
Proc. Estonian Acad. Sci. Phys. Math., 2005,54, 1, 55–62

Controller and controllability canonical forms
for discrete-time nonlinear systems*

Ülle Kotta

Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn,
Estonia; kotta@cc.ioc.ee

Received 2 April 2004, in revised form 30 September 2004

Abstract. The paper studies the controller and controllability canonical forms for single-input
discrete-time nonlinear systems applying the algebraic formalism of one-forms. Necessary
and sufficient conditions are given under which the system can be transformed locally into the
controller or controllability form by means of a coordinatetransformation. These conditions
are formulated in terms of integrability of certain subspaces of one-forms, classified according
to their relative degree, and in terms of factorizability ofa given function in a certain way.
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1. INTRODUCTION

It is well known that the issue of canonical forms plays an important role in the
theory of linear systems. The controller form is frequently used for constructing the
state feedback, and the controllability canonical form is determined by the fact that
its controllability is given structurally, i.e. independently of the parameters of the
system. This definition also means that controllable linear systems can be always
transformed into an equivalent controllability canonical form. A comprehensive
treatment of the nonlinear controllability and controller normal formsin the
continuous-time caseis given in [1] for scalar input systems of general form, and
in [2] for systems, linear in control.

This paper concentrates on controller and controllability canonical forms for
single-inputdiscrete-timenonlinear systems. Though the results are similar to those

* A preliminary version of this paper was presented at the 5thIFAC Symposium on
Nonlinear Control Systems (NOLCOS 2001).
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of the continuous-time nonlinear case, the mathematical tools used are different. We
apply the algebraic formalism of one-forms developed in [3] to study accessibility
and state feedback linearizability. The conditions are given under which anonlinear
discrete-time system can be transformed into the controller and controllability form
by means of a coordinate transformation. Basically, these conditions are given in
terms of integrability of certain subspaces of one-forms and factorizability of given
functions in a certain way.

Note that the transformation of nonlinear discrete-time systems into the
observer canonical form is studied in [4]. Paper [5] presents necessary and sufficient
conditions for a discrete-time nonlinear dynamical system to be equivalent tothe
so-called feedforward form.

2. ALGEBRAIC FORMALISM

Consider a discrete-time single-input single-output nonlinear systemΣ
described by the equation

x(t + 1) = f(x(t), u(t)), (1)

whereu ∈ U ⊂ IR is the input,x ∈ X, an open subset ofIRn, is the state,
f : X ×U → X is a real analytic function. In order to be able to use mathematical
tools from the algebraic framework, we assume thatf(x, u) is generically a
submersion, i.e. genericallyrank[∂f(x, u)/∂(x, u)] = n.

Below, we recall some material from [3]. Let K denote the field of mero-
morphic functions in afinite number of variables{x(0), u(t), t ≥ 0}. The
forward-shift operatorδ : K → K is defined byδζ(x(0), u(0), . . . , u(N)) =
ζ(f(x(0), u(0)), u(1), . . . , u(N + 1)), i.e. the forward-shifts of a function can be
obtained by substituting the variables by “forward-shifted” variables and, more-
over, x(1) is determined by the system equations (1). Under the submersivity
assumption the pair(K, δ) is a difference field, and up to an isomorphism, there
exists a unique difference field(K∗, δ∗), called theinversive closureof (K, δ).
Hereinafter we assume that the inversive closure(K∗, δ∗) is given and use the same
symbol to denote the difference field(K, δ) and its inversive closure.

We denote byE the vector space spanned overK by the elements ofdxi(0),
i = 1, . . . , n andduj(k), j = 1, . . . , m, k ≥ 0, namelyE = spanK{dxi(0), i =
1, . . . , n, duj(k), j = 1, . . . , m, k ≥ 0}. Any element inE is a vector of the
form

ω =
n

∑

i=1

ϕidxi(0) +
∑

k≥0

m
∑

j=1

ϕjkduj(k),

where only a finite number of coefficientsϕ are nonzero elements ofK. The
elements ofE will be called one-forms. Denote(dx1(0), . . . ,dxn(0)) = dx(0).
The operatorδ induces a forward-shift operator∆ : E → E by
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∆ω =
n

∑

i=1

δϕid(δxi(0)) +
∑

k≥0

m
∑

j=1

δϕjkd(δuj(k))

=
n

∑

i=1

δϕidfi(x(0), u(0)) +
∑

k≥0

m
∑

j=1

δϕjkduj(k + 1),

wherefi(·) is theith component off(·) in (1).
The relative degree of a one-formω ∈ spanK{dx(0)} is defined to ber =

min{k ≥ 0 | ∆kω 6∈ spanK{dx(0)}}. If such an integer does not exist, setr = ∞.
The relative degree of a functionϕ(x) ∈ K is defined to be the relative degree of
the one-formdϕ(x).

Introduce the sequence of subspacesH0 ⊃ H1 ⊃ . . . ⊃ Hk of E defined by

H0 = spanK{dx(0), du(0)},

Hk = spanK{ω ∈ Hk−1 | ∆ω ∈ Hk−1}, k ≥ 1.
(2)

There exists an integerk∗ ≤ n such thatH0 ⊃ H1 ⊃ . . . ⊃ Hk∗−1 ⊃ Hk∗ =
Hk∗+1 = H∞. It is obvious thatHk is the space of one-forms whose relative
degree is greater than or equal tok. The subspacesHk are invariant under state
diffeomorphism.

Definition 1 [3]. A function ϕ is said to be an autonomous element for
system(1) if there exists an integerν and a nonzero functionF ∈ K such that
F (ϕ, δϕ, . . . , δνϕ) = 0. System(1) is said to be forward accessible if there does
not exist any nonzero autonomous element inK.

Proposition 1 [3]. System(1) is forward accessible if and only ifH∞ = {0}.

3. CONTROLLER CANONICAL FORM

The controller canonical form of a linear system is characterized by the fact
that it simplifies the feedback design. The nonlinear controller canonical form

x∗(t + 1) =











x∗
2(t)

...
x∗

n(t)
fn(x∗(t), u(t))











(3)

can be defined by analogy to the corresponding linear form and continuous-time
nonlinear form. Since the functionfn(x∗(t), u(t)) containsf1x

∗
1(t) + . . . +

fnx∗
n(t) + u(t) as a special case, the nonlinear controller canonical form is

consistent with the linear one. The characteristic property of a system in the
controller canonical form (3) is that those systems can be linearized by nonlinear
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static state feedback which obviously simplifies the controller design enormously.
By direct computation one can prove the following Proposition.

Proposition 2. For system(3) H∞ = {0}, or alternatively, system(3) is forward
accessible.

Proposition 3 [3]. SupposeH∞ = {0}. Then there exists a basis{ωi, 1 ≤ i ≤ n}
of spanK{dx(t)} such that tangent linearized system corresponding to(1)

dx(t + 1) =
∂f(·)

∂x(t)
dx(t) +

∂f(·)

∂u(t)
du(t)

yields the infinitesimal Brunovsky form

ω1(t + 1) = ω2(t),
...

ωn−1(t + 1) = ωn(t),

ωn(t − 1) =
n

∑

i=1

aiωi(t) + bdu(t),

whereω1 ∈ Hn, ai ∈ K, b ∈ K, andb 6≡ 0.

It is obvious that the infinitesimal form can be transformed into controller
canonical form if and only if the one-formω1 can be integrated (perhaps after
multiplying by an integrating factor). In [3], where the static state feedback
linearizability problem was studied, the necessary and sufficient conditions were
given implicitly for system (1) to be transformable into the nonlinear controller
form and the constructive algorithm was given (up to finding the integrating
factor and integrating the one-form) to compute the state transformations. These
conditions are recalled in Proposition 4.

Proposition 4. System(1) is transformable via state transformation into the
controller canonical form if and only if

(i) Hn+1 = H∞ = {0}, or alternatively, system(1) is forward accessible;

(ii) H1, . . . ,Hn are completely integrable.

It is obvious from the above theorem that in the nonlinear case, unlike the linear
case, not every accessible system can be transformed into the controllercanonical
form. For this to be possible, additional restrictive integrability assumptions should
be satisfied.

4. CONTROLLABILITY CANONICAL FORM

The notion “controllability canonical form” originates from the fact that
the associated controllability matrix equals the unity matrixIn, i.e. is given
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structurally. According to this, controllability no longer depends on the parameters
of the system. This definition also means that controllable linear systems can be
transformed into an equivalent controllability canonical form.

The discrete-time nonlinear controllability normal form

z(t + 1) =











− a1(zn(t), u(t))
z1(t) − a2(zn(t))

...
zn−1(t) − an(zn(t))











(4)

can be introduced by analogy to the corresponding linear and continuous-time
forms. The functionsa1(zn, u), andai(zn), i = 2, . . . , n, which are assumed
to be analytic, contain the expressionsa1zn + u andaizn, i = 2, . . . , n, of the
linear form as a special case. So the nonlinear controllability normal form meets
theconsistencycriterion.

The structurally given accessibility of (4) follows from Proposition 5 below. It
also reveals the fact that, unlike the linear case, accessibility is not enoughto be
able to transform the system into controllability canonical form.

Proposition 5. For nonlinear systems in the controllability form(4), the following
statements hold:

(i) the system is (forward) accessible;

(ii) The subspacesHk, k = 1, . . . , n, are completely integrable.

Proof. Compute the subspacesH1, . . . ,H∞. By definitionH1 = spanK{dz1(t),
. . . ,dzn(t)}. To computeH2, we have to find

H+
1

= spanK

{

−
∂a1

∂zn

dzn(t) −
∂a1

∂u
du(t), dz1(t) −

∂a2

∂zn

dzn(t), . . . ,dzn−1(t)

−
∂an

∂zn

dzn(t)
}

.

By (2),

H2 = ∆−1(H1 ∩H+
1
)

= ∆−1spanK

{

dz1(t) −
∂a2

∂zn

dzn(t), . . . ,dzn−1(t) −
∂an

∂zn

dzn(t)
}

= spanK{dz2(t), . . . ,dzn(t)}.

Continuing analogously, we getHk = ∆−1(Hk−1 ∩H+

k−1
) = spanK {dzk(t), . . . ,

dzn(t)} , k = 3, . . . , n, and finally,Hn+1 = {0}.
A simple consequence of Proposition 5 is the following conclusion.
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Conclusion 1. The controllability normal form(4) can be transformed into the
controller normal form(3).

Below, we look for conditions under which it is possible to transform system
(1) into the controllability canonical form, as well as for a state transformation
z = ζ(x) that brings system (1) into the controllability form (4).

From inspecting Eqs. (4) it is clear that the crucial step is to find the last state
coordinatezn. The other coordinates can be defined recursively from the formulae

zn−1(t) = zn(t + 1) − an(zn(t)),
...

z1(t) = z2(t + 1) − a2(zn(t)).

The key factor in definingzn(t) is to note that its relative degree isn. So, to find
zn(t), we consider one-formω in Hn, which contains one-forms of degreen iff
Hn+1 = {0}, i.e. if the system is accessible. But to definezn, we have to be
able to integrate the one-form, i.e.Hn has to be integrable. In that case we have
(perhaps after multiplyingω by an integrating factor)ω = dξ(x).

The converse of Conclusion 1 is not true. A nonlinear controller canonical
form (again, unlike the linear case) cannot be necessarily transformedinto the
controllability canonical form. For this to be possible, an additional condition must
be met.

Proposition 6. The controller canonical form(3) is transformable into the
controllability canonical form(4) if fn(x∗, u) is structurally additive

fn(x∗, u) = −a1(x
∗
1, u) − a2(x

∗
2) − . . . − an(x∗

n). (5)

Proof. If (5) holds, then the state transformation

zn = x∗
1,

zn−1 = x∗
2 + an(x∗

1),
zn−2 = x∗

3 + an−1(x
∗
1) + an(x∗

2),
...

z1 = x∗
n + a2(x

∗
1) + . . . + an(x∗

n−1)

brings the state equations into the form (4).

The following example shows that the condition in Proposition 6 is not a
necessary condition.

Example 1.
x∗

1(t + 1) = x∗
2(t),

x∗
2(t + 1) = x∗

3(t),

x∗
3(t + 1) = exp{x∗

1(t)u(t) + x∗
2(t) + x∗

3(t)}.

(6)
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Obviously,fn(x∗, u) = exp {x∗
1u + x∗

2 + x∗
3} does not satisfy condition (5).

However, an equivalent controller canonical form which satisfies (5)is possible for
(6) under the state transformationx̃i = lnx∗

i , i = 1, 2, 3:

x̃1(t + 1) = x̃2(t),

x̃2(t + 1) = x̃3(t),

x̃3(t + 1) = u(t) exp{x̃1(t)} + exp{x̃2(t)} + exp{x̃3(t)}.

Suppose we pickdξ(x) ∈ Hn to definex∗
1 = ξ(x). We may find that the

correspondingfn(x∗, u) does not satisfy (5). This will not necessarily be so for
other possible choices of̃x1 = g(x∗

1), as seen from the example above. This choice
definesf̃n(x̃, u) as follows:

f̃n(x̃, u) = g[fn(g−1(x̃1), . . . , g
−1(x̃n), u)].

The question whether or not (3) can be transformed into controllability form
may be reduced to the question whether or not

g[fn(g−1(x̃1), . . . , g
−1(x̃n), u)] = −a1(x̃1, u) − a2(x̃2) − . . . − an(x̃n)

or, alternatively, the functionfn in (3) may be written in the special form

fn(x∗, u) = g−1[−a1(g(x∗
1), u) − a2(g(x∗

2)) − . . . − an(g(x∗
n))].

Proposition 7. The controller canonical form(3) is transformable into the
controllability form(4) iff it is possible to find an invertible functiong(·) such that
the compositiong ◦ fn is structurally additive

g[fn(x∗, u)] = −a1(g(x∗
1), u) − a2g(x∗

2)) − . . . − an(g(x∗
n)). (7)

Proof. Sufficiency.Under (7) the state transformation

zn = g(x∗
1),

zn−1 = g(x∗
2) + an(g(x∗

1)),
...

z1 = g(x∗
n) + a2(g(x∗

1)) + . . . + an(g(x∗
n−1))

brings the state equations into the form (4).
Necessity. Assume now that (3) is transformable into (4). Sincedzn ∈

spanK{dx∗
1} = Hn and by (4),δdzn = dzn−1 − dan(zn), we havedzn−1 =

δdzn + dan(zn) = dg(x∗
2) + dan(g(x∗

1)). Following in a similar manner, we get
for k = 2, . . . , n − 1:

dzn−k = dg(x∗
k+1

) + dan(g(x∗
k)) + . . . + dan−k+1(g(x∗

1)). (8)

Finally, calculatingδdz1 from (8), we get

δdz1 = dg(fn(x∗, u)) + dan(g(x∗
n)) + . . . + da2(g(x∗

2)),

which by (4) has to be equal toδdz1 = −da1(g(x∗
1), u), yielding (7).
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5. CONCLUSIONS

Necessary and sufficient conditions are given under which discrete-time
nonlinear systems can be transformed generically into a controller or controllability
form by means of a state transformation. The first condition requires that, as in
the linear case, the system is forward accessible. The second restrictive condition
is formulated in terms of integrability of certain subspaces of one-forms, classified
according to their relative degree, and indicates that every accessible system cannot
be transformed into the controller or controllability form. Moreover, unlike the
linear case, every controller form cannot be transformed into the controllability
form. For this to be possible, in addition to the above mentioned conditions, a
certain type of structural additivity is required from the controller form.
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Kontrolleri ja juhitavuse kanoonilised kujud
mittelineaarsete diskreetsete süsteemide jaoks

Ülle Kotta

On leitud tarvilikud ja piisavad tingimused, mille täidetuse korral on diskreetse
ajaga mittelineaarseid süsteeme võimalik olekuteisendusega viia kontrolleri või
juhitavuse kanoonilisele kujule. Esimene tingimustest nõuab sarnaselt lineaarse
juhuga, et süsteem oleks juhitav. Teine kitsendav tingimus on formuleeritud süstee-
miga seotud teatud üksvormide integreeruvuse kaudu. Teisest tingimusest järeldub,
et mitte iga juhitav süsteem ei ole viidav kanoonilistele kujudele. Erinevalt lineaar-
sest juhust ei ole ka iga kontrolleri kanoonilisel kujul olev süsteem viidavjuhitavuse
kanoonilisele kujule. Et see võimalikuks osutuks, peab lisaks eelnevale kahele
tingimusele olema täidetud veel teatud aditiivse faktoriseeritavuse tingimus.
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