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Abstract. We introduce two-sided automata defined by directed graplsdescribe all
languages recognized by these automata.
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Throughout the paper the wogtaph means a finite directed graph without
multiple edges but possibly with loops. Graphs and various objects ddrived
them are essential tools that have been actively used in different Hasraf
modern mathematics and theoretical computer science. It makes senseidercons
new ways of defining classical finite state acceptors using graph labelkangs
determine how properties of the acceptors depend on the propertiesarfgimal
graph labelling. The present paper continues the investigation initiatéd i [
where the concept of a graph algebra has been used in order to filetimstate
automata. We introduce a common generalization of two earlier constructions of
automata considered in the papers mentioned above and investigate psopertie
languages accepted by these automata.

We use standard concepts of automata and languages theory follGwihgA4
language over an alphabeX is a subset of the free monaid* generated byX. Let
D= (V,E)beagraph/: X — {+,—}andf : X — V any mappings, and l&t
be a subset of U {1}. Thetwo-sided automaton Atm(D) = Atm(D, T, f, ) of
the graphD is the finite state acceptor with
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(DA1) the set of state®” U {1};
(DA2) the initial statel;
(DA3) the set of terminal statés,

(DA4) the next-state function given by

| flx) fl(z)=+and(a, f(z)) € E, orifa=1,
“CTTY 0 i) = — and(f(2),a) € E,

for a statex andx € X.

Thus the edges of the transition diagram &fm(D) are also edges or reversed
edges of the graph.

Our first main theorem describes all languages recognized by two-sided
automata of graphs in terms of combinatorial properties satisfied by these
languages.

Theorem 1. For every language L over an alphabet X, the following conditions
are equivalent:

(i)  there exists a directed graph D such that L is recognized by a two-sided
automaton of D;

(i)  there exist two digoint subsets X and X, of X suchthat X = X_UX,
and, for all x € X,y € X_, z € X, and u,v € X*, the following
implications hold:

(@) zzu e Limplieszu € L,
(b) zu,zzv e Limplieszzu € L,
(c) zyu € Limplies zy*u € L,
(d) zv,zyu € Limplies zyv € L,
(@ zyu e Lifandonlyif yzu € L.
The second main theorem describes all languages recognized by #®eb-sid

automata of graphs in terms of regular expressions for their complemenen &i
relationG C X x X, put

G ={(z,9) | (y,x) € G}.

Theorem 2. For every language L over an alphabet X, the following conditions
are equivalent:

() there exists a directed graph D such that L is recognized by a two-sided
automaton of D;
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(i) there exist a subset X of X, digoint subsets X_ and X, of X, and
relations G; € Xy x X4, G € X_ x X_,and G C X_ x X, such
that X = X_UX, and the language X+ \ L has the following regular
expression:

(Xn NX_)X* + X*(Xy N X1 )X"

+ N X'o X o X+ Y XX, (1)
(i,27)€EG1UGS (z,25)€G2UGs

where X standsfor X \ X7p.

The concept of two-sided automata of graphs provides a common
generalization of two earlier constructions of automata introduced-i#] fand
motivated by the study of graph algebras and their applications. Grapbratge
have been investigated by many authors (see, for exanipl€]) in relation to
various problems of discrete mathematics and computer sciencé? ketV, F)
be a graph. The@raph algebra Alg(D) associated withD is the setV U {0}
equipped with multiplication defined by the rule

z ifzx,yeVand(z,y) € E,
TY = .
0 otherwise.

The languages recognized by these automata have interesting combinatorial
properties (se€'{?]). Our main theorem strengthens and generalizes several earlier
results of the papers cited above. A routine verification shows that thestate
function of the automatomtm(D, T, f,¢) can be defined by the graph algebra
Alg(D'), where D’ = (V,E~1), if we use the following condition equivalent

to (DA4):

(DA5) fora e Alg(D)U{l},z € X,

a.x:{f(x)a if {(z) =+
af(x) ifl(x)=—.

This means that acts as a left multiplication by the elemefitz) in Alg(D’)
if /(x) = 4, and as a right multiplication by(z) if ¢(z) = —. It follows that our
new definition embraces the automata involving only right multiplications (dge [
and the ones using only left multiplications (sép.[
Note that a languagg is accepted byAtm (D, T, f,¢) ifand only if L\ {1} is
accepted by
Atm(D, T\ {1}, f, ).

As usual, X™ = X*\ {1} stands for the free semigroup generatediy Since
conditions (ii) of our theorems remain unchanged if we repladsy L \ {1}, in
both proofs we may assume thatC X .
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Proof of Theorem 1. (i)=-(ii): Suppose that the languadeis recognized by the
automatonAtm(D, T, f,¢) of some graptD = (V, E). Define

Xy = {ze X | ) = +},
X_={zeX|lz)=—},

and consider arbitrary elementsy € X with {(z) = + and{(y) = —.

To verify implication (a), take any wordzu in L, whereu € X* andz € X.
Sincel - zzu is defined and belongs 1, it follows that(f(z), f(z)) € E. Besides,
f(2)-xz = f(x), becausé(x) = +. Thereforel - zu = f(z) - u=(f(z) -z) - u=
1-zzu € T. Hencexu € L, as required.

Now, pick arbitrary elementsu and zzv in L such thatu,v € X* and
z € X. Sincel - zzv is defined, we getf(z), f(x)) € E. Thereforel - zau =
(f(z)- f(z)) - u= f(z) - u=1-zue T, and sozzu € L. Thus implication (b)
holds, too.

Next, we verify implication (c). To this end, take a wotgu in L, where
ue X* andz € X. Sincel - zyu is defined and/(y) = —, we get
(F(y), F(2)) € E. Hencel - zy*u = f(z) -u = (f()- f(y) u=1 zyueT,
for all k € Ny. Thereforezy*u € L, as required.

Consider any elementsv and zyu in L, whereu,v € X* andz € X.
Clearly, zyu € L implies (f(y), f(z)) € E, becausef(y) = —. Hence
1-zyv = (f(2)f(y) - v = f(2)-v=1-2veT, andsozyv € L. We see
that (d) holds.

Finally, let us prove the equivalence (e). Take an arbitiary X* such that
zyu € L. It follows that(f(y), f(z)) € E. Implication (c) yields uscu € L.
Thereforel -yzu = (f(y)- f(x))-u = f(x)-u=1-2u € T; whenceyzu € L. To
verify the converse implication, suppose that. € L. Hence(f(y), f(z)) € E.
Besideszu € L inview of (a). Thereford - zyu = (f(x)- f(y)) -u= f(z) -u=
1-2zu € T. This means thajzu € L. Thus the whole condition (ii) holds.

(i)=(i): Condition (ii) involves the setsX; and X_. Let us labelz by
l(x) =+ if z € X4, and byl(z) = — otherwise. Introduce a graght = (V, E)
with the setl’ = X of vertices, and the séf = E; U F, of edges where

E1 = {(z,y) € X x X, | zyw € L for somew € X*},
Ey, = {(z,y) € X_ x X | yzw € L for somew € X*}.

Let f be the mapping fronX to V' defined byf(z) = x. PutT = X N L.

By induction on the lengtih of a wordu we show thaw, € L if and only if
u is recognized by the automataftm(D, T, f,¢). If n = 1, then this follows
immediately from the definition df’. Suppose that the claim is true for all words
v of length less tham, wheren > 1. Take an arbitrary word = x1 - - - x,, in L.
We claim that themnAtm(D, T, f, ¢) accepts..

First, consider the case where, < X,. Implication (a) shows that
x9 -+ -z, € L, and by the induction hypothesis - - - z,, is accepted byAtm(D).
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Note that(f(x1), f(z2)) € Ep by the definition ofE; C E. It follows thatl - u
= f(x1) - @2 - xy = f(aa)--- flxp) =1 29---2, € T. This means that the
Atm(D) recognizes..

Second, consider the case whete < X_. Then (c) shows that
rix3---T, € L. By the induction hypothesiszs---x, iSs recognized by
Atm(D). By the definition ofE,, we get(f(x2), f(x1)) € E. Thereforel - u =
flxy) - xo- - xpy = f(x1) - 23+ f(2n) = 12923 -2, € T. Hence Atm(D)
recognizes., in all cases. Thus the language accepted\oyn(D) containsL.

Conversely, suppose that our ward= z; - - - z,, IS accepted by the automaton
Atm(D,T, f,¢). We are going to show thatbelongs taL.

First, consider the case whefers) = +. Clearly,(f(z1), f(z2)) € E. Hence
we get

1.x2...xn

By the induction hypothesisy---z, € L. Sincexy € Xy, we get
(f(z1), f(22)) € E1U Ey.

If (f(z1), f(z2)) € Ep, thenzizow € L, for somew € X*. Therefore
implication (b) gives ug x5 - - - x,, € L.

If, however, (f(x1), f(z2)) € E2, thenz; € X_ andzexyw € L for
somew € X*. By the equivalence (e) we getxzow € L, and (d) implies
rix9 - - - T, € L, again.

Second, suppose thtrs) = —. Then(f(z2), f(z1)) € E = E1UFE>. We get
L-zyws - xn = (f(21)-f23) - fan) = (f(21) f(22)) -+ flan) =1-u €T,
By the induction hypothesig,zs - - - =, € L.

If (f(z2), f(x1)) € Ea, thenzizow € L, for somew € X*. Hence
implication (b) yieldsz zy - - -z, € L.

If, however, (f(z2), f(z1)) & Es, then(f(z2), f(x1)) € E;. Therefore
r1 € X_ and we getrsziw € L, for somew € X*. Hencexjzow € L, in
view of (e). Implication (d) gives usiz» - - - x,, € L, again. Thus we have proved
that L is precisely the language recognized Aym (D). This completes the proof.

Il

Proof of Theorem 2. (i)=-(ii): Suppose thatl is recognized by the automaton
Atm(D) induced by a grapl = (V, E') with functions/ and f. Let us introduce
the sets

Xy = {zeX | [f(x) €T},
Xy = {reX|i)=+}
X_ = {zeX|lx)=—}
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and the relations

Gi = {(zy) e Xy x Xy | (f(2), f(y) € E},
Gy = {(z,y) e X x X_|(f(y), f(x)) & E},
Gs = {(xay) € X_x X-‘r ‘ (f(x)7f(y)) ¢ E}

—~

We claim thatX ™\ L is equal to the language defined by the regular expression (1).
To prove one inclusion, take any element X' \ L, sayu = z1 - - - x,,, Where
n > 1andzxy,...,z, € X, and consider two possible cases.

Case 1:1 - u is defined. Ifu € X*, thenl -u = f(z1) ¢ T. We
haveu € 1 X* C (X_ N Xy)X*, and sou belongs to the language (1), as
required. Further, we may assume that some lettetsdne labelled byt-. Let
zj be the last letter iny of this kind. We getl - u = f(x;) ¢ T, and hence
u € X X* C X*(Xy N Xn)X*. Thereforeu lies in the language defined
by (1), again.

Case 21 - u is undefined. Lej be the largest integer such thak i < n and
1.y ---z; is defined. This index always exists becaude =1 = f(z1).

Subcase 2.1z ---z; € X*. Thenl:-zy---2; = f(z1). Sincel - u is
undefined, it follows thatf (xy), f(z1)) & Ewith £(xg) = —, or (f(x1), f(x)) &
E with ¢(z) = +, for somej < k < n. Thereforeu € x1X*xz; X* with
(xl,xk) € Gy UGs.

Subcase 2.2: Some lettersiip- - - z; are labelled by-. Letz; be the last letter
inzy---xz;labelled by+. We getl -1 ---zj = 1-21---x; = f(x;). Sincel-uis
undefined, it follows that there exists< k& < n such that f(zx), f(x;)) ¢ E with
Uxy) = —, or (f(z;), f(zx)) € E with ¢(x) = +. Henceu € X*x; X* x, X*
with (HZZ‘, xk) S Ggl U Gh.

Thus in all cases belongs to the language (1). This completes the proof of
one inclusion.

To prove the reverse inclusion, consider an arbitrary elemest z; - - - 2,
of the language defined by (1). Obviously,# 1. If 1 -« is undefined, then
u e X1\ L, and we are done. Further, we may assumelthatis defined.

If w e xX*yX*, for some(z,y) € G2 UGs, thenl -« is undefined. Similarly,
if ue X*eX*yX*, for (z,y) € G U Ggl, thenl - v is undefined, too. Therefore
we may exclude these two summands of (1) from further consideratidoes not
belong to them.

If u e (XoNXy)X*, oru e X*(X4NXyn)X*, thenl -u ¢ T, by the
definition of X_. Thereforeu € Xt \ L, again. ThusX* \ L coincides with the
language given by the regular expression (1).

(i)=(i): Let L be a language with the complemeXkit™ \ L defined by the
regular expression (1). Introduce a gragh= (V, E) with the setV = X of
vertices, and the se of edges consisting of all pairs:, y) which are not in
G U G;l U Gs. Let f be the mapping fronX to V' defined byf(z) = z. Put
l(z) =+forallz € X;,andl(x) = —forallxz € X;. SetT' =V \ Xy. Denote
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by R the language recognized bwwm (G, T, f,¢). Sincel ¢ T, we getl ¢ R, and
so further we have to deal only with words ¥i*. In order to show that. = R,
we verify the equalityX* \ L = Xt \ R.

Take an arbitrary element = z;...2, € Xt \ R, wheren > 1 and
x1,...,2, € X. We are going to show thate X* \ L.

First, suppose that - v is defined. Ifu € X*, thenl-u = x1,andz; € T
because: ¢ R. We haveu € 1 X* C (X_ N Xy)X*, and sou belongs to
the language (1), as required. Further, we may assume that some letieasen
labelled by+. Letz; be a+-labelled letter in, of this kind. We getl -u = x; € T,
and sou € X*z;, X* C X*(X; N Xy)X*. Thuswe seethat € X+ \ L.

Second, suppose that- u is undefined. Let be the last index such that
1-(x1---x;) = =z;. If some letters on the right of; in u are labelled by+,
then we consider the nearest letigr ;, be of this kind. Sincd - (z1 - - x;11) IS
undefined, we g€z, zi+x) & E or (zi45,2;) ¢ E, for somej < k. If, however,
all letters on the right of; in u are labelled by-, we get(x; ;, z;) ¢ E, for some
j > 0, becausé - u is undefined. Therefore, we always hdwe, z;/) € G U G3,
for somei’ > i, or (z;n, ;) € Gy U G, for somei” > i.

Assume that(z;) = —. Let j be the index of the first occurrence of in
u. We haver; = z; and all letters between; andx; are labelled by-, because
1-x1---x; = z;. It easily follows thatj = 1, and so(z1,z;) € G3, for some
i" > 1or(zmxz) € G;l, for some:” > 1. Henceu € 1 X*yX*, for some
(x1,y) € Ga UGs.

Assume now that(z;) = +, then (z;,z;) € G, for somei’ > i or
(v, ;) € Gs, for somei” > i. Therefore we gett € X*z; X*yX*, for some
(x,y) € GluGgl. Thusu is given by the regular expression (1) andise X\ L.
Thus we see that € X\ L in any case.

We have proved thak ™ \ L D X+ \ R. To verify the reverse inclusion,
consider an arbitrary elemeat= z - - - z,, of the languageX * \ L defined by (1).

First, suppose that € x X* yX* with (z,y) € Go U Gs. If (z,y) € G, then
/(y) = + and there is no edger, y). If (z,y) € Gs, thenl(y) = — and there is
no edge(y, z). In both cases - v is undefined.

Second, suppose thate X*zX*yX* with (z,y) € G1UG3 . If (z,y) € G,
then/(y) = + and there is no edger, y). If (z,y) € G3', then/(y) = — and
there is no edgéy, ). It follows thatl - » is undefined in any case, and@ds not
accepted byAtm(D, T').

Third, suppose that € (X_NXy)X*. Thenl-u = f(x;) ¢ T, and therefore
u & R.

Finally, assume thatt € X*(X, N Xy)X*. If 1.« is defined, then
1-u= f(xx) € T, and sou is not accepted byAtm(D, T'). If, however,1 - u is
undefined, them does not belong t&, either.

ThusX*\ L C Xt \ R. This completes the proof. O

Remark 3. Condition (ii) of Theorem 2 can be expressed in the equivalent
form using a grammar generating the languagé \ L. Indeed, the standard
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method gives us a grammar which generates the language described bgutae r
expression of the form (1) (see, for example, the proof of Propost@s3 in [[9]).

Remark 4. If one of the setsX; or X_ is empty, then our proof shows that
condition (ii) of Theorem 2 remains in force, and all summands of (1) invglvin
empty sets vanish.

Corollary 5. It is decidable whether a regular language is recognizable by two-
sided automata of graphs.

Proof follows from condition (ii) of Theorem 2. Indeed, given a regular leeugg

L, we can find a finite automaton accepting it, and then find a regular expressio
for the languageX ™ \ L. After that, it remains to consider all subséfs of X,
partitionsX = X_UX,, and relationg7; C X, x X, G2 C X_ x X, and use
well-known algorithms to verify whetheX * \ L is equal to the regular language
defined by the regular expression (1). O
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Graafide abil defineeritud kahepoolsete automaatide
poolt aratuntavad keeled
Andrei V. Kelarev, Mirka Miller ja Olga V. Sokratova

Kaesolevas artiklis on vdljas uuritud kahepoolseid automaate, mis defineeri-

takse orienteeritud graafide abil. Kirjeldatakse kdiki keeli, mis on nenderaao
tide abil aratuntavad.
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