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Abstract. We introduce two-sided automata defined by directed graphs and describe all
languages recognized by these automata.
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Throughout the paper the wordgraph means a finite directed graph without
multiple edges but possibly with loops. Graphs and various objects derivedfrom
them are essential tools that have been actively used in different branches of
modern mathematics and theoretical computer science. It makes sense to consider
new ways of defining classical finite state acceptors using graph labellings, and
determine how properties of the acceptors depend on the properties of theoriginal
graph labelling. The present paper continues the investigation initiated in [1−3],
where the concept of a graph algebra has been used in order to definefinite state
automata. We introduce a common generalization of two earlier constructions of
automata considered in the papers mentioned above and investigate properties of
languages accepted by these automata.

We use standard concepts of automata and languages theory following [4−7]. A
language over an alphabetX is a subset of the free monoidX∗ generated byX. Let
D = (V, E) be a graph,̀ : X → {+,−} andf : X → V any mappings, and letT
be a subset ofV ∪ {1}. Thetwo-sided automaton Atm(D) = Atm(D, T, f, `) of
the graphD is the finite state acceptor with
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(DA1) the set of statesV ∪ {1};

(DA2) the initial state1;

(DA3) the set of terminal statesT ;

(DA4) the next-state function given by

a · x =

{

f(x) if `(x) = + and(a, f(x)) ∈ E, or if a = 1,

a if `(x) = − and(f(x), a) ∈ E,

for a statea andx ∈ X.

Thus the edges of the transition diagram ofAtm(D) are also edges or reversed
edges of the graphD.

Our first main theorem describes all languages recognized by two-sided
automata of graphs in terms of combinatorial properties satisfied by these
languages.

Theorem 1. For every language L over an alphabet X, the following conditions
are equivalent:

(i) there exists a directed graph D such that L is recognized by a two-sided
automaton of D;

(ii) there exist two disjoint subsets X− and X+ of X such that X = X−∪̇X+

and, for all x ∈ X+, y ∈ X−, z ∈ X, and u, v ∈ X∗, the following
implications hold:

(a) zxu ∈ L implies xu ∈ L,

(b) xu, zxv ∈ L implies zxu ∈ L,

(c) zyu ∈ L implies zy∗u ∈ L,

(d) zv, zyu ∈ L implies zyv ∈ L,

(a) xyu ∈ L if and only if yxu ∈ L.

The second main theorem describes all languages recognized by two-sided
automata of graphs in terms of regular expressions for their complements. Given a
relationG ⊆ X × X, put

G−1 = {(x, y) | (y, x) ∈ G}.

Theorem 2. For every language L over an alphabet X, the following conditions
are equivalent:

(i) there exists a directed graph D such that L is recognized by a two-sided
automaton of D;
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(ii) there exist a subset XT of X, disjoint subsets X− and X+ of X, and
relations G1 ⊆ X+ × X+, G2 ⊆ X− × X−, and G3 ⊆ X− × X+ such
that X = X−∪̇X+ and the language X+ \ L has the following regular
expression:

(XN ∩ X−)X∗

−
+ X∗(XN ∩ X+)X∗

−

+
∑

(xi,xj)∈G1∪G−1

3

X∗xiX
∗

−
xjX

∗ +
∑

(xi,xj)∈G2∪G3

xiX
∗

−
xjX

∗, (1)

where XN stands for X \ XT .

The concept of two-sided automata of graphs provides a common
generalization of two earlier constructions of automata introduced in [1−3] and
motivated by the study of graph algebras and their applications. Graph algebras
have been investigated by many authors (see, for example, [8−15]) in relation to
various problems of discrete mathematics and computer science. LetD = (V, E)
be a graph. Thegraph algebra Alg(D) associated withD is the setV ∪ {0}
equipped with multiplication defined by the rule

xy =

{

x if x, y ∈ V and(x, y) ∈ E,

0 otherwise.

The languages recognized by these automata have interesting combinatorial
properties (see [1,2]). Our main theorem strengthens and generalizes several earlier
results of the papers cited above. A routine verification shows that the next-state
function of the automatonAtm(D, T, f, `) can be defined by the graph algebra
Alg(D′), whereD′ = (V, E−1), if we use the following condition equivalent
to (DA4):

(DA5) for a ∈ Alg(D) ∪ {1}, x ∈ X,

a · x =

{

f(x)a if `(x) = +

af(x) if `(x) = −.

This means thatx acts as a left multiplication by the elementf(x) in Alg(D′)
if `(x) = +, and as a right multiplication byf(x) if `(x) = −. It follows that our
new definition embraces the automata involving only right multiplications (see [1])
and the ones using only left multiplications (see [2]).

Note that a languageL is accepted byAtm(D, T, f, `) if and only if L \ {1} is
accepted by

Atm(D, T \ {1}, f, `).

As usual,X+ = X∗ \ {1} stands for the free semigroup generated byX. Since
conditions (ii) of our theorems remain unchanged if we replaceL by L \ {1}, in
both proofs we may assume thatL ⊆ X+.
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Proof of Theorem 1. (i)⇒(ii): Suppose that the languageL is recognized by the
automatonAtm(D, T, f, `) of some graphD = (V, E). Define

X+ = {x ∈ X | `(x) = +},

X− = {x ∈ X | `(x) = −},

and consider arbitrary elementsx, y ∈ X with `(x) = + and`(y) = −.
To verify implication (a), take any wordzxu in L, whereu ∈ X∗ andz ∈ X.

Since1·zxu is defined and belongs toT , it follows that(f(z), f(x)) ∈ E. Besides,
f(z) ·x = f(x), becausè(x) = +. Therefore1 ·xu = f(x) ·u = (f(z) ·x) ·u =
1 · zxu ∈ T . Hencexu ∈ L, as required.

Now, pick arbitrary elementsxu and zxv in L such thatu, v ∈ X∗ and
z ∈ X. Since1 · zxv is defined, we get(f(z), f(x)) ∈ E. Therefore1 · zxu =
(f(z) · f(x)) · u = f(x) · u = 1 · xu ∈ T , and sozxu ∈ L. Thus implication (b)
holds, too.

Next, we verify implication (c). To this end, take a wordzyu in L, where
u ∈ X∗ and z ∈ X. Since 1 · zyu is defined and`(y) = −, we get
(f(y), f(z)) ∈ E. Hence1 · zyku = f(z) · u = (f(z) · f(y)) · u = 1 · zyu ∈ T ,
for all k ∈ N0. Thereforezy∗u ∈ L, as required.

Consider any elementszv and zyu in L, whereu, v ∈ X∗ and z ∈ X.
Clearly, zyu ∈ L implies (f(y), f(z)) ∈ E, becausè (y) = −. Hence
1 · zyv = (f(z)f(y)) · v = f(z) · v = 1 · zv ∈ T , and sozyv ∈ L. We see
that (d) holds.

Finally, let us prove the equivalence (e). Take an arbitraryu ∈ X∗ such that
xyu ∈ L. It follows that (f(y), f(x)) ∈ E. Implication (c) yields usxu ∈ L.
Therefore1 ·yxu = (f(y) ·f(x)) ·u = f(x) ·u = 1 ·xu ∈ T ; whenceyxu ∈ L. To
verify the converse implication, suppose thatyxu ∈ L. Hence(f(y), f(x)) ∈ E.
Besides,xu ∈ L in view of (a). Therefore1 ·xyu = (f(x) · f(y)) ·u = f(x) ·u =
1 · xu ∈ T . This means thatyxu ∈ L. Thus the whole condition (ii) holds.

(ii)⇒(i): Condition (ii) involves the setsX+ and X−. Let us labelx by
`(x) = + if x ∈ X+, and by`(x) = − otherwise. Introduce a graphG = (V, E)
with the setV = X of vertices, and the setE = E1 ∪ E2 of edges where

E1 = {(x, y) ∈ X × X+ | xyw ∈ L for somew ∈ X∗},

E2 = {(x, y) ∈ X− × X | yxw ∈ L for somew ∈ X∗}.

Let f be the mapping fromX to V defined byf(x) = x. PutT = X ∩ L.
By induction on the lengthn of a wordu we show thatu ∈ L if and only if

u is recognized by the automatonAtm(D, T, f, `). If n = 1, then this follows
immediately from the definition ofT . Suppose that the claim is true for all words
v of length less thann, wheren > 1. Take an arbitrary wordu = x1 · · ·xn in L.
We claim that thenAtm(D, T, f, `) acceptsu.

First, consider the case wherex2 ∈ X+. Implication (a) shows that
x2 · · ·xn ∈ L, and by the induction hypothesisx2 · · ·xn is accepted byAtm(D).
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Note that(f(x1), f(x2)) ∈ E1 by the definition ofE1 ⊆ E. It follows that1 · u
= f(x1) · x2 · · ·xn = f(x2) · · · f(xn) = 1 · x2 · · ·xn ∈ T . This means that the
Atm(D) recognizesu.

Second, consider the case wherex2 ∈ X−. Then (c) shows that
x1x3 · · ·xn ∈ L. By the induction hypothesisx1x3 · · ·xn is recognized by
Atm(D). By the definition ofE2, we get(f(x2), f(x1)) ∈ E2. Therefore1 · u =
f(x1) · x2 · · ·xn = f(x1) · x3 · · · f(xn) = 1 · x1x3 · · ·xn ∈ T . HenceAtm(D)
recognizesu, in all cases. Thus the language accepted byAtm(D) containsL.

Conversely, suppose that our wordu = x1 · · ·xn is accepted by the automaton
Atm(D, T, f, `). We are going to show thatu belongs toL.

First, consider the case where`(x2) = +. Clearly,(f(x1), f(x2)) ∈ E. Hence
we get

1 · x2 · · ·xn = (f(x2) · f(x3)) · · · f(xn)

= (f(x1) · f(x2)) · · · f(xn)

= 1 · u ∈ T.

By the induction hypothesisx2 · · ·xn ∈ L. Since x2 ∈ X+, we get
(f(x1), f(x2)) ∈ E1 ∪ E2.

If (f(x1), f(x2)) ∈ E1, thenx1x2w ∈ L, for somew ∈ X∗. Therefore
implication (b) gives usx1x2 · · ·xn ∈ L.

If, however, (f(x1), f(x2)) ∈ E2, then x1 ∈ X− and x2x1w ∈ L for
somew ∈ X∗. By the equivalence (e) we getx1x2w ∈ L, and (d) implies
x1x2 · · ·xn ∈ L, again.

Second, suppose that`(x2) = −. Then(f(x2), f(x1)) ∈ E = E1∪E2. We get
1·x1x3 · · ·xn = (f(x1)·f(x3)) · · · f(xn) = (f(x1)·f(x2)) · · · f(xn) = 1·u ∈ T .
By the induction hypothesisx1x3 · · ·xn ∈ L.

If (f(x2), f(x1)) ∈ E2, then x1x2w ∈ L, for somew ∈ X∗. Hence
implication (b) yieldsx1x2 · · ·xn ∈ L.

If, however, (f(x2), f(x1)) 6∈ E2, then (f(x2), f(x1)) ∈ E1. Therefore
x1 ∈ X− and we getx2x1w ∈ L, for somew ∈ X∗. Hencex1x2w ∈ L, in
view of (e). Implication (d) gives usx1x2 · · ·xn ∈ L, again. Thus we have proved
thatL is precisely the language recognized byAtm(D). This completes the proof.

Proof of Theorem 2. (i)⇒(ii): Suppose thatL is recognized by the automaton
Atm(D) induced by a graphD = (V, E) with functions` andf . Let us introduce
the sets

XN = {x ∈ X | f(x) 6∈ T},

X+ = {x ∈ X | `(x) = +},

X− = {x ∈ X | `(x) = −},
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and the relations

G1 = {(x, y) ∈ X+ × X+ | (f(x), f(y)) 6∈ E},

G2 = {(x, y) ∈ X− × X− | (f(y), f(x)) 6∈ E},

G3 = {(x, y) ∈ X− × X+ | (f(x), f(y)) 6∈ E}.

We claim thatX+\L is equal to the language defined by the regular expression (1).
To prove one inclusion, take any elementu ∈ X+ \ L, sayu = x1 · · ·xn, where
n ≥ 1 andx1, . . . , xn ∈ X, and consider two possible cases.

Case 1: 1 · u is defined. Ifu ∈ X∗

−
, then 1 · u = f(x1) 6∈ T . We

haveu ∈ x1X
∗

−
⊆ (X− ∩ XN )X∗

−
, and sou belongs to the language (1), as

required. Further, we may assume that some letters inu are labelled by+. Let
xk be the last letter inu of this kind. We get1 · u = f(xk) 6∈ T , and hence
u ∈ X∗xkX

∗

−
⊆ X∗(X+ ∩ XN )X∗

−
. Thereforeu lies in the language defined

by (1), again.
Case 2:1 · u is undefined. Letj be the largest integer such that1 ≤ i ≤ n and

1 · x1 · · ·xj is defined. This indexj always exists because1 · x1 = f(x1).
Subcase 2.1:x1 · · ·xj ∈ X∗

−
. Then1 · x1 · · ·xj = f(x1). Since1 · u is

undefined, it follows that(f(xk), f(x1)) 6∈ E with `(xk) = −, or(f(x1), f(xk)) 6∈
E with `(xk) = +, for somej < k ≤ n. Thereforeu ∈ x1X

∗

−
xkX

∗ with
(x1, xk) ∈ G2 ∪ G3.

Subcase 2.2: Some letters inx1 · · ·xj are labelled by+. Letxi be the last letter
in x1 · · ·xj labelled by+. We get1 ·x1 · · ·xj = 1 ·x1 · · ·xi = f(xi). Since1 ·u is
undefined, it follows that there existsj < k ≤ n such that(f(xk), f(xi)) 6∈ E with
`(xk) = −, or (f(xi), f(xk)) 6∈ E with `(xk) = +. Henceu ∈ X∗xiX

∗

−
xkX

∗

with (xi, xk) ∈ G−1
3 ∪ G1.

Thus in all casesu belongs to the language (1). This completes the proof of
one inclusion.

To prove the reverse inclusion, consider an arbitrary elementu = x1 · · ·xn

of the language defined by (1). Obviously,u 6= 1. If 1 · u is undefined, then
u ∈ X+ \ L, and we are done. Further, we may assume that1 · u is defined.

If u ∈ xX∗

−
yX∗, for some(x, y) ∈ G2 ∪G3, then1 ·u is undefined. Similarly,

if u ∈ X∗xX∗

−
yX∗, for (x, y) ∈ G1 ∪G−1

3 , then1 · u is undefined, too. Therefore
we may exclude these two summands of (1) from further consideration:u does not
belong to them.

If u ∈ (X− ∩ XN )X∗

−
, or u ∈ X∗(X+ ∩ XN )X∗

−
, then1 · u 6∈ T , by the

definition ofX−. Thereforeu ∈ X+ \ L, again. ThusX+ \ L coincides with the
language given by the regular expression (1).

(ii)⇒(i): Let L be a language with the complementX+ \ L defined by the
regular expression (1). Introduce a graphG = (V, E) with the setV = X of
vertices, and the setE of edges consisting of all pairs(x, y) which are not in
G1 ∪ G−1

2 ∪ G3. Let f be the mapping fromX to V defined byf(x) = x. Put
`(x) = + for all x ∈ X+, and`(x) = − for all x ∈ X+. SetT = V \XN . Denote
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by R the language recognized byAtm(G, T, f, `). Since1 /∈ T , we get1 /∈ R, and
so further we have to deal only with words inX+. In order to show thatL = R,
we verify the equalityX+ \ L = X+ \ R.

Take an arbitrary elementu = x1 . . . xn ∈ X+ \ R, wheren ≥ 1 and
x1, . . . , xn ∈ X. We are going to show thatu ∈ X+ \ L.

First, suppose that1 · u is defined. Ifu ∈ X∗

−
, then1 · u = x1, andx1 6∈ T

becauseu 6∈ R. We haveu ∈ x1X
∗

−
⊆ (X− ∩ XN )X∗

−
, and sou belongs to

the language (1), as required. Further, we may assume that some letters inu are
labelled by+. Letxk be a+-labelled letter inu of this kind. We get1·u = xk 6∈ T ,
and sou ∈ X∗xkX

∗

−
⊆ X∗(X+ ∩ XN )X∗

−
. Thus we see thatu ∈ X+ \ L.

Second, suppose that1 · u is undefined. Leti be the last index such that
1 · (x1 · · ·xi) = xi. If some letters on the right ofxi in u are labelled by+,
then we consider the nearest letterxi+k be of this kind. Since1 · (x1 · · ·xi+k) is
undefined, we get(xi, xi+k) 6∈ E or (xi+j , xi) 6∈ E, for somej < k. If, however,
all letters on the right ofxi in u are labelled by−, we get(xi+j , xi) 6∈ E, for some
j > 0, because1 · u is undefined. Therefore, we always have(xi, xi′) ∈ G1 ∪ G3,
for somei′ > i, or (xi′′ , xi) ∈ G−1

2 ∪ G3, for somei′′ > i.
Assume that̀ (xi) = −. Let j be the index of the first occurrence ofxi in

u. We havexj = xi and all letters betweenxj andxi are labelled by−, because
1 · x1 · · ·xi = xi. It easily follows thatj = 1, and so(x1, xi′) ∈ G3, for some
i′ > 1 or (xi′′ , x1) ∈ G−1

2 , for somei′′ > 1. Henceu ∈ x1X
∗

−
yX∗, for some

(x1, y) ∈ G2 ∪ G3.
Assume now that̀ (xi) = +, then (xi, xi′) ∈ G1, for somei′ > i or

(xi′′ , xi) ∈ G3, for somei′′ > i. Therefore we getu ∈ X∗xiX
∗

−
yX∗, for some

(x, y) ∈ G1∪G−1
3 . Thusu is given by the regular expression (1) and sou ∈ X+\L.

Thus we see thatu ∈ X+ \ L in any case.
We have proved thatX+ \ L ⊇ X+ \ R. To verify the reverse inclusion,

consider an arbitrary elementu = x1 · · ·xn of the languageX+ \L defined by (1).
First, suppose thatu ∈ xX∗

−
yX∗ with (x, y) ∈ G2 ∪ G3. If (x, y) ∈ G2, then

`(y) = + and there is no edge(x, y). If (x, y) ∈ G3, then`(y) = − and there is
no edge(y, x). In both cases1 · u is undefined.

Second, suppose thatu ∈ X∗xX∗

−
yX∗ with (x, y) ∈ G1∪G−1

3 . If (x, y) ∈ G1,
then`(y) = + and there is no edge(x, y). If (x, y) ∈ G−1

3 , then`(y) = − and
there is no edge(y, x). It follows that1 · u is undefined in any case, and sou is not
accepted byAtm(D, T ).

Third, suppose thatu ∈ (X−∩XN )X∗

−
. Then1·u = f(x1) 6∈ T , and therefore

u 6∈ R.
Finally, assume thatu ∈ X∗(X+ ∩ XN )X∗

−
. If 1 · u is defined, then

1 · u = f(xk) 6∈ T , and sou is not accepted byAtm(D, T ). If, however,1 · u is
undefined, thenu does not belong toR, either.

ThusX+ \ L ⊆ X+ \ R. This completes the proof.

Remark 3. Condition (ii) of Theorem 2 can be expressed in the equivalent
form using a grammar generating the languageX+ \ L. Indeed, the standard
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method gives us a grammar which generates the language described by the regular
expression of the form (1) (see, for example, the proof of Proposition6.2.3 in [16]).

Remark 4. If one of the setsX+ or X− is empty, then our proof shows that
condition (ii) of Theorem 2 remains in force, and all summands of (1) involving
empty sets vanish.

Corollary 5. It is decidable whether a regular language is recognizable by two-
sided automata of graphs.

Proof follows from condition (ii) of Theorem 2. Indeed, given a regular language
L, we can find a finite automaton accepting it, and then find a regular expression
for the languageX+ \ L. After that, it remains to consider all subsetsXT of X,
partitionsX = X−∪̇X+, and relationsG1 ⊆ X+ × X, G2 ⊆ X− × X, and use
well-known algorithms to verify whetherX+ \ L is equal to the regular language
defined by the regular expression (1).
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Graafide abil defineeritud kahepoolsete automaatide
poolt äratuntavad keeled

Andrei V. Kelarev, Mirka Miller ja Olga V. Sokratova

Käesolevas artiklis on väljas uuritud kahepoolseid automaate, mis defineeri-
takse orienteeritud graafide abil. Kirjeldatakse kõiki keeli, mis on nende automaa-
tide abil äratuntavad.

54


