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Determination of degenerate relaxation functions
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Abstract. A problem of determination of degenerate relaxation functions of a three-
dimensional isotropic viscoelastic body by means of traction measurements is studied. The
existence, uniqueness, and stability of a solution to this problem are proved.
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1. INTRODUCTION

Problems of the identification of kernels of hyperbolic and parabolic
integrodifferential equations have been intensively studied during the last decade.
These are related to determination of properties of materials with memory, e.g.
viscoelastic materials.

The problems containing kernels depending only on time have been thoroughly
studied (see'['4]). However, problems for time- and space-dependent kernels,
related to inhomogeneous materials, have found less treatment. Some important
results have been obtained for stratified materigis'f].

One possible way to formulate an identification problem for time- and space-
dependent kernels is based on an assumption that the kernels are degenerate.
In other words, it is assumed that the kernels are representable as finite sums
of products of known space-dependent functions and unknown time-dependent
coefficients. Such a situation occurs, for instance, when the material is piecewise
homogeneous. Then the known space-dependent factors are the characteristic
functions (or smooth approximations of characteristic functions) of subdomains
of homogeneity. However, in a general case the degenerate kernel is a finite-
dimensional approximation of the exact kernel to be estimated.
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The problems arising in identification of degenerate kernels in one-dimensional
parabolic and hyperbolic equations were studiedini']. In [??], identification of
a scalar degenerate relaxation kernel in a hyperbolic (generally multidimensional)
eguation was discussed. However, scalar models describe the behaviour of a three-
dimensional viscoelastic body in very exceptional cases.

In the present paper we generalize some result$’ptd the non-scalar case.
Namely, we study a problem of determination of degenerate relaxation functions
of the three-dimensional viscoelastic isotropic body by making use of traction
measurements at the boundary of the body. The unknown relaxation kernels, which
describe the memory of the material, are time derivatives of relaxation functions.
Moreover, the initial values of relaxation functions provide the Lame parameters,
which describe the instantaneous properties of the material.

In Section 2 of the paper we formulate the viscoelastic identification problem
and determine the Lame parameters. In Section 3 we study an abstract analogue
of the identification problem under consideration. The final Section 4 contains
main results: existence, uniqueness, and stability of the viscoelastic identification
problem.

2. FORMULATION OF THE VISCOELASTIC IDENTIFICATION
PROBLEM. DETERMINATION OF THE LAME PARAMETERS

Let(2 be a three-dimensional linear viscoelastic body.at.et (x, z2, z3)€
denote the Lagrangian coordinates of the material point of the bdynd ¢
stand for the time. Further, let; ando;; stand for the strain and stress tensors,
respectively. Then the following constitutive law is valid (s&&f]):

t
Uij(t, x) = / Gijkl(t — T,l‘)ekl’t(T,a})dT, x € Q, te ‘R, (21)

whereG/;i; is the relaxation tensor. If the body consists of isotropic material, the
tensorG;;;; contains two independent relaxation functigihsandGo, and has the
form

Gijki(t,x) = Gi1(t,2)0i50k + Galt,x)(dinbj + dudjn) - (2.2)
Using (2.2) in (2.1) and integrating by parts, we obtain the relation
oij(t,z) = [G1(0,2)0;i0k + G2(0, ) (801 + 6i1djk)] €xi(t, )
+ /; [G14(t — 7,2)0i50k + Goi(t — 7,2) (01 + 0adji)] era (7, x)dT

re, telR. (2.3)

We mention that the initial values; (0, z) andG2(0, ) of the relaxation functions
(G1 andGs are the Lame parameters which describe the instantaneous behaviour of
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the material, and the time derivatives . (¢, ) andGs (t, x) of G; andG; are the
relaxation kernels which describe the memory of the material.

Letu = (u1,u2,us) andf = (fi1, f2, f3) stand for the vector of displacement
and the vector of body forces, respectively. Then the system of equations of
motionw; (¢, x) = 05,;(t,x) + fi(t, ) holds. Using in this system the relation
(2.3), observing the well-known equality; = (u” + u;;), and supposing that

u(t,x) = 0 for ¢t < 0, we obtain the following hyperbollc system for

uin(t,x) = [G1(0,2)u;;(t, )] + [G2(0, 2) (ui; + uji) (L, )] 5

+ /0 {(Grp(t — 7, 2)u; (. 2)] s + (Gt — 7)1+ 1y) (ry2)] s} dr
+ fi(t,z), zeQ,t>0. (2.4)

Here and in the sequel we make use of the conventional tensor notation, the
summation over repeated indices included.

A basic assumption of the paper is that the functiGhsand G, have the form
of finite sums:

K
2) = > gu(t)p(x), Galt, ) Z 92k () px (2 (2.5)
k=1
whereu, k = 1,..., K, are given functionsgiy,gox, & = 1,..., K, are
unknown, andk is a positive integer. This is the case, for instance, when the body
Q consists of a finite number of homogeneous pigegsk = 1,...,K. Then

the functionu;, may be the characteristic function of the subdonsain However,

we need certain smoothnessgf in subsequent analysis (condition (4.4)). This
means that we have to defipg to be a smooth approximation of the characteristic
function of Q2. In a general case, when the body is not piecewise homogeneous,
the functionsz; andG», given by finite sums (2.5), are certain approximations of
exact relaxation functions.

Our aim is to determine the unknown coefficiegts, gox, k = 1, ..., K, of the
functionsG; andGs in (2.5). To this end, we carry oK’ wave experiments with
possibly different initial conditions, boundary conditions and body forces during
the time interval from0 to 7. In view of (2.4) and (2.5), the problem for the
displacement! = (u},u},u}) of theith experiment reads

Ui (t, @) Z{glk 3. (6 )i + 92 (0) [ (@) (5 + w5 ) (8, 2)] 5}

+ ;/0 {g01(t — T)[pe(@)ul (1, 2)] 3 + ghy(t — 7)

X up(@)(uf; + ub ) (7 2)] 5 dr + fi(tx), ©eQ tel0,T],
(2.6)
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ul(0,2) = ¢l(z), ul,(0,2) = Yi(z), z€Q, (2.7)

uﬁ(t, x)‘xEF = ﬁé(t, x)‘xel“ ’ (28)

wherel stands for the boundary 6fand !, ¢L, ¢!, il are given functions. In order
to recover both the displacemantind the coefficientg, gox, k = 1,..., K, we
have to complement the relations (2.3)—(2.5) watki additional conditions. We
obtain such conditions measuring the traction over the boundaityring each

experiment. This leads to the equations

/ng(z)agj(t,x)yj(x)dr = hi(t), te0,T),1=1,...,2K, (2.9)
Iy

Whereaﬁj is the stress tensor of thith experimenty’, which belongs td.?(I';IR?)
and represents the weight related to the traction measurement/tf thgeriment,
andv stands for the outer normal vectorlio

Observing (2.3) and (2.5), we can transform the relations (2.9) to the system

Z{gm t, )] + g21(0) Pl y g u' (¢, )]}

+Z/ {91, (t = T)PL[u (7, )] + gy (¢ — 7) Py [ul (7, )] }dr = B (1),
k=1"0

€0,T],l=1,...,2K, (2.10)

[ k(@) g (2) 25 (x)vi(x)dT for k=1,....K

O} [z] = (2.11)

r
k(@) () (25 + 2j0) (@) (x)dT for k=K +1,...,2K.
r

Summing up, we pose the following indentification problem (IP):
IP: Given f! : (0,7) x Q — R, o9t : Q = R, @ : (0,7) x Q — IR,
ht 2 [0,7] — Rwithl = 1,...,2K andyu : Q@ — Rwith k = 1,..., K,
findu! : [0,7] x Q — R withl = 1, ...,2K andgyx, gox : (0,T) — RWIth
k=1,..., K such that Egs. (2.6)—(2.8), (2.10) hold.

Remark 1. Incasef! = ... = f2K ol = ... = Q?K ¢! = .. = 2K,
o' = ... = %K, the IP also models a single wave experiment includifg
traction measurements with possibly different weigfits . . , n>%.

The solution of the IP can be split into two parts. First, we deterrgiRe
real numbersg1;(0), g2k (0), & = 1,..., K, which are the coefficients of the
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Lame parameter&’; (0, z) and G2(0,z). Thereupon, we deduce from the IP an
independent problem fou!, I = 1,...,2K, andg),, g5, k = 1,..., K, with
known g1 (0), g2x(0), k = 1,..., K, and analyse this problem in an abstract form
in the next section. The first step is easy to carry out. Indeed, settingin (2.10)
and observing (2.7), we immediately see that the following proposition is valid.

Proposition 1. Let uilr € L¥(), k = 1,...,K, ¢' € H* (R, | =
.,2K, and det (®}[¢']), ., o # 0. Then(2.7) and (2.10) uniquely

determineg;;(0), g2x(0), & = 1,..., K, as the solution of the linear system of
equations

Z{glk V0L + gk (0) Bl [@']} = BL(0), 1=1,...,2K.  (2.12)

The second step is more complicated. To get the problewt fdr= 1, ..., 2K,

andgik,g’%, k=1,..., K, weintroduce the new unknowns

o=t =l 1=1,...2K; my=dl, mE4r =g, k=1,..., K, (2.13)
and setN = 2K. Then we easily derive from (2.6)—(2.8), (2.10) the following
problem forv!, i = 1,...,N; my, k = 1,..., N with homogeneous boundary
conditions:

V(£ ) Z{glk ()] i + gar(0) [k (@) (v j + 05 ) (£, 2)] 5}

+ Z / it —7){ [k (@) (. 2)] 1 + k(7))

/ it — ) {1 (@) (0! + L) (7, 2)] 5 + wha(r) b

k=K+1
+ritz), z€Q,te[0,T], I=1,...,N, (2.14)
vi0,2) = al(z), véyt(O,:r) = Biz), 2€Q,
(2.15)
U%(t,l’ﬂmep:(), l=1,...,N,

K
> (0P (1, )] + gar (0) P[0 (1, )]}
k=1

N t
£ [t DO ]+ ) = ),
k=10
te[0,T),1=1,...,N, (2.16)
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where

K
ri(t,x) = fi(t ) + Y {gu(0)[uw()af (¢ )]
k=1

+ go(0) [ (2) (@5 5 + 055) (¢, 2)) 5} — (8, ), (2.18)

l [ () 5 (8, )], it k=1,... K
wy; (L, ) = _ (2.19)
h-xc (@) (@ ; +ab ) (t2)]; i k=K+1,...,N,
Xi(t) = @A, )], (2.20)

K
') =B'(t) = > {gn(O) LA (¢, )] + gar(0) e 4l (£, )]} (2.21)
k=1

3. FORMULATION AND ANALYSIS OF AN ABSTRACT
IDENTIFICATION PROBLEM

In this section we reformulate and study the problem (2.14)—(2.16) in an
abstract form.

Let X andY be real Banach spaceg, being densely embedded ink, and
let A be a closed linear unbounded operatoXirwith D(A) = Y. We equipY’
with the graph norm

lyly = lvllx + [Ayllx,  yeY,

where||y|| x stands for the norm af in X.
Assume that

B, € L(Y,X), k=1,...,N, (3.1)
and
vley* i=1,...,N; ® eY* ,k=1,...,N, (3.2)

whereY™* and £(Y, X) denote, respectively, the space duakt@and the Banach
space of all linear bounded operators fréhto X. In particular, we sef(X) =
L(X,X).

We pose the following abstract identification problem (AIP):
AIP: Givenr! : (0,7) — X, a!, gl €Y, w! : (0,T) — X, x4 : [0,7] — R, and
st [0,T] — Rwith I,k =1,...,N, findmy : (0,7) — Randv' : [0,7] —» Y
with k,1 = 1,..., N satisfying the equations
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Herex stands for the convolution operator

21*22 = tZI —’7'2'27' T.
(t /0 (t—7)22(r)d

First we mention that a necessary condition for the solvability of the AIP is
the solvability of the corresponding direct problem (3.3), (3.4) with respect to its

principal part(% — A) v!. This is the case ifl generates a cosine family.

The cosine family, generated by the operatris a family of operators
{C(t)}4er C L(X) satisfying the following conditions (see”’] and P?],
Section 1.1):

C(t) is strongly continuous onlR, C(0) = I;
Clt+s)+C(t—s) = 2C(t)C(s), t,s €R;
C(t)Y Y and AC(t)y =C(t)Ay foreachy € Y andt € R;

C(t) satisfies the resolvent equation C(t)y =y + ¢ x AC(t)y
foreachy € Y andt €R and A =C"(0).

The family {C(t)}:er is the kernel of the solution operator of the Cauchy
problem (j—; — A) v(t) = r(t), t € (0,T), v(0) = o, 4v(0) = p, satisfying
certain regularity conditions.

By means ofC(t) we can define the interpolation spaceassociated withX
andY:

Yi={2€X :t—-C(t)2€ C([0,T]; X) forany t €R}. (3.6)
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The spacé’ is equipped with the norm (se®])

Izl = llzllx + sup [IC"(t)2]|x - (3.7)
0<t<1

Before stating the main theorem of this section, let us introduce some further
notation. We set

B=(Bpk=1,.n, w=(W)ki=1, N, =1 N,
a= (=1 N B=B)=1 N
=W Ny, =@ =Ny X = () ki=1..N,
s=(sD=1ny m=(mpk=1. N, v= ()21 N
and associate with any Banach spatthe product Banach spaces
zN = {z = (2)i=1,..N : 2k € Z}, ZNXN — {z= (z,lf)kylzlw,]v : Z,lC €z}

endowed with the norms

N

N

1/2 . 1/2

lolzy = (3 0li2) 7 Hellznen = (S0 11a4IE)
k=1

k=1
Our aim is to seek for the solutidim, v) of the AIP in the space

S = HY((0,7);RY) x C%([0,T]; Y V).

Theorem 1.Assume that the operater generates a cosine fami{y’ (¢) };cr in X.
Moreover in addition to(3.1)and(3.2),let the following assumptions hold
o, BeyV, (3.8)
r=p+1x&+tx(, where p+ Aac WHL((0,7);YN), 3.9)
§+AB e WH((0,T); YY), ¢eWh((0,T); XN), '

w € C*([0,T]; XMN) | Ba+w(0) € YV, (3.10)
x € C2([0, T);RV*NY s € H*((0,T);RY), (3.11)
sH0) = wlal], 1=1,...,N, (3.12)
det (@[] + X}, (0))ip=1,..v # 0. (3.13)

Then theAIP has a unique solutiofin,v) € S.
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Moreover the solutionsS = (m, v) andS = (7, 7), corresponding to two
sets of datal = (o, 8,7, w, x,s) andd = (&, 3,7, @, X, 5), respectivelysatisfy
the following stability estimate

IS =S|I < Clw,sld ™, sld] ™, |dl,|d]) |d - d] (3.14)
where

IS = llmll g1 o,y mY) T 10l o2(0, 7733y (3.15)

denotes the norm i§, C' is a locally bounded function depending alsoBnthe
seminorm - | is given by

dl = llally~ +11Blly~ + llp+ Al o)

HIE + ABllw o,y + I omyx)

i

+ HBa + ’w(O)HYNxN
CH([0,T); X NxN) !

H H , (3.16)
C1([0,T]; RN XN HL((0,17); RN)
and
w = |Bllicexpy + 1l + 1ALy k=1, v ey, gy, (3:17)
Kld] = det(®[o] + X1.(0))1k=1,...N- (3.18)

Proof. The proof of Theorem 1 can be deduced from the proof of an analogous
result concerning the related problem

2
5152 ka * [Bro(t) +wi ()] +r(t), t €(0,T),  (3.19)
v(0) = o, %U(O) = B, (3.20)

ka*{@k N+ XL}y = sl(t), te[0,T),l=1,...,N,

(3.21)
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to determingm,v) € H'((0,T);RY) x C2([0,T);Y), included in B2]. For that
reason we will limit ourselves only to drawing general lines of the proof. It consists
of two steps.

First, we show that the AIP is equivalent to a fixed-point system for the pair
(%m, j—;v), deduced by means of the application of the cosine family to the
direct problems (3.3)—(3.4) and the differentiation of (3.5). Such a step in the
case of the problem (3.19)—(3.21) is described in Lemma 5.%%f [To get the
corresponding result for the AIP, we have to replace the single direct problem
(3.19), (3.20) occurring in this lemma by the corresponding system of independent
direct problems (3.3), (3.4).

Second, we prove the existence, unigueness, and stability of the solution of
the obtained fixed-point system by means of the contraction principle in weighted
norms. This step is similar to that worked out for the problem (3.19)—(3.21) in
Theorem 6.1 of $2]. We must only redefine the basic space and the operators.
In particular, we set/} = %vl, U, = m,, kil =1,...N,U =
(US,..., U, Uy, ...,Ux) and study the fixed-point equatidi = FU in the
spacé/ := C([0,T]; YN)xL?((0,T);RY), where the components of the operator
F are given by formulas which are simple modifications of (6.9)—(6.11%3h [
Namely, in (6.9) we replace the single equationlfigiby the corresponding system
for Ud,...,UY and in (6.11) we chang®, to Uj. The rest of the proof of
Theorem 6.1 in7?] remains unchanged.

4. MAIN RESULTS CONCERNING THE VISCOELASTIC
IDENTIFICATION PROBLEM

In this section we formulate a solvability and stability theorem for the IP. This
is done by applying Theorem 1 to the equivalent problem (2.14)—(2.16) and taking

Proposition 1 into account.
Let us introduce the functional spaces

X =L} (R, Y = HX(Q;R) N HL (R,

the linear differential operators

K
Az =" {g15(0) 1250 + 921 (0)[n (i g + 21.0)] 5} (4.1)
k=1
[ukzj,j]J if k= 1, ves ,K
Bz — 4.2)
[Mka(zi,j‘i‘Zj,i)],j if k=K+1,..., N =2K,
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and the functionals

Z{glk )L [2] + 9o (0)@he 42}, 1=1,... N (4.3)

Assume that
pe €EWH(Q), k=1,...,K. (4.4)

Then, by virtue of embedding and trace theorems3, € L(Y,X), uilr €
L>*(T) and®}, ¥! € Y*. Moreover,A is closed and selfadjoint. Let us denote
by @[] the matrix(®} [¢']), ,_, ,; and assume that

det ®[p] £ 0, (4.5)

M=

{(@e]7'h(0)), +2 (D[] 'B(0)) sy pk(2) 20, wE€Q,
! (4.6)
(@] " 7(0)) oy k() > 0, zeQ,

M) =T

B
Il
,_.

where®[p] ! is the inverse ofp[p] andh = (h!),—;, n. In view of Proposition
1, the conditions (4.6) yield the inequalities

K
> [91x(0) + 2021 (0)] () = 0, > gak(O)ur(z) 20,  z€Q.  (47)
k=1

Due to the equality

K
(42,2) = / S [914(0) + 2026(0)] i (2) div ()
k=1

-/ S g O)e(e) (12 + 220)° + (213 + 200+ (25 + 20270,

the relations (4.7) imply thatl is negative semidefinite. Consequently (&f]]
p. 104), the operatot generates a cosine famif{ (¢) };cr in X. The interpolation
space associated witki andY is Y; = H{(Q;R?) ([*], p. 106).

Note that (4.5) implies (3.13) (cf. (2.11), (2.19)). The assumptions of
Theorem 1 are satisfied for the data= (a!)i=1 _n, 8 = (8)1=1..n, 7 =

(rYizron, w = (Wki=1,.n, X = O )ki=1..5, s = (s)i=1,. .y Of the
problem (2.14)—(2.16) provided the following conditions are valid:
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a, B € H*(Q;RY3) N HY (Q;RY*3), (4.8)

r=p+1x£+1t=*(, where

p+ Ao € WU ((0,T); H2(3RY*3) 0 HA(Q;RY*3))
(4.9)

£+ AB € WHL((0,T); HH(RY*3)),

¢ € WH((0,7); L2 RV*3)) )

w e C2 ([0, T); L*(RV*N*3)) | Ba+ w(0) € H) (4 RYV*N*3) (4.10)
x € C? ([0, T;RVNY . s € H?((0,T);RY) , (4.11)

sH0) = o], 1=1,...,N. (4.12)

HereB = (By)k=1,..nN, as before. In view of the definitions (4.3), (2.17), and
(2.21) of U, o}, ands', respectively, and the relations (2.12), derived in Proposition
1, we see that (4.12) always holds true under the conditions of the IP.

Now we are ready to formulate an existence, unigueness, and stability theorem
for the IP. Applying Theorem 1 to the transformed problem (2.14)-(2.16) and
observing Proposition 1, we easily deduce the following result.

Theorem 2. Assume that the conditiong4.5), (4.6), (4.8)—(4.11)with
o, B,r,w, x, s, given by (2.17)—(2.21), are satisfied for the set of data
d = (p,¥,0, f,h) = ((@l)l:L...,N, (¢l)l:1,...,N3 (@1)1:17...,1\/, (fl)lzl,...7N>
(h')1=1,...n) of the IP. Moreoverleta € C2 ([0, T; H2(S%;RY*3)).

Then the IP has a unique solutign, g1, g2) = ((u')i=1,.. 5, (916)k=1,... K-
(92k)k=1,... k) in the spaceS, = C2 ([0, T]; H2(:RV*%)) x H2((0,T); R¥) x
H?((0,T);RE).

Moreover for the solutionsS = (u,g¢1,¢92) and S = (u, g1, 92), which
correspond to two sets of datd = (g, 4,4, f,h) andd = (&,v,4, f,h),

respectivelyand satisfy the relatioh(0) = h(0), the following stability estimate
holds

IS = S2|lc < Cu(w, (det ®[]) ", (det D[Z]) ", |dls, |d|,)|d — d]., (4.13)
where

181l = Nullcz (o, m200; RV*3)) + 191l 20,7y RE) + 11921 112((0,7); RE) (4-14)
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is the norm inS,, w is given by(3.17),C; is a locally bounded function depending
also onT', and the seminorm: |, is defined by

’d|* = HO[HHQ(Q;\RNX3) + ||B||H2(Q;\RNX3)
Fllll o201, 52 (0; RV <3y) T 10+ Al 0.y, 200 RY*3))

HIE+ ABllwra o,y s r<)) + ICllw o)z (s <))

|
|

Remark 2. The assumptiorh(0) = %(0) in Theorem 2 is necessary to assure
that the IP has the same principal part in the cases of dlatad d. Indeed, by
Proposition 1 the equality.(0) = &(0) yields g1(0) = §1(0), g2(0) = §2(0),
which by (4.1) implies thatl is the same fod andd.

If h(0) # h(0), the operatord and the corresponding cosine fam{§()};cr
differ in the cases of datéandd. Then the stability of the IP is much more difficult
to estimate, because perturbation result{&it) }:cr in termsA are needed.

CL([0,T]; L2 (£; RN XN x3Y)

C1([0,T]; RV XN H HL((0,T); RV) .

ACKNOWLEDGEMENT

The research was supported by the Estonian Science Foundation (grant
No. 4706).

REFERENCES

1. Cavaterra, C. An inverse problem for a viscoelastic Timoshenko beam nZodghal.
Anwen, 1998,17, 67-87.
2. Grasselli, M. Identifying relaxation kernels of linearly viscoelastic bodieBwerse lll-
Posed Probl.1996,4, 391-407.
Grasselli, M. An identification problem for an abstract linear hyperbolic integro-
differential equation with applications. Math. Anal. Appl.1992,171, 27-60.
4. Grasselli, M., Kabanikhin, S. I. and Lorenzi, A. An inverse integrodifferential problem
arising in Geophysics. Bibirsk. Math. J.1992,33, 415-462.

w

183



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

184

Grasselli, M., Kabanikhin, S. I. and Lorenzi, A. An inverse integrodifferential problem
arising in Geophysics lINonlinear Anal.: Theory, Methods and Appl990, 15,
283-298.

Grasselli, M. and Lorenzi, A. An inverse problem for an abstract nonlinear parabolic
integrodifferential equatiorDifferential Integral Equations1993,6, 63—81.

Janno, J. Inverse problems for determining monotone weakly singular relaxation kernels
in viscoelasticityNonlinear Anal.: Theory, Methods and Ap000,41, 943-962.

Janno, J. Identification of weakly singular relaxation kernels in three-dimensional
viscoelasticityJ. Math. Anal. Appl.2001,262, 133-159.

Janno, J. and von Wolfersdorf, L. Inverse problems for identification of memory kernels
in viscoelasticityMath. Methods Appl. S¢i1997,20, 291-314.

Lorenzi, A. A multidimensional identification problem related to a hyperbolic integro-
differential equationZ. Anal. Anwen.1999,18, 407—435.

Lorenzi, A. and Paparoni, E. Identification of two unknown coefficients in an integro-
differential hyperbolic equatiod. Inverse lll-Posed Prohl1993,1, 331-348.

Lorenzi, A. and Sinestrari, E. An inverse problem in the theory of materials with memory.
Nonlinear Anal.: Theory, Methods and Apdl988,12, 1317-1335.

von Wolfersdorf, L. On identification of memory kernels in linear theory of heat
conductionMath. Meth. Appl. Sci1994,17, 919-932.

von Wolfersdorf, L. On identification of memory kernels in linear viscoelastibigth.
Nachr, 1993,161, 203-217.

Colombo, F. and Lorenzi, A. Identification of time- and space-dependent relaxation
kernels for materials with memory related to cylindrical domaing. Math. Anal.
Appl, 1997,213 32-62.

Colombo, F. and Lorenzi, A. Identification of time- and space-dependent relaxation
kernels for materials with memory related to cylindrical domainsl.IMath. Anal.
Appl, 1997,213 63-90.

Colombo, F. and Lorenzi, A. An identification problem related to parabolic
integrodifferential equations with non-commuting spatial operatdrsnverse lll-
Posed Probl.2000,8, 505-540.

Lorenzi, A. and Yakhno, V. G. An identification problem related to an isotropic non-
homogeneous stratified viscoelastic badlynverse lll-Posed Prohl1997,5, 29-53.

Janno, J. and von Wolfersdorf, L. An inverse problem for identification of a time-
and space-dependent memory kernel of a special kind in heat conductierse
problems 1999,15, 1455-1467.

Janno, J. and von Wolfersdorf, L. An inverse problem for identification of a time- and
space-dependent memory kernel in viscoelastitityerse Problems2001,17, 13—

24,

Janno, J. and von Wolfersdorf, L. A general inverse problem for a memory kernel in
one-dimensional viscoelasticitg. Anal. Anwen.2002,21, 465—-483.

Janno, J. and Lorenzi, A. Recovering degenerate kernels in hyperbolic integro-differential
equationsZ. Anal. Anwen.2002,21, 399-430.

Priss, JEvolutionary Integral Equations and ApplicatiarBirkh&user Verlag, Berlin,
1993.

Renardy, M., Hrusa, W. J. and Nohel, J.Mathematical Problems in Viscoelasticity
Longman, Harlow, 1987.

Fattorini, H. O.Second Order Linear Differential Equations in Banach SpaE¢sevier
Science Publishers B.V., Amsterdam, 1985.



Kddunud relaksatsioonifunktsioonide maaramisest
kolmemddtmelises viskoelastses mudelis

Jaan Janno

Uuritakse poordilesannet aja- ja ruumimuutujast séltuvate relaksatsiooni-
funktsioonide maaramiseks kolmemdadodtmelises viskoelastses mudelis. Eeldatakse,
et otsitavad lahendid on kddunud, st esitatavad I6pliku summana teadaolevate
ruumimuutujast soltuvate funktsioonide ja tundmatute ajast soltuvate kordajate
korrutistest. Lisatingimusena kasutatakse normaalisuunalise pingekomponendi
modtmistulemusi vaadeldava keha rajal. ToOestatakse seesuguse pddrdilesande
lahendi olemasolu, Gihesus ja stabiilsus.
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