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Determination of degenerate relaxation functions
in three-dimensional viscoelasticity

Jaan Janno

Department of Mechanics and Applied Mathematics, Institute of Cybernetics at Tallinn
Technical University, Akadeemia tee 21, 12618 Tallinn, Estonia; janno@ioc.ee

Received 7 November 2002

Abstract. A problem of determination of degenerate relaxation functions of a three-
dimensional isotropic viscoelastic body by means of traction measurements is studied. The
existence, uniqueness, and stability of a solution to this problem are proved.
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1. INTRODUCTION

Problems of the identification of kernels of hyperbolic and parabolic
integrodifferential equations have been intensively studied during the last decade.
These are related to determination of properties of materials with memory, e.g.
viscoelastic materials.

The problems containing kernels depending only on time have been thoroughly
studied (see [1−14]). However, problems for time- and space-dependent kernels,
related to inhomogeneous materials, have found less treatment. Some important
results have been obtained for stratified materials [15−18].

One possible way to formulate an identification problem for time- and space-
dependent kernels is based on an assumption that the kernels are degenerate.
In other words, it is assumed that the kernels are representable as finite sums
of products of known space-dependent functions and unknown time-dependent
coefficients. Such a situation occurs, for instance, when the material is piecewise
homogeneous. Then the known space-dependent factors are the characteristic
functions (or smooth approximations of characteristic functions) of subdomains
of homogeneity. However, in a general case the degenerate kernel is a finite-
dimensional approximation of the exact kernel to be estimated.

171



The problems arising in identification of degenerate kernels in one-dimensional
parabolic and hyperbolic equations were studied in [19−21]. In [22], identification of
a scalar degenerate relaxation kernel in a hyperbolic (generally multidimensional)
equation was discussed. However, scalar models describe the behaviour of a three-
dimensional viscoelastic body in very exceptional cases.

In the present paper we generalize some results of [22] to the non-scalar case.
Namely, we study a problem of determination of degenerate relaxation functions
of the three-dimensional viscoelastic isotropic body by making use of traction
measurements at the boundary of the body. The unknown relaxation kernels, which
describe the memory of the material, are time derivatives of relaxation functions.
Moreover, the initial values of relaxation functions provide the Lame parameters,
which describe the instantaneous properties of the material.

In Section 2 of the paper we formulate the viscoelastic identification problem
and determine the Lame parameters. In Section 3 we study an abstract analogue
of the identification problem under consideration. The final Section 4 contains
main results: existence, uniqueness, and stability of the viscoelastic identification
problem.

2. FORMULATION OF THE VISCOELASTIC IDENTIFICATION
PROBLEM. DETERMINATION OF THE LAME PARAMETERS

Let Ω be a three-dimensional linear viscoelastic body. Letx = (x1, x2, x3)∈ Ω
denote the Lagrangian coordinates of the material point of the bodyΩ and t
stand for the time. Further, letεij andσij stand for the strain and stress tensors,
respectively. Then the following constitutive law is valid (see [23,24]):

σij(t, x) =
∫ t

−∞
Gijkl(t− τ, x)εkl,t(τ, x)dτ , x ∈ Ω, t ∈ R, (2.1)

whereGijkl is the relaxation tensor. If the body consists of isotropic material, the
tensorGijkl contains two independent relaxation functionsG1 andG2, and has the
form

Gijkl(t, x) = G1(t, x)δijδkl + G2(t, x)(δikδjl + δilδjk) . (2.2)

Using (2.2) in (2.1) and integrating by parts, we obtain the relation

σij(t,x) = [G1(0, x)δijδkl +G2(0, x)(δikδjl + δilδjk)] εkl(t, x)

+
∫ t

−∞
[G1,t(t− τ, x)δijδkl +G2,t(t− τ, x)(δikδjl + δilδjk)] εkl(τ, x)dτ ,

x ∈ Ω, t ∈ R. (2.3)

We mention that the initial valuesG1(0, x) andG2(0, x) of the relaxation functions
G1 andG2 are the Lame parameters which describe the instantaneous behaviour of
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the material, and the time derivativesG1,t(t, x) andG2,t(t, x) ofG1 andG2 are the
relaxation kernels which describe the memory of the material.

Let u = (u1, u2, u3) andf = (f1, f2, f3) stand for the vector of displacement
and the vector of body forces, respectively. Then the system of equations of
motionui,tt(t, x) = σij,j(t, x) + fi(t, x) holds. Using in this system the relation
(2.3), observing the well-known equalityεij = 1

2(ui,j + uj,i), and supposing that
u(t, x) = 0 for t < 0, we obtain the following hyperbolic system foru:

ui,tt(t, x) = [G1(0, x)uj,j(t, x)],i + [G2(0, x)(ui,j + uj,i)(t, x)],j

+
∫ t

0
{[G1,t(t− τ, x)uj,j(τ, x)],i + [G2,t(t− τ, x)(ui,j + uj,i)(τ, x)],j} dτ

+ fi(t, x) , x ∈ Ω, t > 0 . (2.4)

Here and in the sequel we make use of the conventional tensor notation, the
summation over repeated indices included.

A basic assumption of the paper is that the functionsG1 andG2 have the form
of finite sums:

G1(t, x) =
K∑

k=1

g1k(t)µk(x) , G2(t, x) =
K∑

k=1

g2k(t)µk(x) , (2.5)

whereµk, k = 1, . . . ,K, are given functions,g1k, g2k, k = 1, . . . ,K, are
unknown, andK is a positive integer. This is the case, for instance, when the body
Ω consists of a finite number of homogeneous piecesΩk, k = 1, . . . ,K. Then
the functionµk may be the characteristic function of the subdomainΩk. However,
we need certain smoothness ofµk in subsequent analysis (condition (4.4)). This
means that we have to defineµk to be a smooth approximation of the characteristic
function ofΩk. In a general case, when the body is not piecewise homogeneous,
the functionsG1 andG2, given by finite sums (2.5), are certain approximations of
exact relaxation functions.

Our aim is to determine the unknown coefficientsg1k, g2k, k = 1, . . . ,K, of the
functionsG1 andG2 in (2.5). To this end, we carry out2K wave experiments with
possibly different initial conditions, boundary conditions and body forces during
the time interval from0 to T . In view of (2.4) and (2.5), the problem for the
displacementul = (ul

1, u
l
2, u

l
3) of thelth experiment reads

ul
i,tt(t, x) =

K∑
k=1

{g1k(0)[µk(x)ul
j,j(t, x)],i + g2k(0)[µk(x)(ul

i,j + ul
j,i)(t, x)],j}

+
K∑

k=1

∫ t

0
{g′1k(t− τ)[µk(x)ul

j,j(τ, x)],i + g′2k(t− τ)

× [µk(x)(ul
i,j + ul

j,i)(τ, x)],j}dτ + f l
i (t, x), x ∈ Ω, t ∈ [0, T ],

(2.6)
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ul
i(0, x) = ϕl

i(x) , u
l
i,t(0, x) = ψl

i(x) , x ∈ Ω , (2.7)

ul
i(t, x)|x∈Γ = ûl

i(t, x)|x∈Γ , (2.8)

whereΓ stands for the boundary ofΩ andf l
i , ϕ

l
i, ψ

l
i, û

l
i are given functions. In order

to recover both the displacementu and the coefficientsg1k, g2k, k = 1, . . . ,K, we
have to complement the relations (2.3)–(2.5) with2K additional conditions. We
obtain such conditions measuring the traction over the boundaryΓ during each
experiment. This leads to the equations∫

Γ

ηl
i(x)σ

l
ij(t, x)νj(x)dΓ = hl(t), t ∈ [0, T ], l = 1, . . . , 2K , (2.9)

whereσl
ij is the stress tensor of thelth experiment,ηl, which belongs toL2(Γ; R3)

and represents the weight related to the traction measurement of thelth experiment,
andν stands for the outer normal vector toΓ.

Observing (2.3) and (2.5), we can transform the relations (2.9) to the system

K∑
k=1

{g1k(0)Φl
k[u

l(t, ·)] + g2k(0)Φl
K+k[u

l(t, ·)]}

+
K∑

k=1

∫ t

0
{g′1k(t− τ)Φl

k[u
l(τ, ·)] + g′2k(t− τ)Φl

K+k[u
l(τ, ·)]}dτ = hl(t),

t ∈ [0, T ], l = 1, . . . , 2K, (2.10)

where

Φl
k[z] =


∫
Γ

ηl
i(x)µk(x)zj,j(x)νi(x)dΓ for k = 1, . . . ,K∫

Γ

ηl
i(x)µk(x)(zi,j + zj,i)(x)νj(x)dΓ for k = K + 1, . . . , 2K.

(2.11)

Summing up, we pose the following indentification problem (IP):

IP: Given f l : (0, T ) × Ω → R3, ϕl, ψl : Ω → R3, ûl : (0, T ) × Ω → R3,
hl : [0, T ] → R with l = 1, . . . , 2K andµk : Ω → R with k = 1, . . . ,K,
find ul : [0, T ] × Ω → R3 with l = 1, . . . , 2K andg1k, g2k : (0, T ) → R with
k = 1, . . . ,K such that Eqs. (2.6)–(2.8), (2.10) hold.

Remark 1. In casef1 = . . . = f2K , ϕ1 = . . . = ϕ2K , ψ1 = . . . = ψ2K ,
û1 = . . . = û2K , the IP also models a single wave experiment including2K
traction measurements with possibly different weightsη1, . . . , η2K .

The solution of the IP can be split into two parts. First, we determine2K
real numbersg1k(0), g2k(0), k = 1, . . . ,K, which are the coefficients of the
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Lame parametersG1(0, x) andG2(0, x). Thereupon, we deduce from the IP an
independent problem forul, l = 1, . . . , 2K, andg′1k, g

′
2k, k = 1, . . . ,K, with

knowng1k(0), g2k(0), k = 1, . . . ,K, and analyse this problem in an abstract form
in the next section. The first step is easy to carry out. Indeed, settingt = 0 in (2.10)
and observing (2.7), we immediately see that the following proposition is valid.

Proposition 1. Let µk|Γ ∈ L∞(Γ), k = 1, . . . ,K, ϕl ∈ H2(Ω; R3), l =
1, . . . , 2K, and det

(
Φl

k[ϕ
l]
)
l,k=1,...,2K

6= 0. Then (2.7) and (2.10) uniquely

determineg1k(0), g2k(0), k = 1, . . . ,K, as the solution of the linear system of
equations

K∑
k=1

{g1k(0)Φl
k[ϕ

l] + g2k(0)Φl
K+k[ϕ

l]} = hl(0), l = 1, . . . , 2K. (2.12)

The second step is more complicated. To get the problem forul, l = 1, . . . , 2K,
andg′1k, g

′
2k, k = 1, . . . ,K, we introduce the new unknowns

vl = ul − ûl, l = 1, . . . , 2K; mk = g′1k,mK+k = g′2k, k = 1, . . . ,K, (2.13)

and setN = 2K. Then we easily derive from (2.6)–(2.8), (2.10) the following
problem forvl, l = 1, . . . , N ; mk, k = 1, . . . , N with homogeneous boundary
conditions:

vl
i,tt(t, x) =

K∑
k=1

{g1k(0)[µk(x)vl
j,j(t, x)],i + g2k(0)[µk(x)(vl

i,j + vl
j,i)(t, x)],j}

+
K∑

k=1

∫ t

0
mk(t− τ){[µk(x)vl

j,j(τ, x)],i + wl
ki(τ)}

+
N∑

k=K+1

∫ t

0
mk(t− τ){[µk−K(x)(vl

i,j + vl
j,i)(τ, x)],j + wl

ki(τ)}dτ

+ rl
i(t, x) , x ∈ Ω, t ∈ [0, T ] , l = 1, . . . , N , (2.14)

vl
i(0, x) = αl

i(x) , v
l
i,t(0, x) = βl

i(x) , x ∈ Ω ,

vl
i(t, x)|x∈Γ = 0 , l = 1, . . . , N ,

 (2.15)

K∑
k=1

{g1k(0)Φl
k[v

l(t, ·)] + g2k(0)Φl
K+k[v

l(t, ·)]}

+
N∑

k=1

∫ t

0
mk(t− τ){Φl

k[v
l(τ, ·)] + χl

k(τ)}dτ = sl(t),

t ∈ [0, T ], l = 1, . . . , N, (2.16)
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where

αl
i(x) = ϕl

i(x)− ûl(0, x) , βl
i(x) = ψl

i(x)− ûl
i,t(0, x) , (2.17)

rl
i(t, x) = f l

i (t, x) +
K∑

k=1

{g1k(0)[µk(x)ûl
j,j(t, x)],i

+ g2k(0)[µk(x)(ûl
i,j + ûl

j,i)(t, x)],j} − ûl
i,tt(t, x), (2.18)

wl
ki(t, x) =

 [µk(x)ûl
j,j(t, x)],i if k = 1, . . . ,K

[µk−K(x)(ûl
i,j + ûl

j,i)(t, x)],j if k = K + 1, . . . , N,
(2.19)

χl
k(t) = Φl

k[û
l(t, ·)], (2.20)

sl(t) = hl(t)−
K∑

k=1

{g1k(0)Φl
k[û

l(t, ·)] + g2k(0)Φl
K+k[û

l(t, ·)]}. (2.21)

3. FORMULATION AND ANALYSIS OF AN ABSTRACT
IDENTIFICATION PROBLEM

In this section we reformulate and study the problem (2.14)–(2.16) in an
abstract form.

Let X andY be real Banach spaces,Y being densely embedded intoX, and
let A be a closed linear unbounded operator inX with D(A) = Y . We equipY
with the graph norm

‖y‖Y = ‖y‖X + ‖Ay‖X , y ∈ Y ,

where‖y‖X stands for the norm ofy in X.
Assume that

Bk ∈ L(Y,X) , k = 1, . . . , N, (3.1)

and

Ψl ∈ Y ? , l = 1, . . . , N ; Φl
k ∈ Y ? , l, k = 1, . . . , N , (3.2)

whereY ? andL(Y,X) denote, respectively, the space dual toY and the Banach
space of all linear bounded operators fromY toX. In particular, we setL(X) =
L(X,X).

We pose the following abstract identification problem (AIP):

AIP : Givenrl : (0, T ) → X , αl, βl ∈ Y, wl
k : (0, T ) → X, χl

k : [0, T ] → R, and
sl : [0, T ] → R with l, k = 1, . . . , N , findmk : (0, T ) → R andvl : [0, T ] → Y
with k, l = 1, . . . , N satisfying the equations
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d2

dt2
vl(t)−Avl(t)

=
N∑

k=1

mk ∗ [Bkv
l(t) + wl

k(t)] + rl(t) , t ∈ (0, T ) , l = 1, . . . , N, (3.3)

vl(0) = αl ,
d

dt
vl(0) = βl , l = 1, . . . , N, (3.4)

Ψl[vl(t)] +
N∑

k=1

mk ∗ {Φl
k[v

l(t)] + χl
k(t)} = sl(t), t ∈ [0, T ], l = 1, . . . , N.

(3.5)

Here∗ stands for the convolution operator

z1 ∗ z2(t) =
∫ t

0
z1(t− τ)z2(τ)dτ .

First we mention that a necessary condition for the solvability of the AIP is
the solvability of the corresponding direct problem (3.3), (3.4) with respect to its

principal part
(

d2

dt2
−A

)
vl. This is the case ifA generates a cosine family.

The cosine family, generated by the operatorA, is a family of operators
{C(t)}t∈R ⊂ L(X) satisfying the following conditions (see [25] and [23],
Section 1.1):

C(t) is strongly continuous on R , C(0) = I ;

C(t+ s) + C(t− s) = 2 C(t)C(s) , t, s ∈ R;

C(t)Y ⊂ Y and AC(t)y = C(t)Ay for each y ∈ Y and t ∈ R;

C(t) satisfies the resolvent equation C(t)y = y + t ∗AC(t)y

for each y ∈ Y and t ∈ R and A = C′′(0) .

The family {C(t)}t∈R is the kernel of the solution operator of the Cauchy

problem
(

d2

dt2
−A

)
v(t) = r(t), t ∈ (0, T ), v(0) = α, d

dtv(0) = β, satisfying

certain regularity conditions.
By means ofC(t) we can define the interpolation spaceY1 associated withX

andY :

Y1 = {z ∈ X : t→ C′(t)z ∈ C([0, T ];X) for any t ∈ R}. (3.6)
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The spaceY1 is equipped with the norm (see [25])

‖z‖Y1 = ‖z‖X + sup
0≤t≤1

‖C′(t)z‖X . (3.7)

Before stating the main theorem of this section, let us introduce some further
notation. We set

B = (Bk)k=1,...,N , w = (wl
k)k,l=1,...,N , r = (rl)l=1,...,N ,

α = (αl)l=1,...,N , β = (βl)l=1,...,N ,

Ψ = (Ψl)l=1,...,N , Φ = (Φl
k)k,l=1,...,N , χ = (χl

k)k,l=1,...,N ,

s = (sl)l=1,...,N , m = (mk)k=1,...,N , v = (vl)l=1,...,N

and associate with any Banach spaceZ the product Banach spaces

ZN = {z = (zk)i=1,...,N : zk ∈ Z}, ZN×N = {z = (zl
k)k,l=1,...,N : zl

k ∈ Z}

endowed with the norms

‖z‖ZN =
( N∑

k=1

‖zk‖2
Z

)1/2
, ‖z‖ZN×N =

( N∑
k,l=1

‖zl
k‖2
Z

)1/2
.

Our aim is to seek for the solution(m, v) of the AIP in the space

S = H1((0, T ); RN )× C2([0, T ];Y N ) .

Theorem 1.Assume that the operatorA generates a cosine family{C(t)}t∈R inX.
Moreover, in addition to(3.1)and(3.2), let the following assumptions hold:

α , β ∈ Y N , (3.8)

r = ρ+ 1 ∗ ξ + t ∗ ζ, where ρ+Aα ∈W 1,1((0, T );Y N ) ,

ξ +Aβ ∈W 1,1((0, T );Y N
1 ), ζ ∈W 1,1((0, T );XN ),

}
(3.9)

w ∈ C2([0, T ];XN×N ) , Bα+ w(0) ∈ Y N×N
1 , (3.10)

χ ∈ C2([0, T ]; RN×N ), s ∈ H2((0, T ); RN ) , (3.11)

sl(0) = Ψl[αl] , l = 1, . . . , N , (3.12)

det(Φl
k[α

l] + χl
k(0))l,k=1,...,N 6= 0 . (3.13)

Then theAIP has a unique solution(m, v) ∈ S.
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Moreover, the solutionsS = (m, v) andS̃ = (m̃, ṽ), corresponding to two

sets of datad = (α, β, r, w, χ, s) and d̃ = (α̃, β̃, r̃, w̃, χ̃, s̃), respectively, satisfy

the following stability estimate:

‖S − S̃‖ ≤ C(ω, κ[d]−1, κ[d̃]−1, |d|, |d̃|) |d− d̃| , (3.14)

where

‖S‖ = ‖m‖H1((0,T ); RN ) + ‖v‖C2([0,T ];Y N ) (3.15)

denotes the norm inS, C is a locally bounded function depending also onT , the
seminorm| · | is given by

|d| = ‖α‖Y N + ‖β‖Y N + ‖ρ+Aα‖W 1,1((0,T );Y N )

+‖ξ +Aβ‖W 1,1((0,T );Y N
1 ) + ‖ζ‖W 1,1((0,T );XN )

+
∥∥∥∥ ddtw

∥∥∥∥
C1([0,T ];XN×N )

+ ‖Bα+ w(0)‖Y N×N
1

+
∥∥∥∥ ddtχ

∥∥∥∥
C1([0,T ]; RN×N )

+
∥∥∥∥ ddts

∥∥∥∥
H1((0,T ); RN )

, (3.16)

and

ω = ‖B‖(L(Y,X))N + ‖Ψ‖(Y ?)N + ‖(‖Φl
k‖Y ?)k,l=1,...,N‖L(RN , RN ), (3.17)

κ[d] = det(Φl
k[α

l] + χl
k(0))l,k=1,...,N . (3.18)

Proof. The proof of Theorem 1 can be deduced from the proof of an analogous
result concerning the related problem

d2

dt2
v(t)−Av(t) =

N∑
k=1

mk ∗ [Bkv(t) + wk(t)] + r(t) , t ∈ (0, T ), (3.19)

v(0) = α ,
d

dt
v(0) = β, (3.20)

Ψl[v(t)]−
N∑

k=1

mk ∗ {Φl
k[v(t)] + χl

k(t)} = sl(t), t ∈ [0, T ], l = 1, . . . , N,

(3.21)
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to determine(m, v) ∈ H1((0, T ); RN ) × C2([0, T ];Y ), included in [22]. For that
reason we will limit ourselves only to drawing general lines of the proof. It consists
of two steps.

First, we show that the AIP is equivalent to a fixed-point system for the pair
( d

dtm,
d2

dt2
v), deduced by means of the application of the cosine family to the

direct problems (3.3)–(3.4) and the differentiation of (3.5). Such a step in the
case of the problem (3.19)–(3.21) is described in Lemma 5.1 of [22]. To get the
corresponding result for the AIP, we have to replace the single direct problem
(3.19), (3.20) occurring in this lemma by the corresponding system of independent
direct problems (3.3), (3.4).

Second, we prove the existence, uniqueness, and stability of the solution of
the obtained fixed-point system by means of the contraction principle in weighted
norms. This step is similar to that worked out for the problem (3.19)–(3.21) in
Theorem 6.1 of [22]. We must only redefine the basic space and the operators.
In particular, we setU l

0 = d2

dt2
vl , Uk = m′

k , k, l = 1, . . . N , U =
(U1

0 , . . . , U
N
0 , U1, . . . , UN ) and study the fixed-point equationU = FU in the

spaceU := C([0, T ];Y N )×L2((0, T ); RN ), where the components of the operator
F are given by formulas which are simple modifications of (6.9)–(6.11) in [22].
Namely, in (6.9) we replace the single equation forU0 by the corresponding system
for U1

0 , . . . , U
N
0 and in (6.11) we changeU0 to U i

0. The rest of the proof of
Theorem 6.1 in [22] remains unchanged.

4. MAIN RESULTS CONCERNING THE VISCOELASTIC
IDENTIFICATION PROBLEM

In this section we formulate a solvability and stability theorem for the IP. This
is done by applying Theorem 1 to the equivalent problem (2.14)–(2.16) and taking
Proposition 1 into account.

Let us introduce the functional spaces

X = L2(Ω; R3) , Y = H2(Ω; R3) ∩H1
0 (Ω; R3) ,

the linear differential operators

Az =
K∑

k=1

{g1k(0)[µkzj,j ],i + g2k(0)[µk(zi,j + zj,i)],j} (4.1)

Bkz =

{
[µkzj,j ],i if k = 1, . . . ,K

[µk−K(zi,j + zj,i)],j if k = K + 1, . . . , N = 2K,
(4.2)
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and the functionals

Ψl[z] =
K∑

k=1

{g1k(0)Φl
k[z] + g2k(0)Φl

K+k[z]}, l = 1, . . . , N . (4.3)

Assume that
µk ∈W 1,3(Ω) , k = 1, . . . ,K . (4.4)

Then, by virtue of embedding and trace theoremsA,Bk ∈ L(Y,X), µk|Γ ∈
L∞(Γ) andΦl

k,Ψ
l ∈ Y ∗. Moreover,A is closed and selfadjoint. Let us denote

by Φ[ϕ] the matrix
(
Φl

k[ϕ
l]
)
l,k=1,...,2K

and assume that

det Φ[ϕ] 6= 0 , (4.5)

K∑
k=1

{(
Φ[ϕ]−1h(0)

)
k

+ 2
(
Φ[ϕ]−1h(0)

)
K+k

}
µk(x) ≥ 0, x ∈ Ω ,

K∑
k=1

(
Φ[ϕ]−1h(0)

)
K+k

µk(x) ≥ 0, x ∈ Ω ,

 (4.6)

whereΦ[ϕ]−1 is the inverse ofΦ[ϕ] andh = (hl)l=1,...,N . In view of Proposition
1, the conditions (4.6) yield the inequalities

K∑
k=1

[g1k(0) + 2g2k(0)]µk(x) ≥ 0,
K∑

k=1

g2k(0)µk(x) ≥ 0 , x ∈ Ω. (4.7)

Due to the equality

(Az, z) = −
∫
Ω

K∑
k=1

[g1k(0) + 2g2k(0)]µk(x)|divz(x)|dx

−
∫
Ω

K∑
k=1

g2k(0)µk(x)[(z1,2 + z2,1)2 + (z1,3 + z3,1)2 + (z2,3 + z3,2)2](x)dx ,

the relations (4.7) imply thatA is negative semidefinite. Consequently (cf [25],
p. 104), the operatorA generates a cosine family{C(t)}t∈R inX. The interpolation
space associated withX andY is Y1 = H1

0 (Ω; R3) ([25], p. 106).

Note that (4.5) implies (3.13) (cf. (2.11), (2.19)). The assumptions of
Theorem 1 are satisfied for the dataα = (αl)l=1,...,N , β = (βl)l=1,...,N , r =
(rl)l=1,...,N , w = (wl

k)k,l=1,...,N , χ = (χl
k)k,l=1...,N , s = (sl)l=1,...,N of the

problem (2.14)–(2.16) provided the following conditions are valid:
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α , β ∈ H2(Ω; RN×3) ∩H1
0 (Ω; RN×3), (4.8)

r = ρ+ 1 ∗ ξ + t ∗ ζ, where

ρ+Aα ∈W 1,1
(
(0, T );H2(Ω; RN×3) ∩H1

0 (Ω; RN×3)
)
,

ξ +Aβ ∈W 1,1
(
(0, T );H1

0 (Ω; RN×3)
)
,

ζ ∈W 1,1
(
(0, T );L2(Ω; RN×3)

)
,


(4.9)

w ∈ C2
(
[0, T ];L2(Ω; RN×N×3)

)
, Bα+ w(0) ∈ H1

0 (Ω; RN×N×3),(4.10)

χ ∈ C2
(
[0, T ]; RN×N

)
, s ∈ H2

(
(0, T ); RN

)
, (4.11)

sl(0) = Ψl[αl] , l = 1, . . . , N . (4.12)

HereB = (Bk)k=1,...,N , as before. In view of the definitions (4.3), (2.17), and
(2.21) ofΨl, αl, andsl, respectively, and the relations (2.12), derived in Proposition
1, we see that (4.12) always holds true under the conditions of the IP.

Now we are ready to formulate an existence, uniqueness, and stability theorem
for the IP. Applying Theorem 1 to the transformed problem (2.14)–(2.16) and
observing Proposition 1, we easily deduce the following result.

Theorem 2. Assume that the conditions(4.5), (4.6), (4.8)–(4.11)with
α, β, r, w, χ, s, given by (2.17)–(2.21), are satisfied for the set of data
d = (ϕ,ψ, û, f, h) =

(
(ϕl)l=1,...,N , (ψl)l=1,...,N , (ûl)l=1,...,N , (f l)l=1,...,N ,

(hl)l=1,...,N

)
of the IP. Moreover, let û ∈ C2

(
[0, T ];H2(Ω; RN×3)

)
.

Then the IP has a unique solution(u, g1, g2) =
(
(ul)l=1,...,N , (g1k)k=1,...,K ,

(g2k)k=1,...,K

)
in the spaceS? = C2

(
[0, T ];H2(Ω; RN×3)

)
×H2((0, T ); RK) ×

H2((0, T ); RK).
Moreover, for the solutionsS = (u, g1, g2) and S̃ = (ũ, g̃1, g̃2), which

correspond to two sets of datad = (ϕ,ψ, û, f, h) and d̃ = (ϕ̃, ψ̃, ˜̂u, f̃ , h̃),
respectively, and satisfy the relationh(0) = h̃(0), the following stability estimate
holds:

‖S1 − S2‖? ≤ C?

(
ω, (detΦ[ϕ])−1 , (detΦ[ϕ̃])−1 , |d|?, |d̃|?

)
|d− d̃|? , (4.13)

where

‖S‖? = ‖u‖C2([0,T ];H2(Ω; RN×3)) + ‖g1‖H2((0,T ); RK) + ‖g2‖H2((0,T ); RK) (4.14)
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is the norm inS?, ω is given by(3.17),C? is a locally bounded function depending
also onT , and the seminorm| · |? is defined by

|d|? = ‖α‖H2(Ω; RN×3) + ‖β‖H2(Ω; RN×3)

+‖û‖C2([0,T ];H2(Ω; RN×3)) + ‖ρ+Aα‖W 1,1((0,T );H2(Ω; RN×3))

+‖ξ +Aβ‖W 1,1((0,T );H1(Ω; RN×3)) + ‖ζ‖W 1,1((0,T );L2(Ω; RN×3))

+
∥∥∥∥ ddtw

∥∥∥∥
C1([0,T ];L2(Ω; RN×N×3))

+ ‖Bα+ w(0)‖H1(Ω; RN×N×3)

+
∥∥∥∥ ddtχ

∥∥∥∥
C1([0,T ]; RN×N )

+
∥∥∥∥ ddts

∥∥∥∥
H1((0,T ); RN )

.

Remark 2. The assumptionh(0) = h̃(0) in Theorem 2 is necessary to assure
that the IP has the same principal part in the cases of datad and d̃. Indeed, by
Proposition 1 the equalityh(0) = h̃(0) yields g1(0) = g̃1(0), g2(0) = g̃2(0),
which by (4.1) implies thatA is the same ford andd̃.

If h(0) 6= h̃(0), the operatorA and the corresponding cosine family{C(t)}t∈R

differ in the cases of datad andd̃. Then the stability of the IP is much more difficult
to estimate, because perturbation results for{C(t)}t∈R in termsA are needed.
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Kõdunud relaksatsioonifunktsioonide määramisest
kolmemõõtmelises viskoelastses mudelis

Jaan Janno

Uuritakse pöördülesannet aja- ja ruumimuutujast sõltuvate relaksatsiooni-
funktsioonide määramiseks kolmemõõtmelises viskoelastses mudelis. Eeldatakse,
et otsitavad lahendid on kõdunud, st esitatavad lõpliku summana teadaolevate
ruumimuutujast sõltuvate funktsioonide ja tundmatute ajast sõltuvate kordajate
korrutistest. Lisatingimusena kasutatakse normaalisuunalise pingekomponendi
mõõtmistulemusi vaadeldava keha rajal. Tõestatakse seesuguse pöördülesande
lahendi olemasolu, ühesus ja stabiilsus.
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