by pole (or
characteristic polynomial coefficient) placemefit [Then we are looking for the
minimal reflection vector margin

dmin = min;d;(£1)

in order to maximize it by a proper robust controller.

Taking the background of reflection vectors into account (according to
Theorem 2), we can claim that in practice the first three of the reflection vectors
are the most attractive. Indeed,

— the first positive reflection vector margihi (1) gives us the distance to the
real positive root boundary,

— the first negative reflection vector margin(—1) gives us the distance to the
real negative root boundary,

— the second negative reflection vector margjif—1) gives us the distance to
the complex root boundary,

—the second positive reflection vector margiiil) gives us the distance to two
different real root boundaries(= 1, o = —1),

— the third positive reflection vector margifj(1) gives us the distance to the
real positive and complex root boundaries &€ 1, 723 = a £ 181, o? + 5% = 1),

— the third negative reflection vector margis(—1) gives us the distance to the
real negative and complex root boundaries£€ —1, 725 = a+pi, o?£16% = 1),

— higher reflection vector margins give us the distance to several complex root
boundaries.
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As a matter of fact, the reflection vector margins do not give the minimal
distances to real and complex root boundaries, i.e.,

Amin > P,

dl(l) 2> P+1,
dl<_1) Z P—1,

wherep, py1, and p_; are the stability radius and the minimal distances to the
positive and negative real root boundaries ©f). However, the minimal distances
to real and complex root boundaries can be easily found by a simple search
procedure in the directions of reflection vectors. For example, the minimal distance
to the positive real root boundary can be found via the first positive reflection vector
as follows:

1. For a given Schur polynomial z) find the starting-poink(0) = a'(1).

2. Putn — 1 line segmentgonv{[b(0)]*(£1)}, i = 2,...,n, through the
pointb(0).

3. Find b(1) as the nearest point of all line segmentsiv{[b(0)]*(+1)},
i =2,...,n, to the pointa.

4. 1f |b(i) — b(i — 1)| > € for some given smal > 0, return to step 2.

Similarly, we can find the negative real root margin via the first negative
reflection vector and the complex root margin via the second negative reflection
vector.

Example 1. Letn = 2. Then the stability region in the polynomial coefficient
spacex = (a1, ap) is the triangle AGH (Fig. 1). Let us find the stability margins
for the polynomiala(z) = 22 + 0.75z + 0.5 (point F in Fig. 1). According to
Lemma 2, we can put two stable line segments through the point F. By varying the
first reflection coefficient;, —1 < k1 < 1, we get the line segment AB and by
varying the second reflection coefficiént —1 < ko < 1, we get the line segment
CD. By definition the second-order polynomidl:) has four reflection vectors:

al(l) = [ -15 05 |, (point C),
al(—1) [ 15 05 ], (point D),
a?(l) =1 0 -1 ], (point A),
a’(-1) = [ 1 1], (point B),

and the stability margins in the directions of reflection vectors are determined by
the line segments FC, FD, FA, and FB, respectively.

To find the minimal distance to the negative real root boundary, we start from
the first negative reflection vector (point D)(0) = [1.5 0.5]. By varying the
second reflection coefficient, —1 < ko < 1, we get the line segment AH. The
point K = [1.125 0.125], with reflection coefficient$* = [-1 — 0.125], is the
nearest point on the negative real root boundary, and the distance to the negative
real root boundary ip_ = 0.53.
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Fig. 1. The stability region and stability margins in the directions of reflection vectoes ).

Similarly, starting from the first positive reflection vector (point C), we can
find the minimal distance to the positive real root boundary (line segment AG)
Starting from the second negative reflection vector (point B), we get the
minimal distance to the complex root boundary (line segment BH> 0.5. So
the stability radius is

p =min(p, p—, pc) = 0.5.

Example 2.Let us now consider the example of Bhattachary?gpp. 136-138]
forn =4:
a(z) = 22 +0.32% +0.422 + 0.2z + 0.1.

The reflection coefficients af(z) arek® = [-0.1714 — 0.3246 — 0.1717 — 0.1].
Becausdki| < 1,i = 1,...,4, a(z) is a Schur polynomial and we can find its
reflection vectors’(+1) and reflection vector marging(+1) as follows:

—

—1.2516 0.1069  0.0448 0.1
1.3974  0.6073  0.3097 0.1
—1.1545 —1.0999 0.1545 0.1 |, do(1) = 1.5679,
0.5317  1.1646  0.2232 0.1 |, dao(—1) =0.7993,

[ ]7 dl(
[ ] (
| L
[ —0.1975 0.1073 —1.0097 0.1 ], 3(1) = 1.3403,
[ ] (
[ ] (
[ ] (

—_
~—
|

1) = 1.5866,
. di(—1) =1.1222,

—
|
—
~—
I

A
[u—
~—r
I

[\
\
—
~—
I

d
0.6517  0.6069 1.0551 0.1 |, ds(—1) =0.9474,
0.1111 0 —0.1111 =1 ],  d4(1) = 1.2256,
0.4545  0.7272  0.4545 1 ], dy(—1) =1.0028.
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Starting from the reflection vectots (1), a'(—1), anda?(—1), the following
minimal distances to real positive, real negative, and complex pole boundaries have
been found, respectively,.; = 1.0, p_1 = 0.5, p. = 0.4987. This confirms the
result given in f]. The stability radius is

p = 0.4987
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and the critical poind on the stability boundary is

b = [ 0.2335 0.746 0.2818 —0.2434 |.
The reflection coefficients df =) are

K = [ 00194 —1.0 -0.36 0.2434 ].

By Theorem 3)(z) has a pair of complex roots on the unit circle. Indeed, the roots
of b(z) are

r1 = 0.3756,

ry = —0.648,

r3.4 = 0.0194 £ 0.9998i.

5. CONCLUSIONS

A new kind of stability margin for discrete-time systems is proposed in the
system characteristic polynomial coefficient space by making use of the so-called
reflection vectors of monic Schur polynomials. It is shown that (1) reflection
vectors are placed on the stability boundary, with specific roots placement
depending on the reflection vector number and the argument sign, and (2) the line
segments between an arbitrary Schur polynomial and its reflection vectors are Schur
stable.

Even though the reflection vector margins do not give the minimal distance
to the stability boundary, they are nevertheless quite informative: in addition to
distances, they give also the directions of crucial points. The reflection vector
margins can be used for robust controller design in the system characteristic
polynomial coefficient domain.
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Diskreetaja siisteemide stabiilsusvarust
Ulo Nurges

Lahtudes susteemi karakteristliku polinoomi peegelduskoefitsientidest, on
defineeritud siisteemi stabiilsusvaru peegeldusvektorite suunas. On selgitatud seo-
sed susteemi peegeldusvektorite ja stabiilsuspiiril asuvate pooluste vahel: esi-
mesele positiivsele (negatiivsele) peegeldusvektorile vastab positivhe (nega-
tivne) reaalne poolus Uhikringil, teisele negatiivsele peegeldusvektorile vastab
komplekssete pooluste paar Uhikringil jne. Sobiva peegeldusvektori abil on
suhteliselt lihtne leida stisteemi stabiilsusraadius.
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