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Abstract. Any partition on a finite set gives us partia information about an object represented by
this set. This agebraic approach to information has proved very useful for solving various
problems concerning structural complexity of finite objects. Like a partition, a cover on afinite set
can be interpreted as information about structural complexity of an object represented by this cover.
But unlike partitions, the quantitative measure of the information content of covers is not yet
established. In this paper an effort is made to provide covers with a quantitative measure of their
information content from the axiomatic point of view, by finding an extropy for a specia class of
covers which reflect the information difference between two partitions. This result breaks ground in
providing al relevant for practice covers with a quantitative measure, which would make it
possible to evaluate the structural complexity for awide range of finite objects.
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Information and energy are two of the most fundamental concepts of modern
science, forming the notional basis of a theoretical background for almost any
branch of human activity, but there is anotion linking together energy and informa-
tion. This notion is extropy*, measuring both the quality of energy and the quantity
of information, and on top of it playing the central role in ecology. The broad
extropy concept has very many different applications in various fields of science.
The classical datistical foundation of extropy is well known. However, the
probabilistic approach for the interpretation of extropy as a measure of information
about structural complexity is unnatural and logically inconsistent. We need an
algebraic axiomatic approach for these purposes, showing that extropy satisfies
some basic intuitive properties of an evaluation function for information content.
In["] it was shown that the partition as information has a quantitative measure in

! Instead of the rather widespread notion of negentropy we use the term extropy, as neg en means
in Greek not into, which is equivalent to out, or ex in Greek.



the form of extropy derived entirely from the algebraic properties of the partition
through an axiomatic approach. The lattice-based operations on partitions are
limited to multiplication (representing the total information content of both
partitions) and addition (representing the common part for the information content
of these partitions), but rather often it is needed to find the difference between
information contents of objects, represented by partitions. This problem cannot be
solved in the class of partitions and requires switching over to a more genera
notion of structural complexity, represented by covers on afinite set. In this paper
we analyse the basic properties of covers and show that the algebraic extropy
concept can be extended further for covers on a finite set as well. We extend the
concept of extropy for a special class of covers which can be characterized by a
pair of comparable partitions and reflect the difference between information
contents represented by these. It is shown that the extropy for this class of coversis
equal to the differencein extropy of these partitions.

1. BASIC INFORMATIONAL PROPERTIES OF COVERS

Let usdefineacover 7;(X) onafiniteset X = {><1( Xy, ..., X} @saclassof its
subsets (blocks of cover) {B®,B®@,..,B“,..,B™)}, satisfying the follow-
ing n(%OﬂdIthﬂS

3 [JB” =X

b) for any arbitrary B“), B” e 7, (X) wehave B® c BY) = o = 4.

A block B“ ez(X), consisting of elements X_;, X ,, ..., X, € X, will be
denoted by X X . X . Extreme covers are a zero cover (denoted by 0,)

having in each block no more than one element and a unit cover (denoted by 1 )
having only one block. A cover 7,(X) will be called a partition iff for any of |ts
different blocks B, B¥) ez, we have B“) N B =@. It is clear that 0, and
1, are partitions. In the foIIOW| ng a partltlon on aset X will be denoted by
(X) If for any arbitrary B ez thereexists B{” e 7; suchthat B’ < B,
we will denote it by ; (X)<r (X) It is not hard to show that if 7;(X) <7, (X)
and 7,(X)<7(X), then T(X) 7,(X). Let 6={S9|a=1..m be an
arbltrary collection of ordered obj ects We will introduce an operation

max(6) ={S|§” €& A (v €6)(S <8 = S =)}

We will agree for any arbitrary 7;(X) and 7;(X) tha 7-7;=
max{B(“)ﬂB(ﬂ’ |IB“ ez, A B(ﬂ)er} and 7, +7; = maX{T Uz} The rfe
striction of a cover r(X) onto X c X WI|| be denoted by r(X)
max{B“ NX'|B“ ez}. Let us define now the operations 7, ®r, o
(X7 lme=7,7,} and x(2) —ﬂ{ﬂ |7 >7}. It is easy to see that 7, +rl =
ﬂ{rk|rk2q,r} and 7, @TJ = x(z,+7;) =7 +7;. With respect to the multi-
plication “ -” and addltlon ‘4 operatlons deflned above, al possible covers on



X will build up a distributive lattice [%], which will be denoted by £(X). For
any arbitrary subset of covers T < £(X) we will introduce notations
m(i') N,cr 7 and M(T) = 2, s 7;. Let us define for each cover 7;(X) its
shell

k(z;) =max{B |B“ = X A (VB e7)(B < B v B NBY =}

It is obvious that for every 7(X) itsshell k(z) is a partition. For any cover we
will denote P(T)Ef max{z, |k(r) <7z, <t}.

Lemma 1. For any arbitrary cover z(X) we have:
() k() =m(P(z));
(i) =M(P(z)).

Proof.

(i) Let us have Ber(X). Denote 7Z'B(X) {B X\B}. It is obvious that
Nge, 75(X) <k(z). Due to this, in viél of k(r) <7z (X), we obtain
Mg, 75 (X) =k(z). On the other hand, it is clear that k(z) <m(P(z)).
Since for any 7z(X)e P(r) with Be z(X) we have 7z(X)=7z(X), we
get k(7) =Ng., 75 (X) = m(P(7)). Hence k(r) = m(P(7)).

(i)  Asonecan easly see, 7>M (P(z)). Let us now assume that Be z. Then
there exists 7(X) € P(r) suchthat Be z(X) and therefore B e M (P(z)).
Hence 7 <M (P(z)), andin view of that we have r =M (P(7)). ]

For any subset X'c X we will define its weight g, (X') as a ratio
Oy (X)) =IX")I1| X|| (&8s a rule, the subscript next to q will be omitted).
Covers Dfr (X") and 7;(X") will be caled quasi-equivalent iff there exists
a bijection ¢ 7, >, such that for any B“ ez, we have g, (B“)=
Ay (@(B)). Covers 7(X") and 7,(X") will be called equivalent (the corres-
ponding denotation is 7;(X") =7, (X ) if there exist bijections ¢:7; - 7; and
w k() —>Kk(z)) establlshmg quasr -equivalence between 7, 7; and k(r) k(r ),
respectively, such that for any B“ ek(zr;) and B? er, from B@ < B® it
follows that w(B“) c ¢ (B). It is obvious that for part|t|ons the notions of
quasi-equivalence and equivalence coincide. Let uscall 7,(X) quasi- mdependent
with respect to z;(X) (denoted by 7;Tz,) iff forany B € 7; ®r; and B“ €1,
with B =B the condition 7 (B) = r(B(“)) is satisfied. In general, the quasi-
independence relation is not symmetric. A cover 7(X) will be called complete
iff for any B®, BY B er(X), X, X" X"cX with X', X"cB“,
X" X" B® and X", X'c B there aways exists B e7(X) such that
X', X", X" = B). Complete covers represent the tolerance relation, which plays
an outstanding role in the theory of classification[>**]. It is obvious that all
partitions are compl ete.

Lemma 2. For any complete cover 7(X) we have

(VB e7)(vx ¢ B“)(3x, € BY)(VBY er)(x e B = x, ¢ B")).



Proof. Let us assume that there exist B’ ez and x ¢ B such that for any
x; e B (x. #x) we gt BY er with x,x, €B”. Then x,x;eB%?,

x,szeB(ﬂz " % X, e BY™) xl,sz,..., im, €B“.  Due to the
compl eteness of 7 from this follows that there exists ablock B® e 7 such that
X X1 X5 Xim € B"). Hence x € BY) and B ¢ B, which contradicts the
assumption B e 7. Therefore 7(X) satisfiesthe condition of thislemma. [

For each 7(X) wewill define arelation R(r) = X? asfollows:

(V%X; € X)(% R(7) X o (@Ber)(%, x; €B)).

It is easy to see that the relation R is atolerance relation, i.e. it is reflective and
symmetric. Let us denote by 75(X) and 5 (X), respectively, the set of all
maximal subclasses of the relation R and the subset of all complete covers
belonging to £(X). Indeed, it directly follows from the definition of 7x(X) that
it is a cover. Let us define for each 7(X) an operator of complementation as
follows:

F(r);ﬂ{ri |7, e T (X) AT <1}

Proposition 1. For any 7, 7', 7" € £(X) we have

(i) 7 "eFe(X)=>71"-1"e T (X);

(i) F(r)=7 and F(F(7))=F(7);

(i) 7'<t"=>F(@E)<F(");

(iv) F@E'-2")<F()-F(z") and F(r'+7") > F(z") > F () + F(");
(V) g (X) = F(z(X)).

Proof.

(i) Let X, X"cBYNB"eq-7, X, X"cBNB e 7
X', X" BONBY er,-r,. Then X', X"c B and X', X" B,
X", x’”ca(m and X", X" B/, X', X"c B(” and X', X" B,
Hence there exist 3(5)61 B(‘”erJ such that X', X", X" ¢ 33)
X', X" X" < B](") and consequently, X', X", x’”ca@”ms(‘”

(HB”) et -7,)(X', X", X" < BY).

(i)—(iv) Arederived directly from the definition of the operator F.

(V) It is easy to see that 7p,y(X)>7(X) and 7. (X)e Z¢ (X) Hence
Ty (X) = F(z(X)). On the other hand, we will assume that rR(T)(X) is
a cover consisting of all blocks of zy,,, whose potency is less than or
equal to n and al existing subsets of potency n of the blocks 7,
having potency greater than n. Thus by the definition 7%, (X) <
TR (X). Itis clear that fR(T) <F(r) and fR(T) <F(r). Let us assume
that the formulas TR(T) <F(r) and X, {x}.{X} < X 0.{x}{x;} <
Bezl) with || X, |l=n-1 hold. Therefore, due to the assumptlon we
have:

(@ X,y {X}cB= @B e F(D))(X, . {x}  B);



(b) X, 1.{X}=B=(3B" e F())(X 1, {X} < B");
(©) x,x;,€eB=(3B"eF(7))(%, X, € B").

From the definition of F(z), taking into consideration the result given above,
we get that there exists B“) e F(r) such that X,;,{x},{x}<B“. Hence
ity < F(r). Thus, by induction we have proved that for any ry), the
inequality TSB.) <F(z) holds It is clear that if the number n is considerably
large, then the condition r (X) T (X) issatisfied. Hence 7, (X) < F(7)
and therefore 7y, (X) = FéT(X)) ThIS completes the proof of the proposmon

From the first statement of Proposition 1 it directly follows that for any z(X)
theformula F(7r) € £ (X) holds.

Let us assume now that the real value extropy function for covers H(r)
satisfies the following axioms:

(A  from 7;(X") =7;(X") itfollowsthat H(z)=H(z);

(A2) if 5;(X)=7;(X), then H(z;) <H(z,);

(A3)  H(z (X)) +H(z; (X)) = H (7 -7;) + H(z; @ 7;) withthe equality achieved
in case 5T,

(Ad4)  H(z) =H(F(2)).

In[Y] it is shown that for any partition 7 (X) its extropy up to an arbitrary
positive constant equals H () = — Z"‘lq(Be“))Inq(B(“)) Let 7z, (X)< 7;(X).
In the following the notation z(X)=x/z; will mean r(X)—
Hax, -2 =x}. As (mlz)-7 =x, holds, the above notatidh
isjustified. A cover 7(X) will be called a simple one iff there exist 7;(X) and
7 (X) with 7, <7z; such that 7(X)=7/z;. It is not hard to see that each

simple cover 7 =, / z; isexpressed by the formula

T :{ Bl(al) U a(aZ) UU Bl(ak) UU a(amj) | Bl(ak) c 77| (Bj(k))}

For any simple cover 7(X)=7/z; the notation X, = X\U, B“ is
introduced. It is not hard to understand that if r(X) TT; /7r tﬁeri k(z) =
{XIX}U7m(X,) = n;. Therefore, if z, and z; have no more than one
common block, then k(r)zﬂ'i. Any pair of partitions (7;,,(X), 7;,,(X)) will be
denoted by p(X). It is clear that p, corresponds to a simple cover
(74 7)/ my. Let us take H(p)=H(my 7,)~H(m,)., For each simple
cover 7(X) we will introduce % notation Q(7) {<7r 7r>|1' mlz}.
Any simple cover 7 is called an elementary one iff it can be exprmd in the
form 7 ={B UB,,B UB;,..,B UB} with BB, =& (i#j;i,j=1..,n). It
goes without saying that all two—bl ock coversare el ementary.

Lemma 3.

(i) Mo=xlz; and " =7z, then r'~r”£7ri'-7ri"/7r] ﬂj’

(i) Forany (X)=x /x; wehave r =F (' +7,), where t"=0, / 7;.

(i) Let 7(X)=7 /7r =n'lx{. Then UBE”ﬂ” B = UBE,m,r B” 7T (X,)=
7(X,), and 7; (X )= _”(X )



(iv) Each simple cover can be expressed as a multiplication of elementary
covers.

Proof.
(i) As a matter of fact, by the definition ¢'=>{r, |7z} -7, =7x}, "=
X7y |n] -7y =n} andtherefore
"= Z{ﬁa} . Z{ﬂ'ﬂ} = Z{ﬂ'a Ty |7r; T, =7 A 7[;’ Ty = 7}
<> iz, X PAEARTARY PR PEY Y4

Yz, |7 -] -7, =2 -2}y =n -2l z} - 7".

(i) Inview of
7 ={ Bl(al) U 3(0:2) U...u a(ak) U..U 3(amj) | a(ak) e (Bj(k))},

the definition of completeness, and the last statement of Proposition 1 it is
not hard to see that the statement of the lemmaholds.

(iii) Dueto k(z) ={X\X,}UT; (X,2, it is easy to prove the statement.

(iv) Letr=r/xz,. Assumethat 7" =" /7 (k=1..,m), where

m

20 {B(“’ 1B@ e (BY) v B = U B]gﬂ)};
=2

m;
7z.i(2) —{B® | B@ < 7 (BI(Z)) v B@ = U Bl(ﬂ) :
B=15+2

and

p=1

As one can see t)he covers 7 (k=1,..,m,) are elementary. It is obvious
'

that 7@ .7®@. ..M =,

Cordllary.
(i) All simple covers are complete.
(if) For anygiven p;, p; € Q(r) theequality H(p)=H(p;) holds.



Let us define now for any given covers 7,(X’) and z;(X") a Cartesian
product 7, (X")®7;(X") asfollows:

' " o— ' X" ={B©@ « R |R@ 09
Ti(X)®TJ-(X)§Z'(X xX")={B*’'xB/” |B* ez, A B/ €1}
It is not hard to prove the following statement.

Lemma 4. For any given covers 7;(X’), 7;(X"), and 7, (X") we have:

i) ©(X)® (@, (X)®7,(XM)=(r,(X) @7, (X)) @7, (X")

(i) 7(X)®7(X")=7,(X)®7(X);

(iii) (Til(X')STiz(X')/\le(x”)Ssz(X”))jTu@le(xrxX”)
<7, @7 (X'x X");

(iv) (7 (X) Q7 (X)) (7,(X) ®7,(X")) = 731 - 7, (X) ® 7y - 77, (X");

(V) H@EX)®7 (X)) =H (7 (X)) +H(z;(X")).

It should be noticed that if z; and z; are simple covers, then, in general,
7; ®7; is not simple. On the basis of Lemma4 we will use the formula
rl(X )®12(X”)® .®7,(X™) in the following without any further comment.
Let usintroduce the notation

(r(X)" = 7(X) @ 7(X) ®... O 7(X).

ntimes

Corollary. For any k >1 We have:

) n=r :>(r) <(r)

(i) (r) (r) =(z; - r) and(r) +(r) <(r+r)
(iii) H(z*)=kH (7).

For any natural numbers o, a,, ..., ¢, With o +a, +...+,=n and an
arbitrary cover r(X) of rank m (i.e. ||z(X)|=m) we will introduce the
definitions

n!
C. (g, oy, ..., am);ﬁ
oyl Oy

and
Q" (g, y, ooy ) =(ax (BY) - (ax (B®)*-...- (ay (B™))™™.
It is easy to prove the following statement:

Lemmab. Let 7(X) be an arbitrary cover of rank m. Then 7" is a cover of
rank m", where for every B® there exists a set of natural numbers

Uy, &y, With o +a,+...4+a,=n  such that qxn(B(“)):
QJ‘”’ (o, ay, ..., ox,,) @nd the number of blocks of this weight is not less than
C.(a, ay, ..., ).



In the following we will use the general combinatorial formula

n! _ Zm: (n-1)! . (1)

alata) gl al o oo

If m=2, theleft side of formula (1) will be denoted by (a e aj For any covers
'(X) and 7"(X) wewill define

'l" =Z{Ta |z"-7, =7"-7"}.

Denote G‘(T)D 0,/ and ¢({®,z®,...,c™M}) f{({‘(r(l)) (), ..., (™).
It is easy to seethat for any cover r(X) we have (1) € T (X). lee\lee for
any arbitrary covers 7, (X) and z;(X) wehave 7, -7; =0y = F(7;) - F(7;) = 0.

Lemma 6. For any covers z, 7;, 7; we have

(i) ¢(@(x))=F(r) and 7; <7; = &(7;) 2 &(7;);

(”) &(r 7)) =F(&(5)+ (7)), €(7 +7;)=C(r) - &(7});
(i) &(z) =m(&(P(2)));

(iv) If '<7", then ' /" =€ (") &(7");

(v) 7-&(r)=0y and F(r+¢(r)) =1y;

(Vi) &(z x7))2&(7;)x (7).

Proof.

() It is not hard to see that for any x, X; € X we get either x, X; € R(z) or
X, X; € R(€(7)). Therefore R(C(r))=—R(z) and &(&(7))= F(r)
(mdeed %, X; € R(€ (7)) holds only if there does not exist a block B"’
such that x, x eB“). The definition of ¢(z) implies directly the
statement z; <r =&(5;) 2&(z)).

(i) As amatter of fact,

€(n)+€(r)) = Z{r |7, -7, =0y v 7,7, =04}
SZ‘,{%Vi'Tj'Ta:ox}:(’:(fi'71')
and therefore
€t 77) 2€(5) +€(7;) > €(7; - 7;) 2 F(€(7;) + €(7)).

On the other hand, let Be¢(r;-7;). Then for each B'c B with
|| B'||=2 we have

B'zBervB &B,er,
= (IB"el(r)) (B'=B")v(IB" € (7;))(B'= B")
= (@B e(¢(r,) +€(7))(B = B™)
= (@B e F(¢(r;) + € (r)))(B= BY).
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Hence &(7-7,)<F(€(7r;)+C(7;)) and as a result we obtain
&(z;-7;)=F(&(r) + €(7;))- Inthe same way we get

&(z, +Tj):Z{Ta | (z; +Tj)‘7a :ox}zz{% | 7; Tyt T T, =0y}
:Z{Ta |Ti Ty :OX A 2-j Ty :OX}
:Z[{ra Iz -7, :Ox}ﬂ{fﬂlfj 7, =05} =€(7) - &(7;).

(iii)  Indeed, m(¢'(P(r))) =¢ (X P(r)) =€ (z) (onthebasisof Lemmal).

(iv) It is obvious that x,X; e R(z'/7") iff x,x; ¢R(z") or x,X; e R(7).
But as x,X; ¢ R(z") < %, X, €-R(z") and x,%, eR(r") & x,X; &
—R(z"), we get x,X € R(z'/7") < %, X, € R(&(z") ] &€(z")). Therefore,
o'l =& (") € (7).

(v)—vi) The definition of ¢(r) yields directly the needed equalities. U

Proposition 2. Any complete cover 7(X) can be represented as a multiplication
of simple coverson X.

Proof. Indeed, let P (2)={z®, 72,2z} and O =¢@xY),
1@ =¢(z?),..., ™ =¢(x). Then, due to the assumption we obtain
=€) =m (P (2)) =Y - zD ...z, O

On the basis of Lemma 3 we get:

Corollary. Each complete cover 7(X) can be represented as a multiplication of
elementary coverson X.

Itisnot hard to seethat ¢ (z) can be calculated by the following rules:

Algorithm 1.
(i) Let us arrange the blocks of a cover r in some arbitrary way

BY,B?,..,BY, ..., B™, so that for any i=1..,m-1 the condition

B B = 3= B B =& (a=1 .., m-i) issatisfied.

(i) Let us write down the ordered blocks of = in the form of an incompletely
filled matrix in the following way:

(a) write down the block B in the first row from left to right;

(b) write down the block B(Z) in the second row, so that the elements in
common with B would be situated in the same column, but different
elementsin dlfferent columns,

(c) write down B® in the third row, so that the elements in common with
BY and B(Z) would be in the same column, but different elements
againin different columns;

(d) proceed up to the moment when all blocks of = will be written down
into the incomplete matrix having its columns formed only by equal
elements.

11



(iii)  For the sake of clarity al columns consisting of more than one element
will be framed by a box.

(iv) Find al possible sets of digoint columns (i.e. hot having common rows
with non-void entries). Each such set represents a block of a cover ¢ (7).

For any 7z, (X) <z;(X) wewill define
{m Zﬂ'j};{ﬂa |7 7wy =m A(Vay,(X)(7; -7y =1 = H(zy) 2H(7,))}.

2.MAIN RESULTS
Theorem 1. If 7" e{(7,)": (z;)"}, then lim , 1/nH(z™)=H(z,) - H(z)).

Proof. On the basis of Lemma5 every block B e (r;)" is characterized by a

vector i{“’,iga’,...,i,ﬁ‘iz with i{” +i +..+i% =n and the number of blocks

()" characterized by {i{*,i{”),..,i%’} is equa to C,(if,i{", ..., i{)).

We claim that blocks B, B & (r;)" belong to the same class 4 iff the

equality (i{,i$,...,i%) =(i{”,i¥?,...i¥’) holds. As aresult we get a set of

classes Ay, Ay, .o, Ay Ao It is clear that B, BY e 4 = q(B®)= q(B¥).

It is not hard to see that the number of such classes r equalslmj;”_l . Each

B e(z;)" can be characterized by the subset of blocks 2(B*)=

(B |B? c(z,)" ABP cB®}. For any class 4, define N(4)=

| B(B“)| with B €4, . From the definition of classes A it directly follows

that such a definition of N(4,) is correct (indeed, N(%)=II"(n(BY)",
where n(B{") is the number of z, blocksin B e, and 4, is characterized

by a vector (il,i{,...,i, ..., ir(n‘})>). Let us arrange linearly blocks of 2(4,)

for each class 4, and classes 4, < 4, <...< 4, <...< 4 by the numbers N(4,)

in the increasing order (i.e. 4 <4, <D:f>N(/11)s N(4;)). Let us define now a

partition 7z, (X") asfollows:

(@ In the first block B we will assemble by layers blocks of the partition
(7,)" from each block (ﬂj)” one at a time, so that in the first stratum we
have the blocks of ()" belonging to the union of all minimal blocks B™
of B(B“”) (k=1,..,r), in the second stratum we have al blocks of the
partition (z,)" from the union of all blocks B® next to B™ from the
subsets B(B”) (k=1,..,r), and we proceed likewise until Z(B®) with
B ¢ J, isexhausted.

(b) Into the second block B{? we will unite again by layers blocks of the
partition (z,)" from each block B\B) (a=1,..,m;) one at atime in
the increasing order of blocks B (a=1,..,m;) from subsets (4,)
until B (4,) comesto an end.

(c) Wewill proceed in the same way until B (4,) isexhausted.

Figure 1 shows the configuration of the partition 7,,, where the blocks of

(7,)" aredepicted by cells, the blocks of (ﬂj)” by columns of these cells, and

12
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Fig. 1. Partition 7.

the blocks of 7z, by diagona hatching. From the definition of 7z, it directly

follows that
m. +n
||n0n||s[ | ]
n

Asfor Za N, =N (0<N, <N) theinequality
N! N
<

TTEN TI0 N

holds[], we get

( +n)mj+n
I|m1/nH(7r0n)<I|m1/nIn m—
nN—w m'J n
= lim (m; /nin(l+n/m;) +In(1+m; /n)) =0

= lim1/nH(z,,) = 0.

n—o
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Therefore,
lim1l/n(H ((nj)”)+ H (7)) = lim1l/nH ((nj)” “Ton)
= lim1l/nH ((nj)”) >lim1l/nH ((nj)” “Ton)

= lim/nH ((z,)") = limL/nH ()" - 74,)-

It is easy to see that one can choose 7, with 7, (7z) =(z,)", so that
()" 7on T 7, and 7o, =((7;)" - 700,) ® 7,,. From the above it foIIows that
the equality H((r; V' 7o) + H(7z )=H((=,)" + H(x,,)) holds. Hence

Lirglln(H((ﬁj)n)—'_ H(z,)) =rLir[101/n(H((7fh)”)+ H (70,))
= H(m;)+lim1/nH(r,) = H(m,) = lim1/nH (x,) = H (z,) - H ().

If now 7z e{(ﬂh) :(7,)"}, then by the definition H(z™)+nH(z,) >
nH (z,) and H((z™) < H(7z ), from which directly follows the statement of the
theorem. Ol

To resolve problems connected with finding an entropy measure for covers
we need to introduce some new notions. Let us define on an arbitrary finite set
N=(a,a,....a} acommutative free group 27 =(N,- 1), where “-” is the
group operation and “ 1" is a unit element of the group satisfying the condition
(Va,eN)(g -1y =a ~Aa -g =1). From the definition of the group 27 it
directly follows that the set of its elements $7(N) can be represented by the
formula Z(N)={a -a -..-a |[k<n;a,a ,..,a €N}. For the sake of
convenience in the foIIowmg the elements of the group s will be denoted by
aa ..a instead of a, a .8 . From the definition of the group Z7 it
directly follows that (8 ~8.)8 =838 8 8 .38.I is obvious
that |F(N)|=2". As each element of 'Z7(N) “can be Tepresented in a unique
way by a multiplication of k<n elements from N, we associate with each
element b e P(N) its length n(h) as the number of elements from N by
which multiplication by is determined. We introduce for the elements of 2/(N)
a partial order relation “<” as follows: (Vh,b; e Z/(N))(h <b, @n(hb )=
n(b,)-n(h)). For any subset 97 P(N) we define its basré’ B(f)’z‘) =
{a eN|(3b ed)(a <b,)} and rank r(97) = ||B(9?)|| A subset 97'&
SB(N) will be caled rooted if B A% one can easily see, for any
9t < P(N) aways r(97) <2y, n(ky). It is rather convenient to describe any
subset 97" < #7(N) by means of an incomplete matrix 27 (97"), where each row
corresponds to an element of 97’ (so the number of rowsis equal to ||97'|) and
each column corresponds to an element of its basis B(#?") (it means that the
number of columnsisequal to r(97')). The matrix 27 (97") can beinterpreted as
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a set of nonzero coefficients for a linear equation system. A subset 97 < 2(N)
will be called

(a) basic [complete] iff there exists N’ < N [N’= N] suchthat $(97) = 2(N");
(b) compatibleiff ||97 ||=r (97);

() eveniff T, . by =1j.

It should be noticed that for any 97" F(N) with ||97'[|>3, (D7) is
always even, and if 97 iscomplete, then ||97 ||=|IN||. If asubset 97 < (N) is
not even, then it is caled an uneven one. A basic and compatible subset
97 < (N) will be called perfect. Every perfect subset 97 < £7(N) is presented
by a square matrix 27 (97).

Lemma?. The following statements about a compatible 97 — /(N) are
equivalent:

(i) 97 isperfect.

(i) For any different subsets 7', 97" = 97 we have [, - b, # [T, e B,

(iii) Thereexistno b €97 and 97" — 97 with {ih} # 97’ such that hy:beem, b, .
(iv) 7 (9?) doesnot have even subsets 97’ < 97,

Proof. Let 97 be an arbitrary subset of $7(97) with |97 ||=n and r(97)=m". It
is obvious that ||Z7(®7)||<2™. If now 97 is compatible, then m'=m" and
therefore || (97) ||< 2™.

(i) = (ii). If 97 is perfect, then | (97)]|=2" =2™ and therefore for any
different subsets 7', 97" < 97 we have [, _, b, = Hbyem.” b,.

(if) = (iii). Obvious.

(iii) = (iv).Indeed, TT;, o b =1y = b =TIy corrny by -

(iv) = (ii). Let us assume that there exist subsets 97/,97" =97 such that
[y o B =TIy o b, Then  TI, cr b, =1g(y,  Where 977" =
(97\92") U (97"\97"), and hence 97 'is perfect.

(i) = (i). It is clear that if for any different subsets 27, 97" — 97 we have
[Ty cor by # [Ty e by, then [ (97) ||= 2. Due to the compatibility
of 97, wehave m'=m" and therefore ||7(97) ||=2™. From thisit
directly followsthat 97 is perfect. ]

We introduce for the subsets of #7(N) a relation of partial order “ <",
writing 97" < 97’ for any arbitrary 927/, 97" < (N) iff 97" can be represented
by a matrix 22(92") derived from 27(97") by deleting some of its rows and
columns. The subsets 27/ < P(N') and 22" < F(N") are said to be p-iso-
morphic iff there exists a one-to-one mapping ¢:9?' — 92", which is a perfect
subset preserving function, i.e. ¢ generates a one-to-one mapping between the
perfect subsets of 97" and 97" In the following we will refer to a subset
N <P (N) with the cardindity m as an msubset. Let us define
q= lim,_. 17 ,(1-1/2%) ~ 0.289.

15



Lemma 8.

(i) For any arbitrary m<n the probability of finding by a casual choice a
perfect m-subset in 7(N) isnot lessthan q.

(i) If a subset 27, < L (N) with the rank m consists of a perfect m-subset
97" 91,, then there exists a rooted subset 97, — 7(N), which is p-iso-
morphicto 97,.

Proof.

(i) Let 97 bean arbitrary subset of $#7(N) having the rank r(97) =m. Thefirst
condition that 97 should satisfy to be perfect is that the equity |97 ||=m
should hold. Now we are going to compose 97 by selecting its el ements one
by one and consider the other conditionsthat 97 should satisfy to be perfect.
The first element of 97 can be chosen arbitrarily with the only restriction
that it is not equal to 1. Hence the probability of a positive choice for the
first element equals 1-1/2™. While choosing the second element, we have
to take into consideration the fact that it should not be equal to the first one.
Therefore the probability of a positive choice for the second element is
1-1/2™* The third element, in addition to not being equal to the first two
elements, has to be different from the product of the first two elements.
Hence the probability of a positive choice for the third element is 1-1/2™ 2
For the fourth element a positive choice is guaranteed if it equals neither any
of the previous elements nor any product of arbitrary combinations of them.
Thus the probability of a positive choice for the fourth element is 1—-1/2™3,
Proceeding in an analogous way, we get for the kth and mth elements the
probabilities 1— 2™ and 1/2, respectively. Hence the probability of find-
ing a perfect subset 97 equals 1y, (1-1/ 2%)>q, which completes the
proof of part (i) of the lemma.

(i) As 97’ isaperfect subset with the rank m, in view of Lemma 7 there exists
for any be B(97,) asubset 27" 97" such that b=, 5. § . Let us define
now the mapping ¢: 97, — 97,

(@) toany element ae 9’:" there corresponds a be B(97,);
(b) for each be B(97,) we have (p(b) Hae,,, (),

© o -3 -.-a)=0d) @) - co(a,)foranya ‘8, .. g €9

with 3, q kane B(:?? )-

It is not hard to see, indeed, that the above defined mapping ¢ is an
r-isomorphism between 97, and 97, .

Corollary. For any pair of integers m and p satisfying the condition
m< p<2" there exists a rooted p-subset 97, = 27(N) such that the probability
of finding a perfect m-subset 97’ <97, among all m-subsets in 97, is not less
than q.

Proof. Indeed, as we have:
(@ the minimum number of perfect m-subsetsin £7(N) is by the appropriate
choice of columns greater than g [2”] ,
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(b) each perfect mesubset belongs to (%” J p-subsets 97, < F(N),

()  thenumber of msubsetsin 97, is [‘%j

(d) L) containslgz"g p-subsets 97,

the average relative n {% er q° of perfect m-subsets in 97, over al possible
choicesfor 97, equals g, for

e

Hence, in view of Lemma 8 (ii), there exists arooted p-subset 97, such that the
probability of finding a perfect m-subset among all of its m-subsets is not less
than q. Il

Let a set of natural numbers N={1,2,..,n} be given. Define N, =
{{inigy iy iV )0, €N A < B =i, <ig)}. It is obvious that
||Nk||_[ . Let us denote the permutation group on the set N
by F, o, lo, N> N}. For any peF, and N|, cN,, define p(N}) =
{{e(), gz)(lz) Loy Higs iy, . i €N}, Subsets Ny and N will be
called isomorphic iff there exists a permutation ¢ € F, with N} =¢(N}). We
put each Nj N, into correspondence with a class of subsets G(N,)
containing N| and all subsets of N, isomorphic to N|. Define for each
Nj N, aratio q(N}) = [N} I/ [IN, ]I

Lemma9. For any NO,N’cNk there exists a permutation ¢ € F, such that
o (N NN /NG = a(NG).

Proof. Let us define ¢/, € F, as such a permutation that for any p<F, we
have ||¢. (N?) NN |2l (N2) NN, ||. Denote N',QD_gpm(N YNN'. Asone can
easily see, for any 3, N, we get [[{¢'|¢'< F, A ¢'(3) =3} I=ki(n—K)!. In
an analogous way we have for any @, e N9 and q e N} apermutation ¢ e F,
with ¢(a,) =b,. Hence

I{(8&B.0) 1 eNR AB eNj A peF, A p(E) =B}l
= ki(n—K)NING 1N I

n!

AS NI =

o (N NN, 1| = (& B 0) | (38, B)@ <Ny A B, €Ny A p(@) =B} |

holds, we get

and for any ¢ € F, the equity
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, kl(n—k)! , ,
VIF S o (NS NN, ||=%||Ni NG I =N [N 1IN .

pel,

Thus  |IN} I =[INRIIINGI/IIN ]| and  therefore  [IN"[|/[INg || =
[INVII/IIN || = g. Thelemmais proved. Ol
Lemma 10. Let X:{xl,xz,x3},7rj(X):{ix2,x3;T<l} and 7(X)={X.X; X.%}.
Then H(z) =H(0y)—H(x;).

Proof. It is not hard to see that z; € P(¢'(r)). Assuming that 7" e P(z"), we
get for H(r) with n>1 thefollowing evaluation:

H((O0x)") -H((z))") <H (") <H(z™)
= lim1/n[H ((0x)") —H ()M < lim1/nH (") < lim1/nH (7™

= H(0y)—H(r))< H(r)grl1im1/nH(7r(”’).

We will show that lim,,,1/nH (z™)=H(0x)—H(z;). Let 7’ be a cover,
having blocks with the equal cardinality g, which along with Algorithm 1 can be
represented as a square matrix, where the rows correspond to blocks of the cover
7" and the columns correspond to the blocks of the partition 7z, € P(¢'(z")). We
denote the matrix associated with 7" by

2 58]y
Hence 27(zr)= . We will show now that there exists z,,(X") with
| 7 I<4n(n+1) ~ ‘such that 7™ -7, T(z;)" and (2 - 70,) @ (7))" =74,
To reach this goal, one has to find a partition of columns of 27(z")
corresponding to 7. First of al let us divide the set of columns of 27(z") into
n+1 subsets with the cardinantieseggj (2 =0,1,...,n). Indeed, in view of the
Cartesian product definition each element of X" can be represented by a
vector | :(il,iz,...,ik,...,i ) where i, e{X,%,, X} (k=1..,n). From this
it directInyfoIIows that the set of columns of 27(z") can be divided into
n+1 subsets with the cardinalities [gj (¢ =0,1,...,n) depending on the number
of characters x, as components of the vector which represents an element of X".
The elements of submatricesof 27(z"), corresponding to these subsets, could be
interpreted as a collection of binary numbers with length n containing element
X « times and elements x, or X; n—a times. These submatrices will
be denoted in the following by 0], having o rows and g columns; we will
apply the notion [2} (p, q). Hence [g} = [g} (2”,(2)]. A submatrix [2} (p, Q)
will be called digoint iff all itsrowsare pairwise digoint (rows of amatrix are
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digoint iff being interpreted as vectors with different components). For example,
in Fig. 2 matrices 27(z?), 22(c°), and W2(r*) are given (for mathematical
shorthand each column (a,,ay,...a, ) is replaced by a sequence of natural
numbers M ={1,2,...,m} according to the rules. (a)if by the lexicographic
ordering a; >a,, then j,>j. (j,,jx €M), (b)the order of columns in
2t (z") is determined by the decreasing number of different elements in them).
Non-hatched elements in the row of 27(z") give us the blocks of 7. The
blocks of (z;)" are represented by the columns of 27(z").

M ()
{3?o}| {21} l {2} [{oa}

11171

dae
7

IICD)

N

21
211

SRS
AT SIS
N
SN

N

{;fo}‘ (o

1{1[1]1[1]1

210272

3 -

4|22(4 42 2
5 B3, 20
6(3/4/2/6|3 V2N
714/3[3[7|4 w%a,
SVAA4BA 44 2 1202
9 / 3 N
10(5/6(6(2/1/2/2/ )
11/6/5/7[3 e 9

12 23815 /
13/7/7|5|513/3/14

14/7/8)) 2

1508/ 73

16{8/8/8[8 4]4]412]2]2]2

Fig. 2. Matrices 2 (z%), 2 (r°), and 2 (z™).
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It is obvious that LB consists of only one column, where the element vectors

are characterized by the lack of x, as a component. Evidently, all these element

vectors are different and their total number equals 2". The submatrix ﬂ' is
made up of columns, where the element vectors are characterized by the fact

that their ath (=1, ...,n) component is x, and other components are x, or X,.

The number of different vectors in each column of this submatrix equals

2", The problem is how to select from 2" potential rows 2™ digjoint rows.

Next, the submatrix g is made up of columns, where two of n components of

element vectors are characters x, and the other components are x, or x,. Itis

clear that the number of different vectorsin each column of this submatrix equals

2"2 and the problem we are concerned with is how to select from 2" potential

rows 2" disjoint rows.

In the same way one can characterize all other submatrices [g} with
a=3,4,..,n aswell. A common problem for all these subsets is how to select
2" digjoint rows from 2" potentia rows, i.e. how to find for each matrix [QJ
with & =0,1,...,n adisoint submatrix gL 2”*01,(9[)]. For this purpose, we wi
represent every row of a submatrix [g} in the following way:

(&) for the given row there exists a generating binary digit with length n, having
for its components characters “0” and “1”, corresponding to x, and x;,
respectively;

(b) each element in the given row is formed by deleting in this binary digit
arbitrary « components.

Denote by 277(n,n—«) a binary matrix of characters “0” and “1”, having
2™ rows and n columns. We associate with any submatrix 7|2 ,(5)) a
matrix 27(n,n—c«), which is characterized by a one-to-one correspondence
between the rows of gg_lzn—“,(g) and the n—a columns submatrices of
Mt (n,n—c). Thus, to each column of amatrix [g 2"*‘1,(2)] there corresponds
a submatrix of 27(n,n—«), whichis formed asa result of deleting some
a columns from 277(n, n—«). The problem of the choice of 2" digjoint rows
from a matrix g formulated above can be now reformulated as follows: to
find a submatrix [g}(znfa,(g)) such that for the corresponding matrix
(N, n—«a) we have:

(@ all of itsrows are different;

(b) if we delete arbitrary « columns of the matrix 27(n,n—«), then the
probability of getting again a matrix with different rows is the greatest
compared with other submatrices [ || 2« ,(3}) .

Considering columns of 77 (n, n— ) as vectors, one can apply to these vectors
the operations of addition modulo 2. If now some columns of 27(n,n—«) are
formed by this operation from other columns, we will refer to them as secondary
with respect to the others, referred to as primary. In the following we will
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consider a specia class of 27(n, n—«a) matrices with different rows which can
be characterized as follows:
(8) thereexistsan n—a column submatrix of 277(n, n—«) with different rows,
(b) the remaining « columns of 27(n, n—«), not belonging into the above-
mentioned submatrix, are secondary with respect to those in the submatrix.
Let us denote the set of vectors, corresponding to the primary columns of
y(n,n-a), by M {a1 a,, ..., a,}. These vectors build up, with respect to the
operation of addltlon moduI02 a commutative free group % =(M, -1, ) (see
p. 14), where “-” is the group operation and 1,, is a unit element of the group
(i.e. a vector consisting only of the character “0") satisfying the condition
(Va,eM)(a -1, =& ~q -a =1,). To each secondary column of 27 (n, m)
there corresponds an element of £7(M). Hence, to each matrix 7 (n, m) in the
above-defined class there corresponds an n-subset 97, < (M) with the rank
r(97,)=m In the following, the cases n<2™ and n>2" will be studied

separately.

Case n<2™. In this case the problem of finding a digoint submatrix
[g}(Z”-%(g)) can be reformulated into a problem of finding for every [g} a
matrix 27(n, m) to which there corresponds a subset 97, — 2?(M) containing a
maximum number of perfect m-subsets 97’ — 97, (in order to have, after deleting
arbitrary « columns of the matrix 27(n,m), al the rows of the resultant
submatrix 27(m, m) different again, the subset 97’ 97,, corresponding to
2t (m, m), needs to be a perfect one, for it is obvious that if a subset is perfect,
then there is no information loss and therefore all rows corresponding to the
given subset are different). The possible limit number for perfect subsets 97’ in
91, isdetermined by Lemma 8. Let us denote by o theleast natural number that
exceeds q 2 . As n<2™, it follows from Lemma 8 that we can find for a matrix
2i(91,) such a structure that the probability of finding a perfect m-subset
91" <97, isnot less than . It means that we have a chance to choose 2™ rows
in a matrix [2} such that in the corresponding matrix $7(n, m) there exist p
submatrices of m columns, having all their rows pairwise different. As to each
submatrix of 277 (n, m), formed by deleting « of its columns, there corresponds
a column in a matrix w{} it is possible to separate from the matrix 1] a
submatrix [ } (2", p), containing a digoint submatrix [”} (2™, p). Let us
consider now a submatrix d[”}"[zn (%)) having "o column with
[”} (2", p). Consider again finding for the given submatrix D’H (2”,(9[)—/))
a ¢"(n, m) which generates a disjoint submatrix [”} (2™, r) with the maximum
possible number of columns. Obviously, by a proper choice of 2™ rows in the
matrix [2} it is possible to realize all 27(n,m) matrices having pairwise
different rows. Hence, if we can realize a matrix 7(n, m), then it ispossible to
realize any matrix 2¢'(n, m) reformed from 27(n, m) by a permutation of its

columns. We can map the whole set of 7 (n, m) submatrices with m columns
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onto the set N ={{i},ip,.siy, i} (Vi )i, €N A< B=i, <i,)}, where
N={12,..,n}, and put each permutation of 27(n,m) columns into corres-
pondence with a permutation from the permutation group F, ={¢, |¢ : N — N}.
Hence, there exists a one-to-one correspondence between the columns of amatrix
2{} and the elements of N, which establishes the interpretation of Lemma9
for the further use. If now 27 ,(n, m) is a matrix with the corresponding subset
91, (M) containing the maximum possible quantity of perfect m-subsets,
the relative number of which with respect to all m-subsets of 97, is not less than
g, then due to the above interpretation of Lemma9 we can choose for each
submatrix [QJ, formed by deleting part of [}}] columns, an 27,'(n,m) with
the corresponding subset 97/, having the relative number of perfect m-subsets
not less than . To these perfect m-subsets there corresponds a subset
of [} columns whose projection to [5] is not less than q[f}].
Therefore Lemma9 vyields that for any p<n there exists a submatrix
[g} (2", p) with the corresponding matrix 27 ,(n, m) containing at least r <qp
submatrices of m columns from the set of p columns so that in each submatrix
all rows are pairwise different. Hence, we can separate from the given submatrix
[g}" a digoint submatrix (01" (2", r), where r is the least natural number
greater or equal to q[(g)—pj (due to Lemma 8 we can choose for 97, astructure
that ensures the maximum number of perfect m-subsets for the collection of
m-subsets 97 < 97).
In order to analyse further the process of dividing a matrix [g} into digoint
submatrices, we will use the following notations: X =q and X, =

XA (04 + %+ +X_1))% (] =2,3,...). Fromthisit follows that

T

j=1 j=0 J

Itisnot hard to seethat X; (j=1,2,...) represents the relative column number of
the jth submatrix of g} with respect to the column number of [1| Therefore
(A-q)" represents the relative column number of the residue matrix of 2
after w submatrices have been separated. It is obvious that |im,_,..(1—q)" =0.
Therefore we can go on with the process of separating submatrices until the
column number of the residue matrix is less than 4 and then divide the residue
matrix to one column submatrices, which in a trivial way satisfy the separation
condition. To ensure that the limit value for the actual column number of the
residue matrix is 0 as well, we need the condition |im,_,. g](l— g)" =0 to be
satisfied, for (2) is the column number of the matrix w{} and w= f(n). For a
sufficiently large n with an arbitrary « <n, from the above it follows that

22



(nj(l—q)w<1 = In(nj+wln(l—q)<0 = W>In[ j/ln(l—q).
(24 (04

n
(24

The last inequality is satisfied if W>In[ ] n,z/ln(l/(l_q))]
—w>n(n2/n@/(1-q)) = w>203n. (277 (/2)

Hence, we can take w=3n. Summing up the result in case n< 2™, we have
that the matrix 2 can be divided into no more than 3n submatrices,
characterized by the fact that from the column sets of these submatrices 2™ rows
can be chosen to form a digjoint submatrix.

Case n>2". We will compose now a vector, whose components are the
elements of (M), substituting each column of 27(n, m) by an element of
(M) asfollows:

(@) replace arbitrary 2™ columnsof 27 (n, m) with the elements of 7(M);

(b) the remaining columns of 27(n, m) are substituted by the elements of
(M) so that the numbers of different elements corresponding to columns
of 2¢(n, m) do not differ by more than one.

We can apply Lemma8 to al these subvectors with length m, having
different components. The relative cardinality of this subvector set with respect
to the set of all subvectors can be represented by the formula

2" mym [.[ N
(e )
If now n> m, then

>
[Zm] ~ - 2r'n e—a(m2/2m—m) and [n ] zﬂe—a(mzln—m),
m m:i

where 0< ¢ <1/2 and therefore

|:[2m] (n/ zm)m:| : [n j > e_(m2/2m+1) .
m m

Thus, for sufficiently large n in the case n>2", we get instead of the
coefficient g now q'q, where g’ = ™/2"™)_ If m=3, then ¢’ has its minimal
value 0.56 and therefore we get for w an inequality w> 3.86n. Hence, in the
case n>2" asubmatrix [Q{ can be divided into no more than 4n submatrices
so that it is possible to choose 2™ rows from among its rows, rendering us a
disjoint submatrix as aresult.
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For example, we will consider the solution of the given problem for
submatrices 27(n,n-1) and 27 (n,1), constructing for them the vectors

97, ~{a, 8y, ...8,,88..8,,} ad 97, ={a,a,..a},
%/—J

ntimes

whose components are elements from the set 2/(M), and we are going to look
for the perfect subsets with the power n—1 and 1, respectively. It is easy to see
that all these subsets are perfect. But, of course, in the general case 1<a <n-1
not al m-subsets 97’ are perfect with respect to 97, c ¥ (M). Hence, as a
summary we get from Lemmas 8 and 9 that for any o =0,1,...,n a matrix [2}
can be divided into no more than 4n submatrices, whose element sets represent
the blocks of the partition of 7z,,. This implies ||z, ||<4n(n+1). Hence
lim,_,,,1/nH (z,,) =0 and therefore

lim2/n[H (7™ - 75,) + H((z;)")]

n—w

= lim1/n[H @z 74, - (7)) + H(7™ - 70,) @ (7,)")]

n—oo

= limI/nH (7™ - 7,,) + H(z;) =H(0y)

nN—>o0

= limU/nH (=M <liml/nH(#z™ - 7,,)
n—ow

n—oo

=H(0yx)—H(r;)= limH(z"™)=H(0y) - H(r,).
This completes the proof of the lemma. Il
Theorem 2. For any smple cover 7 =7,/ z; wehave H(z)=H(z)-H(x)).

Proof. As in the case of Lemmal0, it is not hard to show that the theorem's
statement holds for any elementary cover. Due to Lemma3 each simple cover
r=mlmx; can be represented as a product of elementary covers
Ty, Tgseens Tireens T » Where each 7 =z /ﬂ'J(k) with

m;
”i(k) _Jg@ | B@ ¢ z (Bj("’)v B(@) — U B](ﬂ)
p=1
B=k
and
mJ
(k) _J Rk B
79 =B, (B |.

p=1
B=k
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As one can easily see, H(r)—H(r,)=X"(H(x")-H(z{)). Due to the
above result we have
H(z)-H(z))<H(@)<H(77;-..7)
= H(m) ~H () < () = (H () - H ()
k=1

=H(r)=H (=) -H(x;).

The result obtained shows that the algebraic concept of extropy for partitions
can be extended to simple covers as well.
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Katete informatiivsetest omadustest
Tonu Lausmaa

TUkeldus 18plikul hulgal annab infot antud tikeldusega méératud objektist.
Selline algebraline infotdlgendus on osutunud véga kasulikuks mitmesuguste
struktuurse keerukuse probleemide lahendamisel. Analoogselt tiikeldusega saab
ka katet I6plikul hulgal interpreteerida kui antud kattega esindatud objekti
struktuurset keerukust véljendavat infot. Kuid erinevalt tikeldustest puudub
siiani katete kvantitatiivne infomdot. Artiklis on alustatud katetele kvantitatiivse
infom®ddu |leidmist, naidates, et deduktiivselt on voimalik leida see katetele, mis
véljendavad kahe tikelduse infosisalduste vahet. Saadud resultaat rgjab teed
sellele, et leida kdikidele praktika seisukohalt olulistele katetele kvantitatiivne
infom@ot, mis vBimaldab hinnata laialdase objektide klassi struktuurset kee-
rukust.
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