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Abstract. The paper studies the controller and controllability cacaforms for single-input
discrete-time nonlinear systems applying the algebraim#&tism of one-forms. Necessary
and sufficient conditions are given under which the systembestransformed locally into the
controller or controllability form by means of a coordinatansformation. These conditions
are formulated in terms of integrability of certain subggmof one-forms, classified according
to their relative degree, and in terms of factorizabilityaajiven function in a certain way.
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1. INTRODUCTION

It is well known that the issue of canonical forms plays an important rolesin th
theory of linear systems. The controller form is frequently used fortcocting the
state feedback, and the controllability canonical form is determined by ¢hehtst
its controllability is given structurally, i.e. independently of the parameterseof th
system. This definition also means that controllable linear systems can besalway
transformed into an equivalent controllability canonical form. A comprsiven
treatment of the nonlinear controllability and controller normal forimsthe
continuous-time casis given in ['] for scalar input systems of general form, and
in [?] for systems, linear in control.

This paper concentrates on controller and controllability canonical fooms f
single-inputdiscrete-timanonlinear systems. Though the results are similar to those

* A preliminary version of this paper was presented at the IB#AC Symposium on
Nonlinear Control Systems (NOLCOS 2001).
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of the continuous-time nonlinear case, the mathematical tools used arerdif&/ee
apply the algebraic formalism of one-forms developed’]rtq study accessibility
and state feedback linearizability. The conditions are given under wimiohlanear
discrete-time system can be transformed into the controller and controllabitity fo
by means of a coordinate transformation. Basically, these conditions\exe igi
terms of integrability of certain subspaces of one-forms and factorizabilgiven
functions in a certain way.

Note that the transformation of nonlinear discrete-time systems into the
observer canonical form is studied if).[Paper ] presents necessary and sufficient
conditions for a discrete-time nonlinear dynamical system to be equivaléimé to
so-called feedforward form.

2. ALGEBRAIC FORMALISM

Consider a discrete-time single-input single-output nonlinear sysiem
described by the equation

z(t+1) = f(x(t), u(t)), )

whereu € U C IR is the input,z € X, an open subset aR", is the state,

f: X xU — X is areal analytic function. In order to be able to use mathematical
tools from the algebraic framework, we assume tli&t, «) is generically a
submersion, i.e. genericaliynk[0f(x,u)/0(x, u)] = n.

Below, we recall some material frord][ Let X denote the field of mero-
morphic functions in &inite number of variablesz(0),u(t), t > 0}. The
forward-shift operatow : £ — K is defined bys¢(z(0),u(0),...,u(N)) =
C(f(x(0),u(0)),u(1),...,u(N + 1)), i.e. the forward-shifts of a function can be
obtained by substituting the variables by “forward-shifted” variables amate-
over, z(1) is determined by the system equations (1). Under the submersivity
assumption the paif/C, ¢) is a difference field, and up to an isomorphism, there
exists a unique difference fieldC*, §*), called theinversive closureof (IC,J).
Hereinafter we assume that the inversive clogiig ¢*) is given and use the same
symbol to denote the difference figlif, ) and its inversive closure.

We denote byt the vector space spanned ovémby the elements ofiz;(0),
i=1,...,nanddu;j(k), j =1,...,m, k > 0, namelyé = spany{dz;(0), ¢ =
1,...,n, duj(k), 7 =1,...,m, k> 0}. Any elementin is a vector of the

form N m
W= @idz;(0)+ > > @jndu;(k),
=1

k>0 j=1

where only a finite number of coefficiens are nonzero elements @&. The
elements of will be called one-forms. Denotglz;(0),...,dz,(0)) = dz(0).
The operatob induces a forward-shift operatdy : £ — £ by
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Aw = > 8pid(62:(0) + > > depjrd(du (k)
=1

k>0 j=1
= > Seidfi(2(0),u(0) + D> Spjrduy(k + 1),
i=1 k>0 j=1

wheref;(-) is theith component off (-) in (1).

The relative degree of a one-form € spany{dz(0)} is defined to be: =
min{k > 0 | A¥w ¢ span,-{dx(0)}}. If such an integer does not exist, et co.
The relative degree of a functign(xz) € K is defined to be the relative degree of
the one-formly(x).

Introduce the sequence of subspaks> H; D ... D Hy of £ defined by

Ho = spangc{dz(0),du(0)},

(2)
Hi = spang{w € Hig_1 | Aw € Hi—1}, k> 1.
There exists an integér* < n suchthatHy D H; O ... D Hpx1 D Hpx =
Hi++1 = Hoo. It is obvious thatH; is the space of one-forms whose relative
degree is greater than or equalito The subspacek. are invariant under state
diffeomorphism.

Definition 1 [?]. A function ¢ is said to be an autonomous element for
system(1) if there exists an integer and a nonzero functiod” € K such that
F(p,dp,...,0"p) = 0. Systen(1) is said to be forward accessible if there does
not exist any nonzero autonomous elemerit.in

Proposition 1[3]. Systen{1) is forward accessible if and only if{,, = {0}.

3. CONTROLLER CANONICAL FORM

The controller canonical form of a linear system is characterized byaitte f
that it simplifies the feedback design. The nonlinear controller canomical

P+ 1) = 3

can be defined by analogy to the corresponding linear form and conosrtiroe
nonlinear form. Since the functiof, (z*(¢),u(t)) contains fixj(t) + ... +
faxk(t) + u(t) as a special case, the nonlinear controller canonical form is
consistent with the linear one. The characteristic property of a system in the
controller canonical form (3) is that those systems can be linearized ridinear
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static state feedback which obviously simplifies the controller design enolynous
By direct computation one can prove the following Proposition.

Proposition 2. For system(3) H., = {0}, or alternatively system(3) is forward
accessible.

Proposition 3[3]. Supposé{., = {0}. Then there exists a basfs;, 1 < i < n}
of spany-{dz(t)} such that tangent linearized system correspondind}o

dz(t+1) = gigt; dz(t) + gi((t;

du(t)

yields the infinitesimal Brunovsky form

wl(t + 1) = u)2(t),

o (t+1) = wnlt),

wp(t—1) = Zn:aiwi(t) + bdu(t),
i=1

wherew, € Hy,, a; € K, b € IC, andb Z 0.

It is obvious that the infinitesimal form can be transformed into controller
canonical form if and only if the one-formay; can be integrated (perhaps after
multiplying by an integrating factor). In3], where the static state feedback
linearizability problem was studied, the necessary and sufficient conglitiene
given implicitly for system (1) to be transformable into the nonlinear controller
form and the constructive algorithm was given (up to finding the integrating
factor and integrating the one-form) to compute the state transformationse The
conditions are recalled in Proposition 4.

Proposition 4. System(1) is transformable via state transformation into the
controller canonical form if and only if

() Hn+1 = Heo = {0}, or alternatively systen(1) is forward accessibte

(i) Hi,...,H, are completely integrable.

Itis obvious from the above theorem that in the nonlinear case, unlike g lin
case, not every accessible system can be transformed into the cortaoiterical
form. For this to be possible, additional restrictive integrability assumptiomsigh
be satisfied.

4. CONTROLLABILITY CANONICAL FORM

The notion “controllability canonical form” originates from the fact that
the associated controllability matrix equals the unity matkjx i.e. is given
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structurally. According to this, controllability no longer depends on therpaters
of the system. This definition also means that controllable linear systems can be
transformed into an equivalent controllability canonical form.

The discrete-time nonlinear controllability normal form

— ax(za(t), u(t))

1) = z1(t) — az(zn(t)) (@)

Zp—1(t) — an(2n(t))

can be introduced by analogy to the corresponding linear and contitinogls
forms. The functionsi (z,,,u), anda;(z,), ¢ = 2,...,n, which are assumed
to be analytic, contain the expressiang,, + v anda;z,, ¢ = 2,...,n, of the
linear form as a special case. So the nonlinear controllability normal foretsme
the consistencyriterion.

The structurally given accessibility of (4) follows from Proposition 5 beltw
also reveals the fact that, unlike the linear case, accessibility is not enourgh
able to transform the system into controllability canonical form.

Proposition 5. For nonlinear systems in the controllability for(), the following
statements hold
(i) the system is (forward) accessiple

(i) The subspaceHy, k =1,...,n, are completely integrable.

Proof. Compute the subspaces,, ..., H. By definitionH; = spany{dz(t),
...,dz,(t)}. To computeHs, we have to find

M = span,c{ - %dzn(t) - %du(t),dzl(t) - %dzn(t), oz ()
Oan,
By (2),
Hy = AV (Hy N HT)
= A_lspan,c{dzl(t) - %dzn(t), coydzpoq(t) — %dzn(t)}

= spanyg{dza(t),...,dz,(t)}.
Continuing analogously, we gét, = A~ (H;_1 NH;_,) = spany {dz(?),.. .,
dzp(t)}, k=3,...,n,andfinally,H,+; = {0}. O
A simple consequence of Proposition 5 is the following conclusion.
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Conclusion 1. The controllability normal form(4) can be transformed into the
controller normal form(3).

Below, we look for conditions under which it is possible to transform system
(1) into the controllability canonical form, as well as for a state transformation
z = ((x) that brings system (1) into the controllability form (4).

From inspecting Eqgs. (4) it is clear that the crucial step is to find the last state
coordinatez,. The other coordinates can be defined recursively from the formulae

Zno1(t) = zp(t+1) — an(2a(1)),

A = z(t+1) — as(zn(t)).

The key factor in defining,,(¢) is to note that its relative degreers So, to find
zn(t), we consider one-forrv in H,,, which contains one-forms of degresiff
Hn+1 = {0}, i.e. if the system is accessible. But to defing we have to be
able to integrate the one-form, i.&{,, has to be integrable. In that case we have
(perhaps after multiplying by an integrating factory = dé(x).

The converse of Conclusion 1 is not true. A nonlinear controller caabnic
form (again, unlike the linear case) cannot be necessarily transfomm@dhe
controllability canonical form. For this to be possible, an additional conditiostmu
be met.

Proposition 6. The controller canonical form(3) is transformable into the
controllability canonical form(4) if f,,(z*, u) is structurally additive

fa(z®u) = —ai(x],u) — az(z3) — ... — an(z),). (5)

Proof. If (5) holds, then the state transformation

2y = 7,
Zn—1 = x5+ an(x]),
Zn-2 = T3+ ap-1(2]) + an(w3),
21 = af+ax}) + ..+ an(z]_y)
brings the state equations into the form (4). O

The following example shows that the condition in Proposition 6 is not a
necessary condition.

Example 1.
ri(t+1) = 3(0),
w3t +1) = ai(t), ®)
gt +1) = exp{af(t)ult) +a5(t) +25(0)).
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Obviously, f,(z*,u) = exp {zju + x5 + x5} does not satisfy condition (5).
However, an equivalent controller canonical form which satisfiegs(pdssible for
(6) under the state transformation= Inz;,: = 1, 2, 3:

fl(t + 1) = ig(t),
Ta(t+1) = Z3(t),
T3(t+1) = u(t)exp{Z1(t)} + exp{@2(t)} + exp{Zs(t)}.

Suppose we pickl{(x) € H,, to definez] = £(x). We may find that the
correspondingf,, (z*, ) does not satisfy (5). This will not necessarily be so for
other possible choices @f = g(z7}), as seen from the example above. This choice
definesf,, (i, ) as follows:

fn(‘%7u) = g[fn(gil(‘%l)v S 7971(‘%71)7 u)]

The question whether or not (3) can be transformed into controllability form
may be reduced to the question whether or not

9lfalg™ (@1), - g7 (@), w)] = —a1(Z1,u) — az(F2) — ... — an(Zn)
or, alternatively, the functiorf,, in (3) may be written in the special form
fal@*u) = g7 —ai(g(x]), u) — az(g(23)) — ... — an(g(}))]-

Proposition 7. The controller canonical form(3) is transformable into the
controllability form (4) iff it is possible to find an invertible functiog(-) such that
the compositiory o f;, is structurally additive

glfu(z®u)] = —ai(g(a}),u) —agg(z3)) — ... —an(g(zy)).  (7)

Proof. SufficiencyUnder (7) the state transformation

Zn = g(xT)v
w1 = g(ah) + an(g(a)),
g = g(at) +a(g@) + .+ an(g(zhy))

brings the state equations into the form (4).

Necessity. Assume now that (3) is transformable into (4). Sintg, <
spang{dzi} = H, and by (4),6dz, = dz,—1 — da,(z,), we havedz,_; =
ddzy, + dap(z,) = dg(x3) + dan(g(x7)). Following in a similar manner, we get
fork=2,...,n—1:

dzpr, = dg(zfyy) +dan(g(zy)) + ... + dan—g11(g(27)). (8)
Finally, calculatingbdz; from (8), we get
ddz; = dg(falz*,u)) +dan(g(z))) + ... + daz(g(z3)),
which by (4) has to be equal tolz; = —da;(g(x7), u), yielding (7).
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5. CONCLUSIONS

Necessary and sufficient conditions are given under which distinege-
nonlinear systems can be transformed generically into a controller or dahitity
form by means of a state transformation. The first condition requires thai, a
the linear case, the system is forward accessible. The second restcitidition
is formulated in terms of integrability of certain subspaces of one-formssifitss
according to their relative degree, and indicates that every accessibdenscannot
be transformed into the controller or controllability form. Moreover, unlike the
linear case, every controller form cannot be transformed into the diaitity
form. For this to be possible, in addition to the above mentioned conditions, a
certain type of structural additivity is required from the controller form.
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Kontrolleri ja juhitavuse kanoonilised kujud
mittelineaarsete diskreetsete suisteemide jaoks

Ulle Kotta

On leitud tarvilikud ja piisavad tingimused, mille tidetuse korral on diskreetse
ajaga mittelineaarseid stisteeme v@imalik olekuteisendusega viia kontrolleri voi
juhitavuse kanoonilisele kujule. Esimene tingimustest nduab sarnaselt §neaar
juhuga, et siisteem oleks juhitav. Teine kitsendav tingimus on formuleeristeksi
miga seotud teatud Uksvormide integreeruvuse kaudu. Teisest tingimuekkija
et mitte iga juhitav suisteem ei ole viidav kanoonilistele kujudele. Erinevalt lineaar
sest juhust ei ole ka iga kontrolleri kanoonilisel kujul olev stisteem viidaivavuse
kanoonilisele kujule. Et see vbimalikuks osutuks, peab lisaks eelnevatdekah
tingimusele olema taidetud veel teatud aditiivse faktoriseeritavuse tingimus.
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