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Abstract. The principles of analysis of large deformations in holographic interferometry are briefly
outlined. Modifications at the reconstruction are necessary to recover the previously invisible
fringes. The spacing and contrast are characterized by the fringe and visibility vectors. The relevant
first derivative of the path difference involves the polar decomposition of the deformation gradient
and affine connections. By the modification the image aberration must be considered together with
changes in geodesic curvatures and surface curvatures. This leads to similar aspects for
hypersurfaces, and in particular to an interpretation of the Schwarzschild-solution by virtual
deformations. Remarks concerning nonspherical gravitational fields and a tentative approach to the
Kerr-solution for rotating bodies are added.
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1. INTRODUCTION: OPTICAL PATH DIFFERENCE

The linear basic equation of holographic interferometry for investigating the
deformation of a small surface by the double exposure technique reads for the
optical path difference

D=ulk -h). ()

Here u denotes the displacement vector, h and k are unit vectors on the
incident ray and on the reflected ray. Note that the path difference D =Av is
aso related to the wavelength A and to the fringe order v. An extended
reference is given in[']. Sometimes modification of the optical arrangement at
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the reconstruction [?] is necessary in order to change the fringe order. The
simplest procedure for this purpose can be achieved by a phase shift Ay within
the real time technique. Here the actual wave field of the deformed surface
interferes at the reconstruction with the diffracted wave field from the single
exposed hologram of the undeformed surfacee We have then D=
ullk —h)-t{k —c) - AAy/2m. The vector t denotes a shift of the hologram,
either of fringe control or of a repositioning error, and ¢ is the unit vector on
the reference ray. In case of a large deformation, when using two holograms and
an appropriate modification at the reconstruction, we must use the exact
expression D =(A/2m) (¢ —¢") - (L -L") for the optical path difference, where
L, L' are the distances from the image points P, P to a point K of
fringe localization (Fig. 1). The phases ¢, ¢’ at P, P are determined by the
interference-diffraction identities between recording and reconstruction:
g=2nm(ly +Ls+p-q-Gr —P+q+Gr)/A+m+{f, ¢'=..+Ap. They
contain the phase ¢ aT and the distances L;,Ls, p,q,07,Pp,q,0r,... If
we substitute the phases in the exact expression of D, we obtain the genera
basic equation (see, e.g., [*], p. 153, Eq. (5.3))

D=Lg-Ls—(L+P)+(L'+P)+p-q-p +q
o A
+G-G+L -l +G. -0, ——AW. 2
q—qg T Tt T0r =g o 1 (2

Many authors (see, e.g., [*™]) have studied the recovering of fringes, the
elimination of the rotation, and the analysis of the modified fringes. As these
fringes appear generally only in a small vicinity of a singularity, one should
render the optical path difference quasi-stationary by the modification. The
spacing and the contrast of the fringes depend, in fact, on the smallness of the
derivative of D. The fringe spacing and direction lead also to the strains.
Therefore this derivative will be primary in the following.

2. DERIVATIVE OF THE PATH DIFFERENCE. STRAIN AND
ROTATION. CURVATURE

The differential of the path difference Eq. (2) reads dD = dLg—dL'g—
d(L +p)+...+dg—-dq’, where we have, for example, dLg= dr (INOLg=
dr (I, Lg =dr [INh with the normal projector N =1 —n [ n. We use here the
rules v (adb)=(v@)b, (alb)w=a(bll)for adyadic a0 b or any tensor T,
which assimilate a vector either from left or from right by a scalar product in a
linear transformation. The 2D-operator [, = NO =a“” 69“ (o from1to 2)
appears as a forma projection of the 3D-operator =g, d/o‘k+e o"/o“y+
e,0/0z. The index n recals the surface normal n (or n ). It is adso
expressed by curvilinear coordinates 6*,682 and a base a*,a’ on the surface,
where a” (a; =95, aﬁ—o"r/deﬁ With a, [a; =a,; Wecanalsownte N =
aaﬁa Daf. UsngtheprOJectors N,N’, N, N' N, N’, K , we get thus
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Fig. 1. Recording of alarge object deformation. Reconstruction with a modification.
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dD =drN [h-dr'N' [h' - (dFN - dpK 5) [k + (dFf'N’ - dpK ;) k'

+(dfN —drN) (k —=dfN & - (df'N' —dr'N’) (K’ + df'N' [&'
+dfN [€ -df'N' [E. (3)
The deformations of the surfaces are N’dr’=FNdr, Ndf =FNdf,..., so
that only the semiprojections FN,... of the 3D-deformation gradients F,...
intervene. The polar decomposition would be F =QU with the symmetric
dilatation U, defined by the Cauchy-Green tensor F'F =UU, and the
orthogonal rotation tensor Q of the volume element. At the surface element the
polar decomposition is with the in-plane dilatation V, defined by the full

projection NFTFN =VV, and the surface rotation tensor Q,, implying the
orthogonality Q. Q, =1 :

FN =Q,V. 4

The surface strain tensor would be y =(VV —N)/2and the rotation of the
unit normal n isgiven by Q,n=n". In case of a small strain tensor y, a small
inclination vector w, and a pivot rotation scalar Q we write the additive de-
composition FN =N +y-QE +nUw, where Q, Ol —oOn+n0w-QE
and V ON +y. The 2D-permutation tensor E =Ej ;a” [ a? =En has the

Components
Epn =-E; =vaua, - (a12)2 , Ey =Ex» =0

it appears aso as “normal part” of the 3D-permutation tensor E. We use further
the derivatives

O,0n=-B, O,0N=BOn+B0On]". (5)

The tensor B=B,a’ 0a’ = (e Oe))/r, +(e, 0e,)/r, describes the
(exterior) curvature of the surface with principal values 1/r,,1/r,. Equations (5)
correspond to the equations of Frenet dn/ds=-e/r, de/ds=n/r for a plane
curve with the intrinsic unit base e, n and the radius r. The open sgquare bracket
1" in Eq. (5,) indicates a transposition of the last two factors in the triadic, so
that BON]" = Bas a® On0Oa”. Equations (5) help also for any decomposition.
If the displacement u=v +wn has the tangential (interior) part v = Nu = Ny
and the normal (exterior) part wn, we get with the product rule the derivative
O,0u=(0,0v)N-Bw+((d,w+Bv)dn, and in case of a smal
deformation the strain tensor y =[(0, OV)N +N(0J, 0v)"]/2-Bw. At the
free surface of an elastic isotropic body the stress—strain relations read
y =(t +VETE)/E with the coefficients of elasticity E,v. The involution
E(...)E will intervene several times later on. But we return now again to the
large deformation. Equation (3) becomes with Eq. (4) in aLagrange form

dD = dr IN[VQ] (k' — ) - (k —h)] + dp [K 5 (k —K)
—df INVQ] (k —€) - (k —¢)] +df INV'Q L (k' =T) - (k' =¢)].  (6)

108



However, the directions to the images <2 of P,P are defined
by d6, =0,... of the phase difference 9 =@r/NM)[(p-9)-(p-9)...
for the rays through the aperture, so that the second linein Eg. (6) vanishes. The
remaining first line can also be written in Euler’ sform

dD =dr' IN'[(K' =) =V'QT (k ~h)] +dp (K 5 (k -K"), @)

where V'Q'T, =Q.V ™. The tensor V™ represents a sort of 2D-“inverse’
dilatation. It is defined by the relation V™V =N and will play an important
role later on. Further, the increment dr’ in Eq. (7) must be transformed to the
reconstruction. That implies the aberration of neighbouring rays, so that the
second differential of the phase difference will intervene. Therefore we outline
here some relations about changes of curvature. First, the equation of a geodesic
curve with the arc s on the undeformed surface reads Nd?r/ds® =0, because the
osculating plane contains the normal n. For any curve and its image on the
deformed surface we have

N'd?r' = N'd(dr’) = N'[d(FN)dr + FNd?r] = N'[(dQ,V +Q,dV )dr +Q, Vvdr].
8
Multiplying from left by VQ!, we obtain for the change of geodesic

curvature and the change of arc length the reversed equation of (8) in a short
form

Nd?r =v C[QTN'd?r - (drDy dr)],

9)
Dy =[(H, OV)N]IN +[(H, ODQy)VIIN'Q,.

If we use the integrability 0, (EF ") =0, we can eliminate the derivative of
the rotation and will get D, —[(D OV)IN]IN +0,(EVENV PEOEV for
Eq. (92). The involution E(...)E appears here once again. The triadic is thus
interior and depends mainly on the dilatation V, recalled by the index V. The
sign |N marks a projection of the middle factor in O, OV. Second, by means
of the relation dr' I, =dr I, =dr' [@Q,V 0, we get a useful equation for
the curvature of the deformed surface

B'=-0,0n=-QVv @, 0n=Q,vBQ! -0, 1Q,)n]
= Qv (B-kVPQy, (10

where k describes the (symmetric) change of curvature; in case of a small
isometric deformation it turns into the reduced curvature of Koiter—Sanders from
the shell theory.
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3. DERIVATIVES OF PHASES. IMAGE ABERRATION. FRINGE
AND VISIBILITY VECTORS

In the following we consider 65 =(2n/)\)[(€+q)—(?+a)] instead of
6 =(2/A)[(P - Q) - (p - q)] . Asamatter of fact, dB; =0, d6, =0 lead both
to the same equation

NVQ! (k -€) - (k —©)] =0. (12)

For neighbouring rays we have deﬁ =doy +d26 /2+ and thus
d? (¢+q=-¢-q)=0.. As d?q= d(drN ) =d? rdN B:+drdN [t +dfN [tic
and dfdN [t = (drf EBdr)(ﬁ [¢) according to Eq.(5), the curvature tensor
B=-0; On _of the hologram intervenes if it is curved. The last increment
gives dc=CNdf/q with the projector C =1 —c O c. In summary, we obtain

d?§ = (N d?F) [E+df Bz dr , d’q=(N d?)[e+df B df
d*¢=-(Nd?F)k-df[Bg df B =B(A[t)+ NCN/q, (12)
Bz =B(R[E)+NCN/§, B =B(hAlk)-NKN/Z
On the other hand, we may write for the second differentials of any curve
according to Egs. (9):

N d?F = QN d?F-V D (dfD,, dF),
GG NG OA 13
=[(y V) NT|N#[(0n 0 OV R 13
Further, the relations dr =—(MT dk dr. ——KMTdk describe two affine
connections, where M =1 - (A0 k)/(n Elkg M=1-(A0k)/(Ak) are
oblique projectors. We note aso that d é——(Ndzr)Ek (drBdr)(nik)
—-df N[k does not give a projector for dk, because the origins of two
intersecting rays a R are two skewed rays with an astigmatic interval (R). If
we resolve d?(¢+q- 7 - q) =0 with respect to drN [dk, the terms with the

factor Nd?f are cancelled because of Eq. (11). The isolation of a factor dk
givesthen dk = ¢Tdk, where

T =-M{B. - B(A [k)

~QV I[Bz ~B( k) + Dy VP (k -8)+K/AVIQIIMT  (19)
describes the curvature of the converging nonspherical wavefront in H.
The inverse values of the distances /,,/, to the foca lines are the
eigenvalues of the symmetric (!) tensor T. The quadrangle between the
hologram and the object shows the equation of transverse ray aberration

Kdr = Kdr — pdk =-¢(dk + pTdk). We combine now both affine connections
with the deformation gradient and the polar decomposition (4) to find the bridge
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¢dk = 7KV CPQI M Tdk  between reconstruction and recording. It leads to the
inverse projected virtual image deformation

Kdr =—(¢ + p)dkG: =G5 (KdF), Gg= Zipr) Er +% K E/“”QNT . (15)
If there is a sufficient apparent overlapping of the corresponding surface
areas A, A, projected by the aperture A,, we may write k —k' O- KG/L',
where the superposition vector fg =Ku should be very smal compared to
the diameter of these areas, otherwise the correlation is not possible. The
strain should not be too large, so that the sizes of the areas do not differ much.
We use further the collineation K'dp=-(¢'+p' +L")dk' and the relation
dr'=M'T(K'dr"). The projector M'" =1 — (k' O n")/(k’ ") is called shadow.
We introduce now Eq.(15;) (with primes) into Eq.(7) _and express
dk'=-m'dp’ by a lateral unit vector m’ and an increment dB’. So we can
write dDg, /dB’ = A OOf '5,, which implies the fringe vector []
fla =/ +P)GEMIK -h)-QV P (k-h)]-K'fs(/+p +L")/L". (16)
It is normal to the fringe in the plane of sight and its inverse value is a
measure of the fringe spacing. At this point it is perhaps judicious to specialize
in the real-time technique, applied to a small object deformation and combined
with a rigid body motion of the hologram. Here we perform the follow-
ing approximations: QY. P ON-y-QE+n0w,  h Oh+Hu/Ls,
fo OKO, k'Ok+KG/L, VQl ON+oOA+QE, k Ok+ K(t-u+u)/p,
¢ Oc+ Ct/q. If weintroduce the last three relations into Eq. (11), we obtain the
linearized image condition

K(t-u+0)/p=-M[(@On+QE)K-c)-Ct/q]. (17)

On the other hand, if we insert the first four approximations into Eq. (16), we
get with M'=M'N’, N'ON +wOn+nOw, G'% OK and Eq.(17) the
linearized fringe vector

f'5 O(¢+ pM[(y + QE +wO n)(k —h) - Hu/Lg]
—IM[(®@O A +QE)(k -c) - Ct/q] + K (t - u). (18)

As we expect, the trandation and the rotation of the hologram are related to
the strain and the rotation of the object surface by means of the fringe interspace

and direction. The visibility is determined like in the standard case [*]. The
complex amplitudes over theareas A, A’ are

U= J’J’;(é}z /LS| L Dexplid - 2riL /A]dA
and B
U= [, (S explif - 2ri(L - D)/A]dA.
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Here S and K denote source- and inclination-factors, whereas D=D +ADg O
D+dk’[f' If G'(r") UG(r) isthe statistical function of the roughnesswnh

<G(r‘)GD(r=)> =C3,(F -T)
(Dirac-function) and if
SKdA/L,L OSK'dA/ gL,
the cross-correlation reads

1., O 2
r_§<uu > |r|epo——(D+5)H

2 o=
Dexp%—z—nDaAsz S 5—2—“‘@ BdA (19)

where & summarizes the influence of ADy. The visibility becomes then

oo

a ‘ﬂ exps dk o EdAO‘ (20)

| =V [J201" denotes the intensity of_one field. Since K is now the fixed
point, we must exchange v+ p by - L' in Eg. (16) to obtain the explicit
expression of the visibility vector

fe =DGEMK - ) -QV P (k—h). (21)

It gives the shortest distance of the skewed homologous rays. The fringes are
contrasted if the value of this vector, divided by the distance to K, is small
compared to the ratio of wavelength and aperture diameter. The visibility
depends thus only of the derivative of the path difference. The intensity of the
fringe field is J =1 +I'+F+FDD2l{1+Vcos[2n(D+5)/)\]}. Again, let us
specidlize in the real-time technique. According to Eg.(1) in the
introduction, we define 2m[u{k —h) -t (k —c) +J]/A =Agp, where o is
usually neglected. We get then, for example, with three frames Ay, = 2m/3,
Ay, =0, AY;=-2m/3 three intensities J; =2I[1+V cos(Ag - 2m/3)],
J, =2I[1+V cos(Ag)], J;=2I[1+V cos(Ap+2m/3)], so that the “detected
visibility” becomes

V=33, - 3,)2 + (3, + 3, - 23,) 6l .

Findly, if we have a good contrast of the fringes (f' J0), the second
derivative of D (see aso [*]) becomes after some calculatlons
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—erﬁtﬂh%k“@nﬁ—?zrﬁ'... 22)

The symmetric tensor
T =M{Bz - B(Ak) - Q:V "V[B¢ - B(A k)
+Dy V(P (k-c)-K/plV I QI mT (239)

is dual to the tensor T of Eq. (14) and describes the curvature of the diverging
nonspherical wavefront in H. It determines also the astigmatic interval ?
whereas the symmetric tensor

T-=M{B'y -B'(n"k)-QV "Y[By -B(nk)
+Dy [V (k=h)+K/p]V VQiim T (24)

expresses the influence of the changes of geodesic and surface curvatures on the
deformation.

4. ASPECTS IN GENERAL. AN INTERPRETATION OF
SCHWARZSCHILD’S SOLUTION

The remaining sections are only indirectly related to the previous subject. An
extension should first illustrate Egs. (9) and (10), which contain projected
deformations, the polar decomposition Eg. (4), and the curvature Egs. (5). But
second, this procedure should also focus on the problem of general gravitational
fields. For B =0, Eq. (10) gives the curvature B' of a surface A’0OR’as a
deformed part of R2. This can be generalized to ahypersurfaceA OR" where it
leads to the Ricci tensor R. We recall the components R,z = F o B -r O,ﬁ At
M s —TheT i with Chrlstoffel symbols Fg,‘ﬁ a™(ayq.p + 84
~38.u) / 2 and the metric tensor” a,, . Thelatter shows the components of the
projector N'=1-n", On', —aBa Oaf =a” Oa,, with unit normas n',
(i ssim1to n-k; a,p sum ltokorOto k—l). The Ricci tensor is the
contraction of the 4th-order Riemann—Christoffel tensor R. It can be seen that
we may write (see aso, e.g. ['], pp. 34-36)

RT=N'|{N[O, 00, ON)-0, 0, ON)IN}|N’
=B, 0B,-B,0B"]]", (25)

where B, =-Q.V (@, On,)N'=-Q.v @, 0Q,n)N' according to
Egs. (4), (5), (10). The double square bracket indicates a transposition of the
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factors 2 and 4 in the last quadratic. The Ricci tensor becomes then by
contraction alternatively

R=B"B'; -B'{ (B’ IN'), (26)

with the trace B'; [N'. We outline now an interpretation by two virtual
deformations of Schwarzschild's solution for the central gravitation (round a
spherical star) as asimple example. The well-known fundamental form [*] reads

2
do? =-H-M Bz I L2002 028n% 097, (2)
O r 0 1-2M/r
with coordinates r,0,¢, time t, velocity of light ¢, and Schwarzschild radius
2M, sothat a, =—(1-2M/r), a; =(1-2M/r)™", ay, =r?, a; =r’sin’6.
For the following it is convenient to introduce an angle , defined by
sng =,/2M/r. We write further the spherica part in the form
r’dg? +r’sin®0d¢?® =dr (Kdr, where K=N( -kOK)N=N-kOk
denotes a projector referring to the radial unit vector k(6,¢). First we
consider only the partial fundamenta form of the space part
ds? =dr [k O k)/cos?  + K]dr =dr (WVdr, which leads immediately to the
inverse dilatation V¥ —(ka)cosw+K and aso to the components
R, =tan’y/r?, Ry =-siny/2, Ry =R,,sin?@ of the 3D-Ricci tensor
Ry,. Alternatively, this tensor and a hypersurface A* 0 R* may be got from
r'=rk + w(r)n, where the vector n denotes the unit normal of the subspace
R°OR® We have then dr'=dr[kO(k+w,n)+K]=drNF', because
O, 0k=(N-kOk)/r=K/r. As we have ds?=drINF'FNdr=
dr[[](1+w2)(kD K)+K]dr, a comparison gives cosw—]/,/1+w thus
W turns out to be the inclination. The polar Eq. (4) is Q,N = FRV (D =
k'Ok+K, where k' =k cosy + nsing, and further Q, =k’ Ok+n'On+K,
Q,V ™ =k’ Okcosy + K with the normal n'=-ksing +ncosy. By the use
of a sort of key relation (sing), =-siny/2r, the derivative is
O, 0n =k Ok tang/2r —K sing/r. We obtain then with K IN' =2(r, =r,)
the curvature B'=-Q.\V (0, On)N' =(sing/r)[- (k' 0k)/2+K] =
(k'OK")/r,+K/r,, aswell as

Ry = B'B'-B'(B'IN")

=—i(k'Dk')—i%l+_EK 5 YHeo —EKH. (28)
Iy O 2

rlrz rz r O

In fact, we have here Rf=sin’y/r?=Rya", R=-sin*y/2r?..
conformal to the previous components. In 2D, where K[N'=1 we
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would obtain R, =(k' Ok +K)sin?¢/2r? and w, =(r/2M 1) 2
determines the well-known vaselike suface r=2M +w /8M ([16]
p. 837). Second, the fundamental form ds'? = —(cos? L,U)Czd'[ +(cos W) tdr?

of the first two terms of do'? gives R? =R11-—S|n w/r?. Alternatively
to ['] we introduce with another normal i a vector ' =2M cosyk + W(r)n
for k =k, cosat + hysinat, h=-k,sinat + h, cosat. The virtual deformation
reads dr"-2M[dkcos¢,U+drk(cos¢,U) ]+drw n= drNF T, where we have
dk=dr(hOh)/r, (cosy), —sm L,U/2r cosy and I =rk. The deformation
gradient is FN =(hOh)sin®y cosy + (ksin l,lI/ZCOSl,U +w MOk and
the inverse dilatation becomes V ™ =h O h(sin®y cosy)™ YKkD k cosiy.
Therefore the reverse polar decomposition gives Q; N =FNV (V=
hOh +(ksin*y/2+AW,cosp) Dk =h O h+kK’ Ok, so that we get for the
angle of rotation 17/2 - x the relations sin x =sin (,U/2 W, =cosy/cosy. In
addition, we  have k'=ksinx +ncosy, n' ——kcosx+nsm)(,
(2M/r)(dr th) =(2M/r)irexdt =icdt, w=c/2M . The curvature of this goblet-
like surface becomes finally, with x , =-2tanx/r, B’ —(snt,u/r)[r](hD h) +
(k"Ok')/n]=(hOh)/f + (k' Ok')/f , and the 2D-Ricci tensor is

Ry =—(Rpr)(hOh+k' Ok’) =—(sin’y/r’)(hOh+k'0k). (29

Note here that n-tant,u/Ztan)( |s not relevant in Eq. (29). Third, we
replace, now on a sripe S$*0R° aong the first meridian, B’ by
Bi=(hOh)/rp+ (K'OK')/r,+K/r, and B’ by B, =(hOh)/ip+(K'OK")/f,
where the relation cosfB/f, =sin8/r; must hold, and B,m/2- 3 are the
anglesof n';,n’, with respect to n'. The 4D-Ricci tensor is then by composition

Ryp = B1 B1~B1(B;IN’) + By By~ B3(B3[N)
= =(Yrorz +1rry +1ror) K = (YTofy +3/ror; + 2/1or,)(h O h)
= (I/fofy +ror + 2/nyrp)(K' Ok’) =0 (30)

valid if 1ry=1r, ==12r, ==sing/2r, Yr,=Yr =tanB/r,, tanf =43,

=11/3. Equation (30) is compatible with Egs. (28), (29) and therefore with the
equations R,; =0 in components, because 1fof +1/ror =1/Tn =—2/nr,.
Thus, Eg. (30) is an “intrinsic” form of the field equations in vacuum. The
Riemann—Christoffel tensor R (expressed by B';) has the components as, e.g.,
thosein [*°], p. 284, Eq. (10.11).

5.REMARKS CONCERNING NONSPHERICAL FIELDS

An equation similar to (30) holds in the general case r, #r, for S* O R®if k
is norma to the surfaces of constant “potentia” U. In this case we have
Ug+2U,/r=0, U =kI,U with the normal arc s. We define then
W' sing =2(MuU 3)1’4 0 that
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d(s(ijnt,u) __pSny _ T dllogn) (31)
S 2F 2 ds

Equation (31,) isasimilar key relation as before (where p =1). On an axis of
symmetry we shall find p=7°K, where Yr=(/r, +1;)/2 is the mean
curvature and K =1/r,f; isthe Gauss' curvature of the surface U =const. At an
arbitrary point, however, two “pivot”-rotations a,y turn first k into a unit
vector k". The angles a,y must be determined by the condition of vanishing
mixed terms in the fundamental form ds? =dr (k" O k")/cos? ¢ + K "dr.
The inclination ¢ rotates then from k" (instead of k) out of the flat space into
the vector k'. The principal result will be p"=rr"K" where
Yr"=@/ry +1/ry)/2 is the mean curvature and K" =1/r;rs’ is the Gauss
curvature of the surface with normal k". The field equation

Rip = - 1ﬁ+i+i~E(hDh)—Eé+i+éE(k'Dk')
ofr Tofli Tof ol Tolr Mf

_%+i~+i U=0 (32)
of  nr Irg

looks like Eq. (30), but the projector K= N-k"0k" appears now instead of
K=N-kOk. It holds apparently for 17 =sing/r" 1ry=1r=
-p sing/2r, Vi, =Yf =tanB/r,, tanB=,4r/pT"-1, and with

Yr, = sing/ry’, 1r, =sing/rS. For the proof we begin with the unit normal
n' =—[kcosa + (tcosy + usiny)sina]sing +ncosy , but to simplify, we consider
only rotational symmetry y =0, since the general case leads in a similar manner
to the same result. Therefore, the derivative of the unit normal becomes simply
O, 0n'=-0w 0k'-[d,a Ot%+ (0, Ok)cosa + (d, Ot)sinalsing. In addi-
tion, we have 0,0k =0, Ok+kOk¢=B,+kOt/p,, where 1/p, is the
curvature of the line normal to the surfaces U =const. The other derivative is
0,0t=(0, Ot)uDu-BtOk-kOk/ p,, with (O, Ot)u=u/ftang. The
factor 1/r;tang marks the geodesic curvature of the parallel circle and ¢
denotes the angle of declination. In summary, we get with 0O =
k"o tanyw/2r as follows: O,0n =k"0k' p tany/2r - [(O,a +k/p, +
t/F,) 0t"] +ul u(cosa +sina cotg)/f]sing . The condition of a vanishing
mixed term in the square bracket is kI,a = - (sina/f, + cosa/p,), o that
1/ry =cosa/F, —sina/p, +t"M,a, 1/r;'=(cosa +sinacotg)/r, are the
explicit expressions of principal curvature. To determine the angle a, we
deduce from t” M, =0 the relation t" D, (uU ()=0, which gives with
t”“=tcosa —ksina

, p=1

116



tanaz—LtDDn[Iog(uU Jl- (33)
2p ’

Thevalues p and u depend on a; thus an iteration process should be used for
the solution of Eq. (33).

We obtain afterwards the 3D-curvature B'=-Q,V9(0,0n)N’'=
(kK'OK)/n+Blsng, where B/'=0,0k"=@"0t%)/r,+uOu)/r
Further, the corresponding 4D-curvature is B'; =[(hOh)/ry + (k'OK')/r +
Bszint,U]/\/z and similarly we have the 2D-curvature B', =[(hOh)/r, +
(k'Ok"Y/R] / V2. Wewrite then the following combinations

B!l Bll _ Bll(B!l EN !)

;2 o
:—%+i~%hmh)_ l +i~§klmk,)+gn W%BE_KDKDE'
ol fof %ror1 rof 2 r

BI3BI3 — BI3(BI3 m I)

i a2 O
:-Ezi+é%hmh—(...)k'mk'+s'”‘”E%eDBEeﬂ-KDKDE (34
ol Tof 2 r

B; By~ B5(B5IN)
L (hoh) -1 (KOK) = B} By~ By(B4IN).
fof 21y

The second line shows again a 2D-permutation tensor E", respectively an
involution E"(...)E". Adding up the three expressions (34), we get in fact with
B, -E"BE"=2K"/r" and with 1r,=nsing/r”, 1 =p sny/nr,
Yrofy +1/ror, =11oF, == 2/r,r (similar to the spherical case) the vanishing
4D-Ricci tensor (i sum from 1to 4)

)
R, =B B, —B', (B’ D\l’)zsjnzw%%—r(ﬂ%ﬂzo. (35)

In some way this procedure represents a semi-inverse method to find the
nonspherical field.

Besides, as to the general gravitational lens, we recal the common
differential equations of any geodesic curve in components and with Christoffel
symbols: d’6” (s) +T%,;d67d6” =0.

Alternatively, one can use the variational principle

5Ifds =J'1;9A3|r'#9 |d9 = ijF(r'ﬂ)dﬁ =0

and the auxiliary conditions G, (r') =0 (j =1,...,n—k) for a“hypersurface” Ax.
We have then first the tangential unit vector dF/dr' ; =a and afterwards a

117



vector in the hyperplane norma to the curve d(9F/dr' y)/dd = Ar’ 4 /F,
where A=1 -alJa is the corresponding projector. As p;dG; /or' = u;gn’; =
v;n';, we obtain with this notation and the application of the projector
N'=1 -n", On’; Euler'sequationintheform N'Ar’ 4 =0, or N 'd?r'(s) =0.
To obtain the |mage equation by the backwards deformation into the flat space,
we may then apply Egs. (9), which are also valid in higher dimensions. A
combination with four parts, similar to what we performed with Egs. (34), but
which we do not outline here in detail, leads to the result

. 2
A2ty (07) = kmyﬁ(da’z — 3dr K ). (36)

In particular, we have for a 4D-null-geodesic or light ray do'? = -kd3d?,
k-0 and thus Nd2r,, (9)=k"sin2g+K" (-3dr CK"dr)/2. This is the
generdization of the known result Nd’r, (9) =k sin®y (-3dr (Kdr)/2r from
the spherical-symmetric case.

6. ROTATING BODIES. A TENTATIVE APPROACH TOWARDS
THE KERR-SOLUTION

Using the previous frame for nonspherical fields and a certain tentative
composition, we can outline a result, which is similar to the Kerr-solution for a
rotating star. To simplify, we assume the body to have a spherical form, but the
surrounding field is nevertheless nonspherical because of the rotation. We recall
first of all some additional elements about classical grawty and inertial forcesin
the flat space. The Schwarzschlld radius 2M =2GM/c? contains the constant
G =6.668x10 "1 kg™t m®s? and the mass M. If m denotes provisionally the
mass of another small body lying in the system which rotates together with the
central body, we can write for the gravitational potential U =-GMm/r,
U= U/mc -M/r and similar for the scalar of the centrifugal force
V=- /2 V=V /me? =-(Q?/2¢?)(r [K,r). Here Q is the angular
veIOC|ty, r0 |sthe distance from the axis of rotation, and K, =N -k, Ok,
the normal projector onto the equatorial plane. We pass now to the gradlent of
thesumU +V:

1 Q? M i M
0, +V)= ME—Sr e KOrE:r—S(N - p3r3K,)r =r—3(|\| - XKo)r.

(37)

Here p~=Q%/Mc? defines a parameter p of dimension “length” and
X=p°r’=0Q%3/GM is another dimensionless parameter for the third power
of r. In some way x describes in the equatorial plane the ratio between
centrifugal and gravitational force at the distance r =r, from the centre. The
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unit normal of any surface U +V =const is k =(N — xK,)r/W so that the
2D-curvature tensor reads

B, =0, Ok =%[K—XKKO -0, x OKer =0, (logW) O (r — xK,r)], (38)

with the abbreviations

W =41 [ko O Ko)r + (L= x)2(r TKor), Dyx = 3p~3r20,r =3xr 2Kr
and

O (logW) =[K (ko O ko)r = 3(L= x) (x/r *) (r TKor)Kr + (L= x)* KKor [W*.

Note that at a general point k #r/r , so that one must apply the iteration with an
equation of type (33) to find a. However, at points of symmetry we have
k=r/r, Dk)( 0, WhICh simplifies the problem. On the axis of rotation, e.g.,
weget k =k,, W=r, =(1- x)Ko/r, p=1 but cos’y <1-2M/r, ascan
be verified. On the other hand, we obtain in the equatorial plane k [k, =0,
W=(1-x)r, B,=(K-xKK,)/@-x)r. The different curvatures and
invariants are there:  1/r, = Jé/(l X)r, J/r3 J/r Yr=(2-x)/22- x)r,
K =1/(1- x)r?, sothat p=r°K=4(1-x)/(2- x)?. Further, as (U +V) ¢ =
kD,U +V)=wWM r3, we get for the inclination ¢: siny=
V2AMUU, +V I 4 =V2M [u(r 2 - po01Y 4 = J2M/r - I 4. The
key reIatlon Eq (BLy) is (siny), =-psing/2r, but p=(2+x)/(2-x)—
(logu) , 17 2 differs from Eq. (31,). Thus, we find for the factor u with
X -3p r? =3x/r thesolution

_ 2/3
diog) . (4=x)x 0y 2CA-x/9"° (39)
dr (2-x)A-x)r 1-x

If we take into account the |Imlt)5 0, siny = 2M/r u=1 We have by
necessity C=1. As sin*y = (2M/r) u(l X)=(2M /r)* (1- X/2) , We get
further for the other limit x — o, sin®y - 2MQ/c. This means that very far
away from the centre the scalar V of the centrifugal force alone does of course
not give an interior curvature of space (p =0, i.e, the constant inclination
determines a developable conical surface). In summary, we obtain for the
fundamental form in the rotating system and in the equatorial plane

do'? =—(cos? )c?dt? +r?dg? + (cos® ) dr? +r?d6?, (40)
where the coefficient of “inclination” and the parameter x are
) 2M 13 Q%r® Q%3
cos Y =1-—|1- x/2["°, = =—. 41
W . 11-x/2] X=Z = oh (41)
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In case of a smal angular velocity Q the approximation cos?y O
1-2M/r +Q?%2/3c? holds.

If we pass how from the rotating system to the “fixed” system, we must apply
the special Lorentz-transformation for the circumferential motion

_ cdt - (Qr/c)rd@ rdg — Qrdt
J1-(Qr/c)? , V1-(Qr/c)’® |

so that the fundamental form in the “fixed” system (variables with a bar on top)
becomes finally

cdt

rdg = (42)

[cdt — (Qr/c)rdg]? . (rdg — Qrdt)? . dr?
1-(Qr/c)® 1-(Qr/c)®  cos’y

do'? =—(cos® ) +r%de?. (43)

This last form may now be compared to the Kerr-solution [**?°], which was
found by another way and which reads for 6 = /2 according to the notation
in[*], p. 305, Eq. (10.58):

4

—12 _ _
do'" =-—;

2
[cdf — ad@]? +i2[(r2 +a?)dp - acdt]? +%c|r2 +r2de?, (44)
r

-

where A=r?-2Mr +a® and a contains Q. Here it should be noted that the
angular velocity intervenes in Eq. (43) in different places for two different
reasons: (a) in the factor cos?y because of Egs. (41), (b) in the term (Qr/c)?
because of Egs. (42). If the central body has a nonspherical, e.g., ellipsoidal form
in case of arapid rotation, the calculation of cos®( would be similar, but more
complicated.
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Koverpindade suurte deformatsioonide analtits
holograafilise interferomeetriaga ning moned markused
mittesfaariliste gravitatsioonivaljade ja p6orlevate
kehade kohta

Walter Schumann

On vaadeldud suurte deformatsioonide mddtmist hologragfilise interfero-
meetriaga. Seni ndhtamatute ribade esiletoomiseks on vajalik rekonstrueerimis-
protsessi modifitseerida. Ribade paigutust ja kontrastsust iseloomustatakse riba-
ja nahtavusvektoritega. Kéiguvahe esimene tuletis on seotud deformatsiooni-
gradiendi ja afiinsete seoste polaarse dekompositsiooniga. Modifitseerimisel
tuleb kujutise aberratsiooni vaadelda koos geodestiliste kOveruste ja pinna
kbveruste muutustega. See viib samasugustele probleemidele hiperpindade
puhul ja thele Schwarzschildi lahendi interpretatsioonile virtuaal sete deformat-
sioonide kohta. Mdned jareldused puudutavad ka mittesfaérilisi gravitatsiooni-
valju jakatset |aheneda Kerri lahendile poorlevate kehade juhtumil.

121



