
Proc. Estonian Acad. Sci. Phys. Math., 2003,52, 2, 186–197

Some new stability margins for
discrete-time systems

Ülo Nurges

Institute of Cybernetics at Tallinn Technical University, Akadeemia tee 21, Tallinn 12611,
Estonia; nurges@ioc.ee

Received 24 September 2002

Abstract. Some new stability margins for discrete-time systems are proposed in the system
characteristic polynomial coefficient space by making use of the so-called reflection vectors
of monic Schur polynomials. Reflection vector margins give the distance (not minimal) to
the stability boundary in directions of2n reflection vectors of annth-degree polynomial. The
relations between the reflection vectors and the roots of a polynomial on the unit circle are
given.
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1. INTRODUCTION

The stability of linear dynamic systems is a well-studied topic of linear
differential equations. However, some serious problems of so-called robust stability
arise when the parameters of systems are not exactly known [1,2]. That is why
several stability margins are defined in different domains: the gain and phase
margin in the frequency domain, minimal distance from the imaginary axis in the
pole domain, the stability radius in the system parameter domain.

For robust pole placement the domain of characteristic polynomial coefficients
is of interest [1]. Here, a stability margin can be obtained by the Kharitonov
theorem [3] or edge theorem [4]. Unfortunately, the first one does not hold for
discrete-time systems.

An alternative approach is to use the boundary crossing theorem to define the
stability radius in the polynomial coefficient space [2]. One needs to determine
the distances to the real pole boundary and to the complex poles boundary, and
select the minimal of them. The first task is simple but the second one is quite
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complicated for high-order systems, because the sweeping over the complex poles
phase domain is needed.

In this paper the reflection coefficient stability criterion [5] is used to define a
Schur stability margin in the polynomial coefficient space. The reflection vectors
of an nth-order system will be introduced as2n specific points on the stability
boundary. The line segments between an arbitrary Schur polynomial (a point in
coefficient space) and its reflection vectors will be Schur stable. So the minimal
distance between a polynomial and its reflection vectors can be used as a stability
margin for linear discrete-time systems. The crucial reflection vector gives us the
critical direction also in the polynomial coefficient space.

The paper is organized as follows. In Section 2 we recall the stability
condition via reflection coefficients and introduce reflection vectors of a monic
Schur polynomial. Section 3 is devoted to the boundary surfaces of the stability
region. It turns out that most of the faces of the stability hypercube of reflection
coefficients will be transformed into the(n − 1)-dimensional hyperplanes of
polynomial coefficients and only some of the crucial faces will be transformed
into then-dimensional surfaces. In Section 4 the placement of reflection vectors is
studied and the reflection vector stability margin introduced.

2. REFLECTION COEFFICIENTS OF SCHUR POLYNOMIALS

A polynomiala(z) of degreen with real coefficientsai ∈ R, i = 0, ..., n,

a(z) = anzn + ... + a1z + a0,

is said to be a Schur polynomial if all its roots are placed inside the unit circle. A
linear discrete-time dynamical system is stable if its characteristic polynomial is a
Schur polynomial, i.e. if all its poles lie inside the unit circle.

Besides the unit circle criterion some other criteria are known for checking the
stability of a linear system. It is interesting to mention that the well-known Jury’s
stability test leads precisely to the stability hypercube of reflection coefficients. In
the following we use the stability criterion via reflection coefficients.

Let us recall the recursive definition of reflection coefficientski ∈ R of a
polynomiala(z) [5]:

ki = −a
(i)
i , (1)

a
(n)
i =

an−i

an
, i = 1, ..., n, (2)

a
(i−1)
j =

a
(i)
j + kia

(i)
i−j

1− k2
i

, j = 1, ..., i− 1. (3)

Reflection coefficients are well known in signal processing and digital filters.
They are called also PARCOR coefficients andk-coefficients [6]. The stability
criterion via reflection coefficients is as follows [5].
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Lemma 1. A polynomiala(z) will be a Schur polynomial if and only if its reflection
coefficientski, i = 1, ..., n, lie within the interval−1 < ki < 1.

A polynomiala(z) lies on the stability boundary if someki = ±1, i = 1, ..., n.
For monic Schur polynomials,an = 1, there is one-to-one correspondence between
the vectors̃a = (a0, ..., an−1)T andk = (k1, ..., kn)T .

The transformation from reflection coefficientski to polynomial coefficients
ai−1, i = 1, ..., n, is multilinear. For monic polynomials we obtain from (1)–(3)

ai = a
(n)
n−i,

a
(i)
i = −ki,

a
(i)
j = a

(i−1)
j − kia

(i−1)
i−j , i = 1, ..., n, j = 1, ..., i− 1,

or, in the matrix form,

a = R(k)a(r), r = 1, ..., n− 1, (4)

a(r) =
[

0T

Rr(kr)

]
a(r−1),

where
a = [a0, ..., an−1, 1]T ,

a(r) = [0, a(r)
r , ..., a

(r)
1 , 1]T ,

a(0) = [0, 1]T ,

R(k) = Rn(kn)
[

0T

Rn−1(kn−1)

]
...

[
0T

Rr(kr)

]
,

Rj(kj) = Ij+1 − kjEj+1,

In is ann× n unit matrix andEn is a mirror image ofIn, i.e.,

En =

 0 . . 1
. . . .
1 . . 0

 .

Lemma 2. [7] Through an arbitrary stable pointa = [a0, a1, ..., an−1], with
reflection coefficientska

i ∈ (−1, 1), i = 1, ..., n, you can putn stable line segments

ai(±1) = conv{a|ka
i = ±1},

whereconv{a|ka
i = ±1} denotes the convex hull obtained by varying the reflection

coefficientka
i between−1 and1.
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Now let us introduce the reflection vectors of a monic polynomiala(z). They
will be useful for introducing some new stability margins in the polynomial
coefficient space.

Definition 1. Let us call the vectors

ai(1) = (a|ki = 1), i = 1, ..., n,

positive reflection vectorsand

ai(−1) = (a|ki = −1), i = 1, ..., n,

negative reflection vectorsof a monic polynomiala(z).

It means that reflection vectors are the extreme points of the Schur stable line
segmentai(±1) through the pointa defined by Lemma 2. Due to the definition and
Lemmas 1 and 2 the following assertions hold:

(1) every Schur polynomial has2n reflection vectorsai(1) andai(−1), i =
1, ..., n;

(2) all the reflection vectors lie on the stability boundary (ki = ±1);
(3) the line segments between reflection vectorsai(1) andai(−1) are Schur

stable.

3. STABILITY REGION AND THE UNIT HYPERCUBE OF
REFLECTION COEFFICIENTS

The stability region in the reflection coefficient space is simply the
n-dimensional unit hypercubeK = {ki ∈ (−1, 1), i = 1, ..., n}. Because
the mapping (4) is continuous, we can find the boundary surfaces of the
stability region in the polynomial coefficient space starting from the faces
ki = ±1, i ∈ {1, ..., n}; kj ∈ (−1, 1), j = 1, ..., n; j 6= i. The mapping (4) is
one-to-one for monic Schur polynomials. However, for the stability boundary
this transformation is not one-to-one because the matrixR(kj) will be singular
if kj = ±1.

Theorem 1. The stability boundary in the reflection coefficient space, which is
composed of2n faceski = ±1, i = 1, ..., n, of the hypercubeK, is transformed to
the following boundary surfaces in the polynomial coefficient space:

(1) (n + 1)/2-dimensional hyperplane{
a0 = −1
aj = −an−j , j = 1, ..., (n− 1)/2,

(5)

for kn = 1 andn odd;
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(2) n/2-dimensional hyperplane a0 = −1
an/2 = 0
aj = −an−j , j = 1, ..., n/2− 1,

(6)

for kn = 1 andn even;
(3) (n + 1)/2 (or n/2 + 1)-dimensional hyperplane{

a0 = 1
aj = an−j ,

(7)

wherej = 1, ..., (n− 1)/2 whenn is odd orj = 1, ..., n/2− 1 whenn is even for
kn = −1;

(4) (n− 2)-dimensional hyperplane{
a0 + a1 + ... + an−1 + 1 = 0
a0 + ... + an−i/2−1 + an−i/2+1 + ...an−1 + 1 = 0 (8)

for ki = 1 andi even;
(5) (n− 1)-dimensional hyperplane

a0 + a1 + ... + an−1 + 1 = 0 (9)

for ki = 1 andi odd;
(6) (n− 1)-dimensional hyperplane

a0 − a1 + ... + (−1)n−1an−1 + 1 = 0 (10)

for ki = −1 andi odd;
(7) n-dimensional hypersurface

a = Rn(kn)...
[

0T

Ri(−1)

]
...

[
0T

R1(k1)

] [
0
1

]
, (11)

for ki = −1, i even, andi < n.

The proof of the theorem is given in [8].

Corollary 1.1. All the faceski = 1, i = 1, ..., n, of the stability hypercubeK are
transformed to the positive real root boundary hyperplane(9).

Corollary 1.2. All the faceski = −1, i odd andkn = −1, are transformed to the
negative real root boundary hyperplane(10).
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4. STABILITY MARGIN VIA REFLECTION VECTORS

In this section we study the placement of reflection vectors on the stability
boundary.

Lemma 3. The reflection vectorsan(±1) of annth-order monic Schur polynomial
a(z) haven roots on the unit circle.

Proof. First, let us mention that according to Theorem 1 the reflection vectors
an(±1) have symmetric coefficient values. Foran(1) we have from (5) and (6)

aj = −an−j , j = 1, ..., n/2(or(n− 1)/2),

and foran(−1) from (7)

aj = an−j , j = 1, ..., n/2(or(n− 1)/2).

Second, for monic polynomials with symmetric coefficient values it is well known
that the number of roots inside the unit circle equals the number of roots outside
the unit circle. But all the reflection vectors of Schur polynomials are by definition
placed on the stability boundary. Hencean(±1) has no root outside the unit circle,
and so all then roots of it are placed on the unit circle.

Lemma 4.Let us consider monic Schur polynomialsa(z) andb(z) with reflection
coefficientska

j = kb
j , j = 1, ..., i−1. Then the reflection vectorsai(±1) andbi(±1)

have the samei roots on the unit circle.

Proof. Let us start from an auxiliaryith-order polynomial̄ai(z) with reflection
coefficientskā

j = ka
j = kb

j , j = 1, ..., i. According to Lemma 3, the polynomial
āi(z) hasi roots on the unit circle and its coefficients have symmetric values. For
ka

j = kb
j = −1 we have

āi(z) = zi + a1z
i−1 + a2z

i−2 + ... + a2z
2 + a1z + 1

and forka
j = kb

j = 1

āi(z) = zi + a1z
i−1 + a2z

i−2 + ...− a2z
2 − a1z − 1.

Our aim is to show that the polynomialāi(z) is a common divisor of botha(z) and
b(z). This can be easily done by increasing the order of polynomialsa(z) andb(z)
by transformation (4) and taking into account the symmetric coefficient values of
āi(z).

For example, letka
i = −1, i even, andn(a) = i + 1. Then
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a =


1 0 . . . 0 −ki+1

. . . . .
0 . . . 1− ki+1 . . . 0
. . . . .

−ki+1 0 . . . 0 1





0
1

1− a1ki

a1 − a2ki
...

a2 − a1ki

a1 − ki

1


and

a(z) = (z − ki)āi(z).

Forn(a) = i + 2 we obtain

a(z) = [z2 + ki+1(ki+2 − 1)z − ki+2]āi(z).

In a similar way we can find for arbitraryn(a) and|kj | < 1, j = i + 1, ..., n(a),

a(z) = an−i(z)āi(z),

i.e., āi(z) is a common divisor for alla(z) (and also forb(z)) with n(a) > i.

Lemma 5.Let a monic polynomiala(z) of ordern have a real root of multiplicity
i on the Schur stability boundaryr1 = r2 = ... = ri, |ri| = 1, and all the other
roots be placed inside the unit circle|rj | < 1, j = i + 1, ..., n. Then the first
i reflection coefficients ofa(z) are placed on the stability boundary|kj | = 1,
j = 1, ..., i, and all the other reflection coefficients inside the unit hypercube
|kj | < 1, j = i + 1, ..., n.

Proof. By Lemma 4 theith reflection coefficient ofa(z) must be of modulus equal
to one,|ki| = 1, and|kj | < 1, j = i+1, ..., n, becausea(z) has onlyi roots on the
stability boundary. Now let us rewritea(z) as

a(z) = an−i(z)āi(z) = an−i(z)(z ± 1)i.

Becauseāi(z) has symmetric coefficient values, we can claim that the firsti
reflection coefficients ofa(z) are determined bȳai(z), i.e. kā

j = ka
j , j = 1, ..., i.

By formulas (1)–(3) we can easily find that|kā
j | = 1, j = 1, ..., i.

Theorem 2. Reflection vectorsai(±1), i = 1, ..., n, of a monic Schur polynomial
a(z) have the followingi rootsr(j), j = 1, ..., i, on the stability boundary:

(1) the reflection vectorai(1) has
– for i evenr(1) = 1, r(2) = −1, and(i− 2)/2 pairs of complex roots
on the unit circle,

– for i oddr(1) = 1 and (i− 1)/2 pairs of complex roots on the unit
circle,
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(2) the reflection vectorai(−1) has
– for i eveni/2 pairs of complex roots on the unit circle,
– for i oddr(1) = −1 and(i− 1)/2 pairs of complex roots on the unit
circle.

Proof. The assertion that a reflection vectorai(±1) hasi roots on the unit circle
follows immediately from Lemmas 3 and 4.

Now the question is: which of the reflection vectors has a real root on the
stability boundary and of what sign is it? By Theorem 1 the hyperplanes (9) and
(10) are the real root boundaries forr = 1 andr = −1, respectively, and (8) for
both r = ±1. Because all the reflection vectors of a Schur polynomial have by
definition only one reflection coefficient on the stability boundary, they do not have
by Lemma 5 any real multiple roots of modulus equal to one. Hence, all the rest of
the stability boundary roots must be complex roots on the unit circle.

Now we can introduce some stability margins via reflection vectors of a Schur
polynomial.

Definition 2. Let us call the distance between a Schur stable polynomiala(z) and
its reflection vectorai(±1), i = 1, ..., n, the stability margin in coefficient space in
the direction of theith reflection vector, or simply the ith reflection vector margin,
and denote it bydi(±1).

The reflection vector margins are useful for robust controller design by pole (or
characteristic polynomial coefficient) placement [7]. Then we are looking for the
minimal reflection vector margin

dmin = minn
i=1di(±1)

in order to maximize it by a proper robust controller.
Taking the background of reflection vectors into account (according to

Theorem 2), we can claim that in practice the first three of the reflection vectors
are the most attractive. Indeed,

– the first positive reflection vector margind1(1) gives us the distance to the
real positive root boundary,

– the first negative reflection vector margind1(−1) gives us the distance to the
real negative root boundary,

– the second negative reflection vector margind2(−1) gives us the distance to
the complex root boundary,

– the second positive reflection vector margind2(1) gives us the distance to two
different real root boundaries (r1 = 1, r2 = −1),

– the third positive reflection vector margind3(1) gives us the distance to the
real positive and complex root boundaries (r1 = 1, r2,3 = α± 1βi, α2 + β2 = 1),

– the third negative reflection vector margind3(−1) gives us the distance to the
real negative and complex root boundaries (r1 = −1, r2,3 = α+βi, α2±1β2 = 1),

– higher reflection vector margins give us the distance to several complex root
boundaries.

193



As a matter of fact, the reflection vector margins do not give the minimal
distances to real and complex root boundaries, i.e.,

dmin ≥ ρ,

d1(1) ≥ ρ+1,

d1(−1) ≥ ρ−1,

whereρ, ρ+1, andρ−1 are the stability radius and the minimal distances to the
positive and negative real root boundaries ofa(z). However, the minimal distances
to real and complex root boundaries can be easily found by a simple search
procedure in the directions of reflection vectors. For example, the minimal distance
to the positive real root boundary can be found via the first positive reflection vector
as follows:

1. For a given Schur polynomiala(z) find the starting-pointb(0) = a1(1).
2. Put n − 1 line segmentsconv{[b(0)]i(±1)}, i = 2, ..., n, through the

point b(0).
3. Find b(1) as the nearest point of all line segmentsconv{[b(0)]i(±1)},

i = 2, ..., n, to the pointa.
4. If |b(i)− b(i− 1)| > ε for some given smallε > 0, return to step 2.
Similarly, we can find the negative real root margin via the first negative

reflection vector and the complex root margin via the second negative reflection
vector.

Example 1. Let n = 2. Then the stability region in the polynomial coefficient
spacea = (a1, a0) is the triangle AGH (Fig. 1). Let us find the stability margins
for the polynomiala(z) = z2 + 0.75z + 0.5 (point F in Fig. 1). According to
Lemma 2, we can put two stable line segments through the point F. By varying the
first reflection coefficientk1, −1 < k1 < 1, we get the line segment AB and by
varying the second reflection coefficientk2, −1 < k2 < 1, we get the line segment
CD. By definition the second-order polynomiala(z) has four reflection vectors:

a1(1) = [ −1.5 0.5 ], (point C),
a1(−1) = [ 1.5 0.5 ], (point D),
a2(1) = [ 0 −1 ], (point A),
a2(−1) = [ 1 1 ], (point B),

and the stability margins in the directions of reflection vectors are determined by
the line segments FC, FD, FA, and FB, respectively.

To find the minimal distance to the negative real root boundary, we start from
the first negative reflection vector (point D),b(0) = [1.5 0.5]. By varying the
second reflection coefficientk2, −1 < k2 < 1, we get the line segment AH. The
point K = [1.125 0.125], with reflection coefficientskK = [−1 − 0.125], is the
nearest point on the negative real root boundary, and the distance to the negative
real root boundary isρ− = 0.53.
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Fig. 1.The stability region and stability margins in the directions of reflection vectors (n = 2).

Similarly, starting from the first positive reflection vector (point C), we can
find the minimal distance to the positive real root boundary (line segment AG)
ρ+ = 1.591.

Starting from the second negative reflection vector (point B), we get the
minimal distance to the complex root boundary (line segment GH)ρc = 0.5. So
the stability radius is

ρ = min(ρ+, ρ−, ρc) = 0.5.

Example 2.Let us now consider the example of Bhattacharyya [2, pp. 136–138]
for n = 4:

a(z) = z4 + 0.3z3 + 0.4z2 + 0.2z + 0.1.

The reflection coefficients ofa(z) areka = [−0.1714 − 0.3246 − 0.1717 − 0.1].
Because|ka

i | < 1, i = 1, ..., 4, a(z) is a Schur polynomial and we can find its
reflection vectorsai(±1) and reflection vector marginsdi(±1) as follows:

a1(1) = [ −1.2516 0.1069 0.0448 0.1 ], d1(1) = 1.5866,
a1(−1) = [ 1.3974 0.6073 0.3097 0.1 ], d1(−1) = 1.1222,
a2(1) = [ −1.1545 −1.0999 0.1545 0.1 ], d2(1) = 1.5679,
a2(−1) = [ 0.5317 1.1646 0.2232 0.1 ], d2(−1) = 0.7993,
a3(1) = [ −0.1975 0.1073 −1.0097 0.1 ], d3(1) = 1.3403,
a3(−1) = [ 0.6517 0.6069 1.0551 0.1 ], d3(−1) = 0.9474,
a4(1) = [ 0.1111 0 −0.1111 −1 ], d4(1) = 1.2256,
a4(−1) = [ 0.4545 0.7272 0.4545 1 ], d4(−1) = 1.0028.

Starting from the reflection vectorsa1(1), a1(−1), anda2(−1), the following
minimal distances to real positive, real negative, and complex pole boundaries have
been found, respectively,ρ+1 = 1.0, ρ−1 = 0.5, ρc = 0.4987. This confirms the
result given in [2]. The stability radius is

ρ = 0.4987
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and the critical pointb on the stability boundary is

b = [ 0.2335 0.746 0.2818 −0.2434 ].

The reflection coefficients ofb(z) are

kb = [ 0.0194 −1.0 −0.36 0.2434 ].

By Theorem 3,b(z) has a pair of complex roots on the unit circle. Indeed, the roots
of b(z) are

r1 = 0.3756,
r2 = −0.648,
r3,4 = 0.0194± 0.9998i.

5. CONCLUSIONS

A new kind of stability margin for discrete-time systems is proposed in the
system characteristic polynomial coefficient space by making use of the so-called
reflection vectors of monic Schur polynomials. It is shown that (1) reflection
vectors are placed on the stability boundary, with specific roots placement
depending on the reflection vector number and the argument sign, and (2) the line
segments between an arbitrary Schur polynomial and its reflection vectors are Schur
stable.

Even though the reflection vector margins do not give the minimal distance
to the stability boundary, they are nevertheless quite informative: in addition to
distances, they give also the directions of crucial points. The reflection vector
margins can be used for robust controller design in the system characteristic
polynomial coefficient domain.
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Diskreetaja süsteemide stabiilsusvarust

Ülo Nurges

Lähtudes süsteemi karakteristliku polünoomi peegelduskoefitsientidest, on
defineeritud süsteemi stabiilsusvaru peegeldusvektorite suunas. On selgitatud seo-
sed süsteemi peegeldusvektorite ja stabiilsuspiiril asuvate pooluste vahel: esi-
mesele positiivsele (negatiivsele) peegeldusvektorile vastab positiivne (nega-
tiivne) reaalne poolus ühikringil, teisele negatiivsele peegeldusvektorile vastab
komplekssete pooluste paar ühikringil jne. Sobiva peegeldusvektori abil on
suhteliselt lihtne leida süsteemi stabiilsusraadius.
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