
 

 

 

105 

Proc. Estonian Acad. Sci. Phys. Math., 2002, 51, 2, 105–121 

 
 
 
 
 
 

Analysis  of  large  deformations  of  curved  surfaces  
in  holographic  interferometry  with  remarks  
concerning  nonspherical  gravitational  fields   

and  rotating  bodies 
 

Walter Schumann 
 

8032 Zurich, Switzerland; schumann@bluewin.ch 
 
Received 20 November 2001 
 
Abstract. The principles of analysis of large deformations in holographic interferometry are briefly 
outlined. Modifications at the reconstruction are necessary to recover the previously invisible 
fringes. The spacing and contrast are characterized by the fringe and visibility vectors. The relevant 
first derivative of the path difference involves the polar decomposition of the deformation gradient 
and affine connections. By the modification the image aberration must be considered together with 
changes in geodesic curvatures and surface curvatures. This leads to similar aspects for 
hypersurfaces, and in particular to an interpretation of the Schwarzschild-solution by virtual 
deformations. Remarks concerning nonspherical gravitational fields and a tentative approach to the 
Kerr-solution for rotating bodies are added. 
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1. INTRODUCTION:  OPTICAL  PATH  DIFFERENCE 
 
The linear basic equation of holographic interferometry for investigating the 

deformation of a small surface by the double exposure technique reads for the 
optical path difference 

 

.)( hku −⋅=D                                                  (1) 
 

Here u  denotes the displacement vector, h  and k  are unit vectors on the 
incident ray and on the reflected ray. Note that the path difference λν=D  is 
also related to the wavelength λ  and to the fringe order .ν  An extended 
reference is given in [1]. Sometimes modification of the optical arrangement at 
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the reconstruction [2] is necessary in order to change the fringe order. The 
simplest procedure for this purpose can be achieved by a phase shift ψ∆  within 
the real time technique. Here the actual wave field of the deformed surface 
interferes at the reconstruction with the diffracted wave field from the single 
exposed hologram of the undeformed surface. We have then D = 

.2)()( πψλ∆−−⋅−−⋅ ckthku  The vector t  denotes a shift of the hologram, 
either of fringe control or of a repositioning error, and c  is the unit vector on 
the reference ray. In case of a large deformation, when using two holograms and 
an appropriate modification at the reconstruction, we must use the exact 
expression )

~~
()~~()2( ′−−′−= LLD ϕϕπλ  for the optical path difference, where 

,
~
L  ′L

~
 are the distances from the image points ,P

~
 ′P

~
 to a point K

~
of  

fringe localization (Fig. 1). The phases ,~ϕ  ′ϕ~  at ,P
~

 ′P
~

 are determined by the 
interference-diffraction identities between recording and reconstruction: 

,~)~~~(2~
TTST ψπλπϕ ++++−−−++= qqpqqpLL  .~ ψϕ ∆+=′ �  They 

contain the phase T
~

at  ~ψ  and the distances �,~ ,~ ,~ , , , , , TTST qqpqqpLL  If  
we substitute the phases in the exact expression of ,D  we obtain the general 
basic equation (see, e.g., [3], p. 153, Eq. (5.3)) 

 

′+′−−+′+′++−′−= qpqppLpLLLD )~~
()~~

(SS  

.
2

~~~~
TTTT ψ

π
λ ∆−′−+′−+′−+ qqLLqq                       (2) 

 

Many authors (see, e.g., [4–10]) have studied the recovering of fringes, the 
elimination of the rotation, and the analysis of the modified fringes. As these 
fringes appear generally only in a small vicinity of a singularity, one should 
render the optical path difference quasi-stationary by the modification. The 
spacing and the contrast of the fringes depend, in fact, on the smallness of the 
derivative of .D  The fringe spacing and direction lead also to the strains. 
Therefore this derivative will be primary in the following. 

 
 
2. DERIVATIVE  OF  THE  PATH  DIFFERENCE.  STRAIN  AND  

ROTATION.  CURVATURE 
 
The differential of the path difference Eq. (2) reads dD  = −′− SS dd LL  

′−+++ qqpL ~~~~
dd)d( � , where we have, for example, =SdL  =∇⋅ Sd LNr  

Nhrr ⋅=∇⋅ dd SnL  with the normal projector .nnIN ⊗−=  We use here the 
rules )()(,)()( wbawbaba�ba� ⋅=⊗⋅=⊗ for a dyadic ba ⊗  or any tensor ,T  
which assimilate a vector either from left or from right by a scalar product in a 
linear transformation. The 2D-operator αα ∂θ∂aN =∇=∇ n  α(  from 1 to 2) 
appears as a formal projection of the 3D-operator ++=∇ yx yx ∂∂∂∂ ee  

.e zz ∂∂  The index n  recalls the surface normal n  (or ).,�′n  It is also 
expressed by curvilinear coordinates 21 ,θθ  and a base 21 , aa  on the surface, 
where ,α

ββ
α δ=⋅ aa  .β

β ∂θ∂ ra =  With  αββα a=⋅ aa  we can also write =N  
βα

αβ aa ⊗a . Using the projectors  N̂ N N ,,, ′  N̂ ,′  N ,
�

 ,, ρ~K
~

 N ′
�

 we get thus 
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Fig. 1. Recording of a large object deformation. Reconstruction with a modification. 
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′⋅−′′+⋅−−′⋅′′−⋅= kNrkNrhNrhrN KK
~

)dd(
~

)dd(ddd ~~
~~~~

ρρ ρρ
����

D  

′⋅′′+′⋅′′−′′−⋅−⋅−+ cNrkNrNrcNrkrNNr ˆˆd)dˆˆd(ˆˆd)dˆˆd(                   

.cNrcNr ~d~d ⋅′′−⋅+
����

                                                                        (3) 
 

The deformations of the surfaces are ,dd rFNrN =′′  ,,ˆdˆˆd �
��

rNFrN =  so 
that only the semiprojections �,FN  of the 3D-deformation gradients �,F  
intervene. The polar decomposition would be QUF =  with the symmetric 
dilatation ,U  defined by the Cauchy–Green tensor ,UUFF =T  and the 
orthogonal rotation tensor Q  of the volume element. At the surface element the 
polar decomposition is with the in-plane dilatation ,V  defined by the full 
projection ,VVFNNF =T  and the surface rotation tensor ,nQ  implying the 
orthogonality :nn IQQ =T  

 

.VQFN n=                                               (4) 
 

The surface strain tensor would be 2)–( NVV=γ and the rotation of the 
unit normal n  is given by .n ′= nnQ  In case of a small strain tensor ,γ  a small 
inclination vector ,&  and a pivot rotation scalar Ω  we write the additive de-
composition ,&⊗+Ω−+= nENFN γ  where EnnIQ Ω−⊗+⊗−≅ &&n  
and .γ+≅ NV  The 2D-permutation tensor naaE E=⊗= βα

αβE  has the 
components  

 

,)( 2
1222112112 aaaEE −=−=       ;02211 == EE   

 

it appears also as “normal part” of the 3D-permutation tensor .E  We use further 
the derivatives 

 

.]     , nn
TnBnBNBn ⊗+⊗=⊗∇−=⊗∇                    (5) 

 

The tensor =⊗= βα
αβ aaB B 222111 )()( rr eeee ⊗+⊗  describes the 

(exterior) curvature of the surface with principal values .1,1 21 rr  Equations (5) 
correspond to the equations of Frenet ,dd rs en −=  rs ne =dd  for a plane 
curve with the intrinsic unit base ne,  and the radius .r  The open square bracket 

T]  in Eq. (52) indicates a transposition of the last two factors in the triadic, so 
that .] βα

αβ ananB ⊗⊗=⊗ BT  Equations (5) help also for any decomposition. 
If the displacement n�u w+=  has the tangential (interior) part N�Nu� ==  
and the normal (exterior) part ,nw  we get with the product rule the derivative 

,)()( nnn nBvBNvu ⊗+∇+−⊗∇=⊗∇ ww  and in case of a small 
deformation the strain tensor .BvNNv wT −⊗∇+⊗∇= 2])()[( nnγ At the 
free surface of an elastic isotropic body the stress–strain relations read 

E)( EEτντγ +=  with the coefficients of elasticity .,νE  The involution 
EE )(�  will intervene several times later on. But we return now again to the 

large deformation. Equation (3) becomes with Eq. (4) in a Lagrange form 
 

)d)]()([dd (n ′−+−−′−′⋅= ⋅ k
~

k
~~hkhkVQNr ~K

~
ρρTD                                    

.)]()~~
(ˆˆ[ˆˆd])()~~

(ˆˆ[ˆˆd n̂n̂ ′−′−′−′′′′⋅′+−−−⋅− ckckQVNrckckQVNr TT     (6) 
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However, the directions to the images ′P
~

 ,P
~

 of ′P P,  are defined 
by �,0d P =θ  of the phase difference �)],()~~)[(2(P qpqp −−−= λπθ   
for the rays through the aperture, so that the second line in Eq. (6) vanishes. The 
remaining first line can also be written in Euler’s form 

 

),(d)]()[(dd n ′−⋅+−′′−′−′′⋅′= ′ k
~

k
~

K
~

hkQVhkNr ~~
ρρTD                (7) 

 

where .)1(
nn

−
′ =′′ VQQV T  The tensor )1(−V  represents a sort of 2D-“inverse” 

dilatation. It is defined by the relation NVV =− )1(  and will play an important 
role later on. Further, the increment ′rd  in Eq. (7) must be transformed to the 
reconstruction. That implies the aberration of neighbouring rays, so that the 
second differential of the phase difference will intervene. Therefore we outline 
here some relations about changes of curvature. First, the equation of a geodesic 
curve with the arc s on the undeformed surface reads ,0dd 22 =srN  because the 
osculating plane contains the normal .n  For any curve and its image on the 
deformed surface we have 

 

.]dd)dd[(]d+)dd([)d(dd 2
nnn

22 rVQrVQVQNrFNrFNNrNrN ++′=′=′′=′′
 (8) 

 

Multiplying from left by ,n
)1( TQV −  we obtain for the change of geodesic 

curvature and the change of arc length the reversed equation of (8) in a short 
form 

 

.|])[(|])[(

)],d(dd[d

nnnnV

V
2

n
1)(2

QNVQNNVD  

rrDrNQVrN

′⊗∇+⊗∇=
−′′= − T

                       (9) 

 

If we use the integrability ,0)(n =∇ TEF  we can eliminate the derivative of 
the rotation and will get EVEVEVENNVD ⊗∇+⊗∇= − )1(

nnV )(|])[(  for 
Eq. (92). The involution EE )(�  appears here once again. The triadic is thus 
interior and depends mainly on the dilatation ,V  recalled by the index V. The 
sign N|  marks a projection of the middle factor in .n V⊗∇  Second, by means 
of the relation ,ddd n

)1(
nnn ∇⋅′=∇⋅=∇⋅′ −

′ VQrrr  we get a useful equation for 
the curvature of the deformed surface: 

 

])([)( nnn
)1(

nn
)1(

nn nQBQVQnVQnB ⊗∇−=′⊗∇−=′⊗−∇=′ −−
′

T  
 

= ,)( n
)1()1(

n
TQVBVQ −− −κ                                                                (10) 

 

where κ  describes the (symmetric) change of curvature; in case of a small 
isometric deformation it turns into the reduced curvature of Koiter–Sanders from 
the shell theory. 
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3. DERIVATIVES  OF  PHASES.  IMAGE  ABERRATION.  FRINGE  
AND  VISIBILITY  VECTORS 

 
In the following we consider )]~~

()[()2(R
~ qq +−+= ""λπθ  instead of 

)]()~~[()2(P qpqp −−−= λπθ . As a matter of fact, ,0d R
~ =θ  0d P =θ  lead both 

to the same equation 
 

.0)]()~~
(ˆˆ[ˆ

n̂ =−−− ckckQVN T                                 (11) 
 

For neighbouring rays we have ...2ddd R
~

2
R
~

R
~ ++= θθθ  and thus 

.0)~~
(d 2 =−−+ qq ""  As cNrcNrcNrcNr dˆˆdˆdˆdˆdˆd)ˆˆd(dd 22 ⋅+⋅+⋅=⋅=q  

and   )ˆ)(ˆdˆˆd(ˆdˆd cnrBrcNr ⋅⋅=⋅  according to Eq. (5), the curvature tensor 
nB ˆˆ

n̂ ⊗−∇=  of the hologram intervenes if it is curved. The last increment 
gives  qrNCc ˆdˆd =  with the projector .ccI ⊗−=C  In summary, we obtain 

 

r̂B̂r̂cr̂N̂  , rBrc~rN~ ~ dd)d(ddd)d(d C
22

C
22 ⋅+⋅=⋅+⋅= qq

�����
, 

rBrk
~

rN
~

~
�����

" dd)d(d K
22 ⋅−⋅−=   ,ˆˆ)ˆ(ˆˆ

C qNCNcnBB +⋅=            (12) 

,~~
)~(

C
~ qNCNcnBB

�����
+⋅=     .

~~
)

~
(K

~ "
�����

NKNknBB −⋅=   
 

On the other hand, we may write for the second differentials of any curve 
according to Eqs. (9): 

 

),d(ddd V
1)(2

n
2 rDrVr̂N̂V̂Q̂rN ˆ

������
�

−−=  

nnnnV |])[(|])[( ����
�

�������
QN̂VQNNVD ⊗∇+⊗∇= .                       

(13)
 

 

Further, the relations kMrkMr dˆd  , 
~

d
~

d TT
"

��
"

� −=−=  describe two affine 
connections, where )ˆ()ˆ(  , )

~
()

~
( knknIMknknIM ⋅⊗−=⋅⊗−=

����
 are 

oblique projectors. We note also that ))(d(d)d(d 22 kn̂r̂B̂r̂kr̂ˆ ⋅⋅−⋅−= N"  
kˆr̂ dd ⋅− N  does not give a projector for ,dk  because the origins of two 

intersecting rays at R
~

 are two skewed rays with an astigmatic interval .R  If 
we resolve 0)~~

(d 2 =−−+ qq ""  with respect to ,dˆˆd kNr ⋅  the terms with the 
factor rN ˆdˆ 2  are cancelled because of Eq. (11). The isolation of a factor kd  
gives then ,dd kTk "=  where 

 

TT M̂QV
~

K
~

c~k
~

V|Dk
~

nBBVQ

kn̂B̂B̂M̂T

~ �

�

n
)1()1(

VC
)1(

n

C

][ )()(

)(

�
�

�

��
"

������� −−− +−+⋅−−

⋅−−=
    

(14)
 

 

describes the curvature of the converging nonspherical wavefront in .Ĥ  
The  inverse values of the distances 21  , ""  to the focal lines are the 
eigenvalues   of the symmetric (!) tensor .T  The quadrangle between the 
hologram   and   the   object shows the equation of transverse ray aberration 

).dd(dˆdd kTkkrKrK pp +−=−= "  We combine now both affine connections 
with the deformation gradient and the polar decomposition (4) to find the bridge 
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kMQVKk
~

dˆˆ~
d n̂

)1( TT
�

""
−=  between reconstruction and recording. It leads to the 

inverse projected virtual image deformation 
 

),~d
~

(
~~~

d)~~
(d R

~
R
~ rKGGkrK =+−= Tp"

TT

pp

p
MQ̂V̂KT~~

~
G
~

ˆ
)(~

�

"

"
n

1
R

1 −






+

+
= .   (15) 

 

If there is a sufficient apparent overlapping of the corresponding surface 
areas ,

~
 , 

~ ′AA  projected by the aperture ,0A  we may write ,
~~~~~ ′−≅′− LuKkk  

where  the  superposition  vector uKf ~~~ =S  should be very small compared to 
the diameter of these areas, otherwise the correlation is not possible. The 
strain should not be too large, so that the sizes of the areas do not differ much. 
We use further the collineation ′′+′+′−=′ kK

~
d)

~~~
(d

~ ~ Lp"ρ  and the relation 
).d(d ′′′=′ rKMr T  The projector )()( ′⋅′′⊗′−=′ nknkIM T  is called shadow. 

We introduce now Eq. (151) (with primes) into Eq. (7) and express 
′′−′ β~d~=

~
d mk  by a lateral unit vector ′m~  and an increment .

~
d ′β  So we can 

write ,
~~=

~
dd R

~
R
~ ′′ ′⋅′′ fmβD  which implies the fringe vector [11] 

 

.
~

)
~~~

(
~~

)]()[(
~

)~~
(

~ )1(
nR

~
R
~ ′′+′+′′−−−′−′′′′+′=′ −

′′ LLpp S
T

"" fKhkVQhkMGf  (16) 
 

It is normal to the fringe in the plane of sight and its inverse value is a 
measure of the fringe spacing. At this point it is perhaps judicious to specialize 
in the real-time technique, applied to a small object deformation and combined 
with a rigid body motion of the hologram. Here we perform the follow-
ing     approximations: ,1)(

n ωγ ⊗+Ω−−≅− nENVQ  ,SLHuhh +≅′  
,~~

uKf ≅S  ,Lu~Kk
~

k +≅′  ,Êˆn̂ˆN̂Q̂V̂ ˆ Ω+⊗+≅ ωT
n  ,)~(

~
puutKkk +−+≅  

+≅ cc~ .Ct q  If we introduce the last three relations into Eq. (11), we obtain the 
linearized image condition 

 

.]))([()( qp CtckÊˆn̂ˆM̂u~utK −−Ω+⊗−=+− ω                (17) 
 

On the other hand, if we insert the first four approximations into Eq. (16), we 
get with KG

~
 ,nnNN ,NMM ~ ≅′⊗+⊗+≅′′′=′ ′

T
Rωω  and Eq. (17) the 

linearized fringe vector 
 

]))([()( SR Lp HuhknEMf
~

~ −−⊗+Ω++≅′ ′ ωγ"  

).(]))(ˆˆˆ[(ˆ utKCtckEnM −+−−Ω+⊗− qω"               (18) 
 

As we expect, the translation and the rotation of the hologram are related to 
the strain and the rotation of the object surface by means of the fringe interspace 
and direction. The visibility is determined like in the standard case [12]. The 
complex amplitudes over the areas ′AA

~
 , 

~
 are  

∫∫ −=
A

ALLLGKSU ~
~~~|

~
|

~~~~
]di2)exp[i( S λπϕ   

and  

.
~

d])
~

(i2~iexp[...)
~

(~ ′−−′=′ ∫∫ ′
ADLSU

A
λπϕ   
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Here S  and K  denote source- and inclination-factors, whereas ≅∆+= K
~DDD   

.d K
~f

~
k
~ ′⋅′+D  If )()( rr GG ≅′′  is the statistical function of the roughness with  

 

)()()( 0 rrrr −=∗ δCGG   
 

(Dirac-function) and if  
 

,
~~~

d
~~~~~

d
~~

SS ′′′′′≅ LLAKSLLAKS   
 

the cross-correlation reads 
 





 +−Γ=′=Γ )(

i2
exp

2

1 δ
λ
π

DUU ||*                         

,
~

~~

~~~
~ ~∫∫ 



 ∆−



 −≅

A
AD

LL

CKS
D d

i2
exp

i2
exp K22

S

22

λ
π

λ
π                         (19) 

 

where δ  summarizes the influence of .K
~D∆  The visibility becomes then  

 

.d
~~

d
i2

exp
1||

0
0K

~

0
∫∫ 





 ′⋅′−=Γ=

A
A

AI
V fk

λ
π

                       (20) 

 

′≅〉〈= IUUI 2*  denotes the intensity of one field. Since K
~

 is now the fixed 
point, we must exchange ′+′ p~

~
"  by ′− L

~
 in Eq. (16) to obtain the explicit 

expression of the visibility vector 
 

.)]()[(
~~~ )1(

nK
~

K
~ hkVQhkMGf −−′−′′′′=′ −TL                        (21) 

 

It gives the shortest distance of the skewed homologous rays. The fringes are 
contrasted if the value of this vector, divided by the distance to ,K

~
 is small 

compared to the ratio of wavelength and aperture diameter. The visibility 
depends thus only of the derivative of the path difference. The intensity of the 
fringe field is .]})(2cos[1{2 λδπ ++≅Γ+Γ+′+= ∗ DVIIIJ  Again, let us 
specialize in the real-time technique. According to Eq. (1) in the  
introduction, we define ,])()([2 φλδπ ∆=+−⋅−−⋅ ckthku  where δ  is 
usually neglected. We get then, for example, with three frames ,321 πψ =∆   

,02 =∆ψ  323 πψ −=∆  three intensities )],32cos(1[21 πφ −∆+= VIJ  
)],cos(1[22 φ∆+= VIJ  )],32cos(1[2 3 πφ +∆+= VIJ  so that the “detected 

visibility” becomes  
 

.6)2()(3 2
231

2
31 IJJJJJV −++−=  

 

Finally, if we have a good contrast of the fringes ),0
~

(
K
~ ≅′f  the second 

derivative of D  (see also [13]) becomes after some calculations 
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′′





′

′
+′′⋅′′+′−

′′+′+′
′⋅′

=
′ ′′

′′ m~G
~

KTG
~

m~~~
~~~~

K
~

f
~

~ ~~
~~ ~

RR
2

2

2
R

2
R

2
1

d

d

d

d

p
p

�pL�

D
F

T!
��

��
"

"

 

�"
"

" ′′−




 +⋅− m~

~
m~K

~
~T

~
m~

~ 22 1
                  (22) 

 

The symmetric tensor 
 

)()( C
1

nC [{ kn̂B̂B̂V̂Q̂k
~

nBBMT
~ )(

ˆ~ ⋅−−⋅−= −����
              

TTp Mˆ
)(

ˆ Q̂V̂KckV̂D̂
�}n

)1(1
V ]| )( −− −−+                (23) 

 

is dual to the tensor T  of Eq. (14) and describes the curvature of the diverging 
nonspherical wavefront in .H

�
 It determines also the astigmatic interval ,P

~
 

whereas the symmetric tensor 
 

)()( H
1)(

nHF [{ knBBVQknBBMT ⋅−−′⋅′′−′′=′ −
′          

TTp ′+−+ −− MQVKhkVD }]| n
1)()1(

V )(             (24) 
 

expresses the influence of the changes of geodesic and surface curvatures on the 
deformation. 

 
 

4. ASPECTS  IN  GENERAL.  AN  INTERPRETATION  OF  
SCHWARZSCHILD’S  SOLUTION 

 
The remaining sections are only indirectly related to the previous subject. An 

extension should first illustrate Eqs. (9) and (10), which contain projected 
deformations, the polar decomposition Eq. (4), and the curvature Eqs. (5). But 
second, this procedure should also focus on the problem of general gravitational 
fields. For ,0=B  Eq. (10) gives the curvature ′B  of a surface A2 ⊂  R 

3 as a 
deformed part of R 

2. This can be generalized to a hypersurface A 
k ⊂  R  

n, where it 
leads to the Ricci tensor .R  We recall the components +Γ−Γ= λ

λαβ
λ

βαλαβ ,  ,  R  
λ
µλ

µ
αβ

λ
µβ

µ
αλ         ΓΓ−ΓΓ  with Christoffel symbols αµββµα

λµλ
αβ ,, aaa +=Γ (  

2)µαβ ,a−  and the “metric tensor” .αβa  The latter shows the components of the 
projector ,α

αβα
αβ aaaannIN ⊗=⊗=′⊗′−=′ aii  with unit normals i′n   

i(  sum 1 to ;kn −  βα ,  sum 1 to k or 0 to ).1−k  The Ricci tensor is the 
contraction of the 4th-order Riemann–Christoffel tensor .R  It can be seen that 
we may write (see also, e.g. [14], pp. 34–36) 

 

′′′⊗∇⊗∇−′⊗∇⊗∇′′= ′′′′ NNNNNN |}][{| )()( nnnn
TTR   

T
iiii ]]′⊗′−′⊗′= BBBB ,                                                          (25) 

 

where ′⊗∇−=′′⊗∇−=′ −− NnQVQNnVQB )()( nn
)1(

nn
)1(

n iii  according to 
Eqs. (4), (5), (10). The double square bracket indicates a transposition of the 
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factors 2 and 4 in the last quadratic. The Ricci tensor becomes then by 
contraction alternatively 

 

),( ′⋅′′−′′= NBBBBR iiii                                  (26) 
 

with the trace ′⋅′ NB i . We outline now an interpretation by two virtual 
deformations of Schwarzschild’s solution for the central gravitation (round a 
spherical star) as a simple example. The well-known fundamental form [15] reads 

 

,22222
2

222 dsind
21
d

d
2

1d ϕθθσ rr
rM

r
tc

r

M ++
−

+




 −−=′         (27) 

 

with coordinates ,,, ϕθr  time ,t  velocity of light ,c  and Schwarzschild radius 
,2M  so that ),21(00 rMa −−=   ,)21( 1

11
−−= rMa  ,2

22 ra =  .sin 22
33 θra =  

For the following it is convenient to introduce an angle ,ψ  defined by 
.2sin rM=ψ  We write further the spherical part in the form 

,dddsind 22222 rKr ⋅=+ ϕθθ rr  where kkNNkkINK ⊗−=⊗−= )(  
denotes a projector referring to the radial unit vector ).,( ϕθk  First we 
consider   only the partial fundamental form of the space part 

,ddd]cos)([dd 22 rVVrrKkkr ⋅=+⊗⋅=′ ψs  which leads immediately to the 
inverse dilatation ,cos)()1( KkkV +⊗=− ψ  and also to the components 

,tan 22
11 rR ψ=  ,2sin 2

22 ψ−=R  θ2
2233 sinRR =  of the 3D-Ricci tensor 

.3DR  Alternatively, this tensor and a hypersurface A3 ⊂  R 

4 may be got from 
,)( nkr rwr +=′  where the vector n  denotes the unit normal of the subspace 

R 

3 ⊂  R 

4. We have then ,d])([dd T
rw NFrKnkkrr , =++⊗=′  because 

.)(n rr KkkNk =⊗−=⊗∇  As we have =⋅=′ rFNNFr ddd 2 Ts  
rKkkr , d]))([(1d 2 +⊗+⋅ rw , a comparison gives ;11cos 2

,rw+=ψ  thus 
ψ turns out to be the inclination. The polar Eq. (4) is == −1)(

n FNVNQ  
,Kkk +⊗′  where ,sincos ψψ nkk +=′  and further ,n KnnkkQ +⊗′+⊗′=  

KkkVQ +⊗′=− ψcos )1(
n  with the normal .cossin ψψ nkn +−=′  By the use 

of a sort of key relation ,2sin)(sin , rr ψψ −=  the derivative is 
.sin2tann rr ψψ Kkkn −′⊗=′⊗∇  We obtain then with )(2 32 rr ==′⋅ NK  

the curvature  ′′⊗∇−=′ − NnVQB )( n
)1(

n  ]2)()[(sin Kkk +′⊗′−= rψ  = 
,)( 21 rr Kkk +′⊗′  as well as 
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In fact, we have here ,sin 11
11

221
1 aRrR == ψ  ...2sin 222

2 rR ψ−=  
conformal to the previous components. In 2D, where ,1=′⋅ NK  we  
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would obtain 22
D2 2sin)( rψKkkR +′⊗′=′  and ( ) 2112 /

, / −−= Mrw r  
determines the well-known vase-like surface MwMr 82 2+=  ([16],  
p. 837). Second, the fundamental form 2122222 d)(cosd)(cosd rtcs −+−=′ ψψ  
of the first two terms of 2d ′σ  gives .sin 221

1
0

0 rRR ψ−==  Alternatively  
to [17] we introduce with another normal n  a vector nkr )(cos2 rwM +=′ ψ   
for , sincos 00 tt ωω hkk +=  .cossin 00 tt ωω hkh +−=  The virtual deformation 
reads ,dd])(cosdcosd[2d ,,

T
rr wrrM FNrnkkr =++=′ ψψ  where we have 

,(d=d r�hhrk ⊗   ψψψ cos2sin)(cos 2
, rr =  and .kr r=  The deformation 

gradient is knkhhNF ⊗++⊗= )cos2sin(cossin)( ,
42

rwψψψψ  and  
the inverse dilatation becomes .cos)cos(sin 12)1( ψψψ kkhhV ⊗+⊗= −−  
Therefore the reverse polar decomposition gives == −1)(

n VNFNQ  
kkhhknkhh , ⊗′+⊗=⊗++⊗ )cos2sin( 4 ψψ rw , so that we get for the 

angle of rotation χπ −2  the relations ,2sinsin 4 ψχ =  .coscos, ψχ=rw  In 
addition, we have ,cossin χχ nkk +=′  ,sincos χχ nkn +−=′  

,didi)2()d)(2( tctrrMrM ==⋅ ωhr  .2Mc=ω  The curvature of this goblet-
like surface becomes finally, with rr χχ tan2, −= ,  +⊗=′ )([)(sin hhηψ rB  

10 )()(])( rr ′⊗′+⊗=′⊗′ kkhhkk η , and the 2D-Ricci tensor is 
 

).)((sin))(1( 22
102D ′⊗′+⊗−=′⊗′+⊗−= kkhhkkhhR rrr ψ          (29) 

 

Note here that χψη tan2tan=  is not relevant in Eq. (29). Third, we 
replace, now on a stripe S 

4 ⊂  R 

6 along the first meridian, ′B  by 
+⊗=′ 01 )( rhhB 21)( rr /Kkk +′⊗′  and ′B  by 102 )()( rr

��
kkhhB ′⊗′+⊗=′ , 

where the relation 11 sincos rr ββ =�
 must hold, and βπβ −2,    are the 

angles of 21  , ′′ nn  with respect to .′n  The 4D-Ricci tensor is then by composition 
 

)()( 222211114D NBBBBNBBBR ′⋅′′−′′+′⋅′′−′′= B                                                        

K)111( 222120 rrrrrr ++−= ))(211( 201010 hh ⊗++− rrrrrr
��

                  
 

))(211( 211010 ′⊗′++− kkrrrrrr
��

 = 0                                                     (30) 
 

valid if ,2sin2111 210 rrrr ψ−=−==  ,tan11 110 rrr β== ��
 ,3tan =β  

.3πβ =  Equation (30) is compatible with Eqs. (28), (29) and therefore with the 
equations 0=αβR  in components, because .2111 21101010 rrrrrrrr −==+��

 
Thus, Eq. (30) is an “intrinsic” form of the field equations in vacuum. The 
Riemann–Christoffel tensor R  (expressed by )i′B  has the components as, e.g., 
those in [18], p. 284, Eq. (10.11). 

 
 

5. REMARKS  CONCERNING  NONSPHERICAL  FIELDS 
 
An equation similar to (30) holds in the general case 32 rr ≠  for S 

4 ⊂  R 

8 if k  
is normal to the surfaces of constant “potential” .U  In this case we have 

, 02 ,, =+ rUU sss  UU s n, ∇⋅= k  with the normal arc .s  We define then 
,)(2sin 4/1

,sUMµψψ =→  so that 
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µρψρψ −=−=                         (31) 

 

Equation (311) is a similar key relation as before (where ).1=ρ  On an axis of 
symmetry we shall find ,2 Kr=ρ  where 2)11(1 32 rrr +=  is the mean 
curvature and 321 rrK =  is the Gauss’ curvature of the surface .const=U  At an 
arbitrary point, however, two “pivot”-rotations γα ,   turn first k  into a unit 
vector .∗k  The angles γα ,  must be determined by the condition of vanishing 
mixed terms in the fundamental form .d]cos)([dd 22 rKkkr ∗∗∗ +⊗⋅=′ ψs  
The inclination ψ  rotates then from ∗k  (instead of )k out of the flat space into 
the vector .′k  The principal result will be ,∗∗∗ = Krrρ  where 

2)11(1 32
∗∗∗ += rrr  is the mean curvature and ∗∗∗ = 321 rrK  is the Gauss’ 

curvature of the surface with normal .∗k  The field equation 
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looks like Eq. (30), but the projector ∗∗∗ ⊗−= kkNK  appears now instead of 
kkNK ⊗−= . It holds apparently for ,sin~1 ∗= rr ψ  == 10 11 rr  
r2sinψρ∗− , ,tan11 110 rrr β== ��

 ,14tan −= ∗∗ rr ρβ  and with 
=21 r ,sin 2

∗rψ  .sin1 33
∗= rr ψ  For the proof we begin with the unit normal 

++−=′ γα cos(cos[ tkn ψψαγ cos]sin)sinsin nu + , but to simplify, we consider 
only rotational symmetry ,0≡γ  since the general case leads in a similar manner 
to the same result. Therefore, the derivative of the unit normal becomes simply 

=′⊗∇ nn +⊗∇+⊗∇−′⊗∇− ∗ ααψ )cos([ nnn ktk .t ψα ]sin)sin( n ⊗∇  In addi-
tion, we have =⊗+⊗∇=⊗∇ s,kkkk kn 2k ρtkB ⊗+ , where 21 ρ   is the 
curvature of the line normal to the surfaces .const=U  The other derivative is 

2kkn )( ρk/kktBuutt ⊗−⊗−⊗⊗∇=⊗∇ , with .tan)( 3k φruut =⊗∇  The 
factor φtan1 3r  marks the geodesic curvature of the parallel circle and φ  
denotes the angle of declination. In summary, we get with =∇ ψn  

r2tanψρ∗∗−k  as follows: −′⊗=′⊗∇ ∗∗ r2tann ψρkkn [ ++∇ 2n( ρα k  
∗⊗ tt )2r ] ψφαα ]sin)cotsin(cos 3r+⊗+ uu . The condition of a vanishing 

mixed term in the square bracket is =∇⋅∗ αnk )cos(sin 22 ραα +− r , so that 
,sincos1 n222 αραα ∇⋅+−= ∗∗ trr  33 )cotsin(cos1 rr φαα +=∗  are the 

explicit expressions of principal curvature. To determine the angle ,α   we 
deduce from 0n =∇⋅∗ ψt  the relation ,0)( ,n =∇⋅∗

sUµt  which gives with 
αα sincos ktt −=∗  
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.)][log(
2

tan ,n sU
r µ
ρ

α ∇⋅−= t                               (33) 

 

The values ρ  and µ  depend on ;α  thus an iteration process should be used for 
the solution of Eq. (33). 

We obtain afterwards the 3D-curvature ( ) =′′⊗∇−=′ −∗ NnVQB n
1)(

ψ  
ψsin)( k1

∗+′⊗′ Bkk r , where .)()( 32kk
∗∗∗∗∗∗ ⊗+⊗=⊗∇= ∗ rr uuttkB  

Further, the corresponding 4D-curvature is +⊗=′ 01 )[( rhhB +′⊗′ 1)( rkk  
,2]sink ψ∗B  and similarly we have the 2D-curvature +⊗=′ 02 )[( r

�
hhB  

.2])( 1r
�′⊗′ kk  We write then the following combinations 
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The second line shows again a 2D-permutation tensor ,∗E  respectively an 
involution .)( ∗∗ EE �  Adding up the three expressions (34), we get in fact with 

∗∗∗∗∗∗ =− rKEBEB 2kk  and with ,sin1 0
∗= rr ψη  ,sin1 1 rr ηψρ ∗=  

rrrrrrrr ~2111 0101010 −==+��
 (similar to the spherical case) the vanishing  

4D-Ricci tensor i(  sum from 1 to 4) 
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In some way this procedure represents a semi-inverse method to find the 
nonspherical field. 

Besides, as to the general gravitational lens, we recall the common 
differential equations of any geodesic curve in components and with Christoffel 
symbols: .0dd)(d   

2 =Γ+′ βαλ
αβ

λ θθθ s  
Alternatively, one can use the variational principle  
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A
dd
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A
0d)(

ϑ

ϑ ϑ ϑ,rF   

 

and the auxiliary conditions 0)( =′rjG  ),,1( knj −= �  for a “hypersurface” Ak . 
We have then first the tangential unit vector ar =′ ϑ∂∂ ,F  and afterwards a 
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vector in the hyperplane normal to the curve =′∂∂ ϑϑ d)(d ,rF ,, Fϑϑ′Ar  
where aaIA ⊗−=  is the corresponding projector. As iijjjj cG ′=′ nr µ∂∂µ = 

,ii ′nν  we obtain with this notation and the application of the projector 
ii ′⊗′−=′ nnIN  Euler’s equation in the form ,0, =′′ ϑϑArN  or .0)(d 2 =′′′ srN  

To obtain the image equation by the backwards deformation into the flat space, 
we may then apply Eqs. (9), which are also valid in higher dimensions. A 
combination with four parts, similar to what we performed with Eqs. (34), but 
which we do not outline here in detail, leads to the result 

 

).dd3(d
2
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)(d 2

2

D4
2 rKrkN ∗∗∗ ⋅−′=′ σψσ Kr                 (36) 

 

In particular, we have for a 4D-null-geodesic or light ray ,dd 22 ϑσ k−=′  
0→k  and thus .2)dd3(sin)(d 2

D4
2 rKrkN ∗∗∗ ⋅−= Kr ψϑ  This is the 

generalization of the known result r2)dd3(sin)(d 2
D4

2 rKrkrN ⋅−= ψϑ  from 
the spherical-symmetric case. 

 
 
6. ROTATING  BODIES.  A  TENTATIVE  APPROACH  TOWARDS  

THE  KERR-SOLUTION 
 
Using the previous frame for nonspherical fields and a certain tentative 

composition, we can outline a result, which is similar to the Kerr-solution for a 
rotating star. To simplify, we assume the body to have a spherical form, but the 
surrounding field is nevertheless nonspherical because of the rotation. We recall 
first of all some additional elements about classical gravity and inertial forces in 
the flat space. The Schwarzschild radius 222 cMGM =  contains the constant 

23111 smkg106.668 −−−×=  G  and the mass .M  If m  denotes provisionally the 
mass of another small body lying in the system which rotates together with the 
central body, we can write for the gravitational potential ,rmMGU −=  

rMmcUU −== 2  and similar for the scalar of the centrifugal force 
,22

0
2rmV Ω−=  ).()2( 0

222 rKr ⋅Ω−== cmcVV  Here Ω  is  the angular 
velocity, 0r  is the distance from the axis of rotation, and 000 kkNK ⊗−=  is 
the normal projector onto the equatorial plane. We pass now to the gradient of 
the sum :VU +  
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Here 223 Mcp Ω=−  defines a parameter p  of dimension “length” and 
33rp −=χ MGr 32Ω=  is another dimensionless parameter for the third power 

of .r  In some way χ  describes in the equatorial plane the ratio between 
centrifugal and gravitational force at the distance 0rr =  from the centre. The 
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unit normal of any surface const=+VU  is WrKNk )( 0χ−=  so that the  
2D-curvature tensor reads 
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with the abbreviations  
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Note that at a general point rrk ≠ , so that one must apply the iteration with an 
equation of type (33) to find .α  However, at points of symmetry we have 

,rrk =  ,0k =∇ χ  which simplifies the problem. On the axis of rotation, e.g., 
we get ,0kk =  ,rW =  ,)1( 0k rKB χ−=  ,1=ρ  but ,21cos2 rM−<ψ  as can 
be verified. On the other hand, we obtain in the equatorial plane ,00 =⋅ kk  

,)1( rW χ−=  .)1()( 0k rχχ −−= KKKB  The different curvatures and 
invariants are there: ,)1(11 2 rr χ−=  ,11 3 rr =  ,)1(2)2(1 rr χχ −−=  

,)1(1 2rK χ−=  so that .)2()1(4 22 χχρ −−== Kr  Further, as =+ sVU ,)(  
3

n )( rWMVU =+∇⋅k , we get for the inclination :ψ  =ψsin  
41413241 )]1([2)]([2)]([2 ///

,, χµµµ −=−=+ −− rMrprMVUM rr . The 
key relation Eq. (311) is ,2sin)(sin , rr ψρψ −=  but )2()2( χχρ −+= – 

2)(log rr,µ  differs from Eq. (312). Thus, we find for the factor µ  with 
rrpr χχ 33 23

, == −  the solution 
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If we take into account the limit �� ,2sin ,0 2 rM== ψχ  ,1=µ  we have by 
necessity .1=C  As ,)21()2()1()2(sin 3/2224 χχµψ −=−= rMrM  we get 
further for the other limit ,∞→χ  .2sin3 cMΩ→ψ  This means that very far 
away from the centre the scalar V  of the centrifugal force alone does of course 
not give an interior curvature of space ,0( =ρ  i.e., the constant inclination 
determines a developable conical surface). In summary, we obtain for the 
fundamental form in the rotating system and in the equatorial plane 

 

,dd)(cosdd)(cosd 22212222222 θψϕψσ rrrtc +++−=′ −           (40) 
 

where the coefficient of “inclination” and the parameter χ  are 
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In case of a small angular velocity Ω  the approximation ≅ψ2cos  
222 321 crrM Ω+−  holds. 

If we pass now from the rotating system to the “fixed” system, we must apply 
the special Lorentz-transformation for the circumferential motion 
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so that the fundamental form in the “fixed” system (variables with a bar on top) 
becomes finally 
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This last form may now be compared to the Kerr-solution [19,20], which was 
found by another way and which reads for 2πθ =  according to the notation 
in [18], p. 305, Eq. (10.58): 
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where 22 2 aMrr +−=∆  and a  contains .Ω  Here it should be noted that the 
angular velocity intervenes in Eq. (43)  in different places for two different 
reasons: (a) in the factor ψ2cos  because of Eqs. (41), (b) in the term 2)( crΩ  
because of Eqs. (42). If the central body has a nonspherical, e.g., ellipsoidal form 
in case of a rapid rotation, the calculation of ψ2cos  would be similar, but more 
complicated. 
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Kõverpindade  suurte  deformatsioonide  analüüs  
holograafilise  interferomeetriaga  ning  mõned  märkused  

mittesfääriliste  gravitatsiooniväljade  ja  pöörlevate  
kehade  kohta 

 
Walter Schumann 

 
On vaadeldud suurte deformatsioonide mõõtmist holograafilise interfero-

meetriaga. Seni nähtamatute ribade esiletoomiseks on vajalik rekonstrueerimis-
protsessi modifitseerida. Ribade paigutust ja kontrastsust iseloomustatakse riba- 
ja nähtavusvektoritega. Käiguvahe esimene tuletis on seotud deformatsiooni-
gradiendi ja afiinsete seoste polaarse dekompositsiooniga. Modifitseerimisel 
tuleb kujutise aberratsiooni vaadelda koos geodeetiliste kõveruste ja pinna 
kõveruste muutustega. See viib samasugustele probleemidele hüperpindade 
puhul ja ühele Schwarzschildi lahendi interpretatsioonile virtuaalsete deformat-
sioonide kohta. Mõned järeldused puudutavad ka mittesfäärilisi gravitatsiooni-
välju ja katset läheneda Kerri lahendile pöörlevate kehade juhtumil. 

 
 

 
 


