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Abstract. Searching in a partially ordered structure under the supposhat the set of
elementary operators consists only of monotone ones idajma on the basis of schemes
determined via some predicate. Models for the design ofpeesd adaptive solutions, namely
an M-model and an4d M-model, are determined and investigated. Interrelaticts/den
these models are established in the general case. Schemnthe fitesign of solutions of all
basic (minimal, irreducible, cooperative, and adaptiypet are developed. It is shown that
the suggested approach can be applied to resolve some basierps of discrete mathematics,
such as the design of irreducible sets of representatives ffamily of sets, design of
experiments with finite automata, design of minterms angidgive normal forms consisting
of minterms only.

Key words: searching schemes and models, preset and adaptive se|wgperiments with
finite automata, disjunctive normal forms.

1. INTRODUCTION

On the basis of a set-theoretic (linguistic, in essence) appsearthing theory
was developed in terms @iperatorsacting in somespace of situationg' 3] (to
avoid collisions, the termsituationis used instead of the terstatg. The notion
of exhaustive searchirig applied to schemes designed under the suppositions that
a set of situations is an abstract one (i.e. it is provided with no structuck) an
any operator is some (possibly, partial) mapping of this abstract set inta itself
High complexity of exhaustive searching played the rolghaf catalystfor the
design of more effective specific schemes based on the notiam efstimatoy
i.e. someeasily computable functioastimatingthe distancebetween a situation
and the target(in essence, this means that a set of situations is provided with
somepseudo-metric spacstructure). Unfortunately, all attempts to apply this
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approach to resolve some fundamental problemdisdrete mathemati¢cssuch

as finite automata identification, disjunctive normal forms design, etc., hare be
unsuccessful. The main reasons for this situation are the following. Fitisdy,
requirement for the existence of an estimator is too strong (as a conseguen
only for a few problems estimators were designed). Secondly, there isrmalf
constructive definition oin estimatolas a consequence, problems of its existence
and effective design remained also unresolved). Thus, there natarelfs the
necessity to develop some approach for searching schemes desighaud) it

is free of the above listed shortages; 2) it includes, as special casesgeth
theoretic approach as well as the one based on the notion of an estimator. In
the present paper this problem is investigated via providing a set of sitsation
with some partial ordering structure and by dealing witmonotone operators
only to implement the possibilitpf comparing the distancesetween any two
situations andhe targetwithout estimatingthe valuesof thesedistances*~?].

The power of the proposed approach is illustrated by its applications ttveeso
problems related to the identification of internal states of finite automata, design o
irreducible sets of representatives for a family of sets, design of mintesmekh

as disjunctive normal forms consisting of minterms oflly'f]. Resolving the last
problem provides us with powerful tools for controllability/observability lgas

of combinational circuits (seé'[?)).

The paper is organized as follows. Section 2 introduces basic notio&ech
tion 3 schemes for the design of preset solutions, determined by somegpeedie
developed. In Section 4 a model for preset solutions design, namely-amdel,
is determined and problems of the design of minimal, irreducible, and coofgerati
solutions are resolved. In Section 5 a model for the design of adapiivioss,
namely, anAM-model, is determined, its interrelations with thd-model are
investigated, and the problem of the design of some adaptive solution iga@so
Concluding remarks are given in Section 6.

2. BASIC NOTIONS

As a rule, in the role o modelintended forpreset solutionslesign, some
systemS = (S, F, sin, Stin) is Selected such that is a finite set okituations 7
is a finite set oklementary operators.e. (possibly, partial) mappings fromto .S,
Sin (sin € S) is the initial situation andS;, (Sfi, C S\{sin}) is the set of final
situations The set ofoperatorsis the free semigrougF™* (i.e. 7* = {A} U F'T,
where A is the empty stringand F™ = |J 32, F’) under the assumption that
the action of any string” € F* on any situations € S is determined by the
following identities: sA = s, sF = (...(sf1)...)fr (F = fi...f, € FT). Let
Fi={F € F*|se€ Dom F} (s € S). The setl(S) = {F € F} |[sinF € Syin}
will be called the set ofvinning operators It is supposed thahe set of solutions
Q2 (Q C L(S)) is determined via some predicate : F* — {0,1} such that
(VF € F*)(P(F) =1 < F € Q) (i.e. P isthe characteristic functiomof a
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set()). We setLp(S) = Q. Basic types of preset solutions are determined in the
following way (d(F') (F' € F*) denoteghe lengthof a stringF").

Definition 1. For a systenss = (S, F, sin, Sfin):
1. minimal and irreducible solutions are determinedespectively via the pre-
dicatesP™™" and P'" such that
PMMF) =1<+= (F € L(S))
&(VFL € FP)((d(F1) < d(F)) V (d(F) > d(F)) = P™"(F1) = 0),

P7T(F) =1+ (F € L(S))&(VF} € erase(F))(P"(F,) =0),

whereerase(F') is the set of all operators obtained by deleting of at least one
letter in F;

2. k-cooperative solutions (k > 2) are determined via the predicate
PP F* x - x F* — {0,1} such that
N —

k times
PCp(Fl, .. .,Fk) =1<«= (Wk(smFl, .. .,Ska) € Sfm)

&(VF| € erase(Fy)) ... (VF}, € erase(Fy))(wi(sinFY, ..., sinFL) & Stin),

wherew;, : S x --- x § — S is some fixed operation.
————

k times

Remark. If k-cooperativesolutions are designed, it is usually supposed that

an operationw, and a predicateP” are symmetri¢ i.e. wg(s1,...,Sx) =
wk(sa(l), RN Sa(k)) and PCp(Fl, ceey Fk) = PCP(Fa(l), ce 7Fa(k)) for any
permutationa of the set{1,...,k}. Itis worth noting that these conditions are

not necessary ones.

As a rule, in the role of a model intended fadaptive solutionslesign, some
systemS = (S, H, sin, Srin) (H € F x G) is selected. An elementary operator
(f,9) € H is interpreted as follows:f (f € F) is an elementary operator in
the usual sense of this word, whije(g € G) is the name of some specific case,
determined as a result of some additional analysis of the situation that takes pla
i.e. g represents some analogy with the CASE operator of a programming language

LetGs ;s ={9<€Gl(f,9) € H,s € Dom (f,g)}.

Definition 2. For a systens = (S, H, sin, Stin) (H C F xG) an adaptive solution
is any partial mappingB : G* — F such that 1)A € Dom B; 2) G(r) =
g1-..9r € DomB (r=1,2,...) if and only if G(r—1)€ Dom B,
Sin € Dom H(r), siH(r) ¢ Stin, Where H(r) = (B(A),g1)(B(g1),92)- -
(B(g1---9r-1),9r); )it G(r)g ¢ Dom Bforall g € G,thenG, i) gy # 9
and s, H(r)(B(G(r)),g') € Sy forall ¢ € Gy ney,Ba@)): 4) there exists
ls € IN such thatd(G) < Is forall G € Dom B.
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Any searching schemiatended for preset solutions design is reduced to explicit
design of someacceptor which presents the set of solutions, adanguage
It is worth noting that this acceptor is designed by extracting a spsuiatree
of (possibly, infinite)treg, presented implicitly. This tree can be determined
inductively in the following way.

Definition 3. For a systenS = (S, F, sin, Stin) the rooted oriented labelled tree
Dg is such that 1) the root is labelled by the elemesy,; 2) an arc labelled by
an elementf € F starts from a vertex labelled by an elemen& S if and only
if s € Dom f, and this arc terminates in a vertex labelled by an elemgfit
3) different arcs that started from the same vertex are labelled by diffelements
of the setF.

If the labels of arcs of some path which started in the root of thelxeéorm
the stringF’ = fi...f. (r = 0,1,...), then the terminal vertex of this path is
denoted byvg. Thus, the root of the tre®g is denoted byw,. The vertices of
the treeDg are placed into sequential levels enumerated by nonnegative integers,
i.e. theith level (i = 0,1,...) consists of all verticesy such that" € 7} and
d(F) = i. -

Similarly, the followingtreeis determined inductively if adaptive solutions are
designed.

Definition 4. For a systens = (S, H, sin, Stin) (H € F x G) the rooted oriented
labelled treeDgs is such that 1) the root is labelled by the elemenf, and is
placed into thedth level 2) different arcs that started from any vertex are labelled
by different elements3) let v be a vertex labelled by an elemen{s € S) and
placed into the2ith level(i = 0, 1,...). An arc labelled by an elemerft(f € F)
starts from the vertex if and only ifG,  # (). This arc terminates in an unlabelled
vertexv,, . placed into the(2i +1)th level. An arc labelled by an elementg € )
starts from the vertex; , if and only ifg € G, . This arc terminates in a vertex
labelled by the element f, g) and placed into th&(: + 1)th level.

Remark. Itis evident that the tre®s determines somene-person gami¢ preset
solutions are designed (see Definition 3) and stweepersons gami adaptive
solutions are designed (see Definition 4). Thus, any searching scheethiced
to the design of som&inning strategyfor the corresponding class of games.

3. SCHEMES FOR Lp(S) DESIGN

Let D(P,S) be the minimal (by the number of vertices) subtree of the tree
Ds consisting of the root and the set of vertidés,, = {vr|F' € Lp(S)}. The
setLp(S) is the language determined by the accep®(P, S), v, Vyin). Any
searching scheme for the &t (S) is determined by the mode in which a sequence
of trees

D(0),D(1),... (1)
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is designed such that: 1) the root of the tf@g is the root of every tred(i)
(1t = 1,2,...); 2) D(P,S) € D(0)UD(1l)U--- C Dg; 3) any treeD(i)
(1 =1,2,...)is uniquely determined by the sequere@), ..., D(i — 1); 4) any
treeD(i) (1 = 1,2,...) consists ofas few vertices as possiblg) if D(P,S) is a
finite tree, then the sequence (1) is also finite; 6) if the sequence (1) iganfiren

o VAU DO
vV (D(P.S)IH)

=1,

whereD[h] (h =0, 1,...) is the maximal subtree of the heighbf the treeD and
V(D) is the set of vertices of the trde.

Remark. The word combinationd treeD consists of as few vertices as possible
is used in the following senseir'the process of the design of considered solutions
there exist no cutting rules for a trés producing a proper subtree of the tré¥.

In what follows, it is supposed that the sép(S) is a regular one. As
a rule, this claim is true if any searching is applied. Moreover, it provides u
with a sufficient condition for eliminating any problem connected it halting
problem as well as with a possibility of converting the trBéP, S) into soméfinite
tree D§ . The latter tree, in its turn, can be converted into some finite acceptor,
which determines the language-(S). Taking the above supposition into account,
it is assumed in what follows that the sequence (1) of trees is finite.

Remark. As arule, the height.,» of the treeDE is not known in advance and is
determined only in the process of the design of theﬂ§e’n the explicit form.

In the remainder of the Section three basic schemes for the design of the set
Lp(S) are developed.

3.1. Breadth-first searching

Sequential design of the tr@g, one level after another, leads to the design
of the finite sequence of tre€3(0), D(1),...,D(k) such that: 1) the root of the
tree D is the root of every tre®(i) (i = 0,1,...,k); 2) the height of the tree
D(i) is equal toi for all i = 0,1,...,k — 1, and the height of the tre®(k)
is equal toLpyr; 3) DL € D(i) C Dsli] (i = 0,1,...,k); 4) any treeD(i)

(1 =1,...,k) is uniquely determined by the sequere@),...,D(i — 1); 5) any

treeD(i) (i = 1,..., k) consists of as few vertices as possible.
LetV; (: = 1,...,k) be the set of all vertices placed into tfth level of the
treeD(i).

Definition 5. A vertexvr € V; is considered to hel) a finalone if F € Lp(S);

2) an unprofitablene if it is wittingly known that" is not a prefix of any element
of the setCp(S); 3) a generatingne ifvr generates at least one vertex placed in
the (< + 1)th level of the treeD(i + 1).
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Let fnl(i), unp(i), gnr(i) (i = 0,1,...,k) be the sets of all, respectively,
final, unprofitable, and generating vertices of the ®€¢). To determine these sets
in the explicit form, it is necessary to investigate the structure of th€ séf). As
a rule, this is done via verification of the validity of propositions of the following
type (the symbol ### is placed instead of the word combinattbe following
conditions:. .. hold).

Proposition 1. A vertexvr placed into theth level(i = 1,2,...) of the treeDgs
is a final one if and only i, F' € Sy;;, and there exists no vertex of the tree
Dsli] such that ###.

Proposition 2. A vertexvr placed into theth level(i = 1,2, ...) of the treeDgs is
an unprofitable one if and only if ### and there exists a verieof the treeDg|i]
such that ###.

Proposition 3. The seynr(i) (i = 1,2,...) is any minimal by cardinality subset
of vertices located in théth level of the tre@s|:] and such that ###.

It is evident that the sejnr(i) (i = 0,1,...) is determined uniquely if and
only if eithergnr(i) = V;\unp(i), or gnr(i) = V;\(unp(i) U fnl(i)). Otherwise,
it is necessary to search someget(i). The complexity of this searching depends
on the cardinality of the sefg;\unp(i) and V;\(unp(i) U fnl(i)), respectively.
Besides, it is necessary to verify the validity of the following proposition.

Proposition 4. Any setynr(i) (i = 0,1, ...) generates some setr(i + 1).

The setsfni(i), unp(i), gnr(i) (¢ = 0,1,.. "LDE) form the base for the
design of the sef p(S) via breadth-first searching. To implement the characteristic

“any treeD(i) (i = 1,.. "LDE) consists of as few vertices as possiplie
following procedure fogarbage deletingvould be applied.
Procedure GRBG(D(i)).

Step 1.Provide every vertex € V;\(gnr(i)U fni(i)) with the marke, j := i —1.
Step 2.If j =0, then go to Step 5, else go to Step 3.

Step 3.Provide with the marlé every vertexv, placed into thgth level, such that
all arcs starting inv terminate in vertices of théj + 1)th level, each
provided with the marlid.

Step 4.If there exists a vertex placed into thejth level and provided with the
mark e, thenj := j — 1 and go to Step 2, else go to Step 5.

Step 5.Delete all vertices provided with the ma#k (and all arcs incidental to
these vertices) and HALT.

The validity of the procedur& RBG is evident. Thus, the following algorithm
for the setl p(S) design via breadth-first searching can be proposed.
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Algorithm 1.

Step 1.D(0) := Ds[0], D := Dg[1], i := 1.

Step 2.D := GRBG(D), D(i) := D.

Step 3.1If gnr(i) = 0, then HALT, else go to Step 4.

Step 4.Set D to be the tree obtained by insertion inf&(i) of the part of the
(i + 1)th level of the treeDs, generated by the setr (7).

Step 5.7 := i+ 1 and go to Step 2.

Theorem 1. If the sequencé®(0),D(1),...,D(k) is designed by Algorithn,
thenD(k) = DE.

Proof. As a result of the execution of the procedd#& BG no element of the set
Vyin is deleted. Thus, it is sufficient to verify that any leaf placed intoithdevel
(¢ > 1) of the treeD(k) (if such a leaf exists) is an element of the g, .
Algorithm 1 terminates only in Step 3. Transition to Step 3 takes place only if
the proceduré&RBG is executed in Step 2. Singawr(k) = (), as a result of the
kth execution of the procedu@RBG any vertexv € V;\ fnl(k) is provided with
the mark# and is deleted. Thusdy, C V.
Letvr be any leaf placed into thi¢h level (i = 1,...,k — 1) of the treeD(k).
Suppose thatr ¢ Vy;,. As a result of theth execution of the procedut@RBG
all elements of the setnp(i) are deleted. Thus;,,F' € Dom f, for at least one
f € F. This implies that there exists somjes {7, ..., k} such that in the process
of the jth execution of the procedut@ R BG all descendants of the vertex are
provided with the marl#. For this reason, in the process of ik execution of the
procedure RBG the vertexvr is also provided with the mar#h and is deleted,
i.e. there is no vertexy in the treeD(k). Contradiction. Thus, the supposition is
false, i.evp € Viip. O

3.2. Backtracking

Informally speaking, some routing via some minimal subtfeés executed,
such that
D5 C D C Dslh], (2)

in accordance with the following two rules: (a) move forward, while it is puss
(b) if forward move is impossible, then annul the last action, return to thaque
situation, and then apply rule (a).

Remark. It is evident that any routing via the trée is based on the supposition
that the sefF is a linearly-ordered one.

Let [bl(v) be the label of a vertex, [vi(v) be the number of the level into
which the vertex is placed, andtr(va,v) be the string formed by the labels of
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arcs of the path leading from the root of the t@@g to the vertexv. Using the sets
of vertices fnl(i), unp(i), gnr(i) (i = 0,1,...,k), the following backtracking
algorithm can be proposed for the design of thesetS) by executing routing via
some subtree of the tré¢ *_| D(i).

Algorithm 2.

Step 1.v* := vy, £ := 0.

Step 2.vrnts(v*) := {f € Fl|lbl(v*) € Dom f}.

Step 3.If vrnts(v*) # 0, then go to Step 4, else go to Step 11.

Step 4.Setf the first element of the setnts(v*), vrnts(v*) := vrnts(v*)\{f}.

Step 5.Insert a vertex into the (lvl(v*) 4+ 1)th level. Insert an arc that starts in
the vertexv* and terminates in the vertex Label the inserted vertex and
the inserted arc, respectively, by the situatitii(v*)f and by the
elementary operatof.

Step 6.1f v ¢ gnr(lvl(v*) + 1) U fni(lvl(v*) + 1), then go to Step 7, else go to
Step 8.

Step 7.Delete the vertex and the arc that terminates in it and go to Step 3.
Step 8.v* := v and go to Step 9.

Step 9.1f v* € fni(lvl(v*) 4+ 1), thenl := L U {str(vp,v*)}.

Step 10.Go to Step 2.

Step 11.1f v* = vy, then HALT, else go to Step 12.

Step 12.If v* = vpy (F € F*, f € F), thenvrnts(vp) = vrnts(vrp)\{f},

v* := v, delete the vertexy; and the arc that terminates in it, and go to
Step 3.

Theorem 2.If the setC is designed by Algorithrg, thenl = Lp(S).

Proof. Steps 1 and 9 imply thaf C Lp(S). Steps 1-8, 11, and 12 imply that
there is implemented some routing via some sulifree | J le D(1) satisfying the
inclusions (2). Thus, any operatér € Lp(S) is represented in the tré@ via the
labels of arcs of some path which started in the root of thefregaking Steps 1
and 9 into account, we gét O Lp(S). InclusionsC C Lp(S) andL O Lp(S)
imply that the identityC = Lp(S) holds. O
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3.3. Branch-and-bound method

Informally speaking, searching ftine cheapest solutiortsn be reduced to the
design of some minimal subtré® of the tree{J *_, D(i) in accordance with the
following rule: at any step there are generated and analysed dirextratsts of
the cheapest verteke. some vertex, such thathe cosof the stringstr(va, v) is
the lowest.

Let someestimatorest : V(Ds) — IR be fixed, satisfying the inequality
cst(Ff) > cest(F) (fF € F{ ). Since there is a one-to-one correspondence
between the sef; and the set of all vertices of the tré;, we setcost(vr) =
cost(F'), for all FF € F; . Itis supposed that the target is the set of solutions
Lp(S) such that

Lp(S) C{F € Lp,(S)|cst(vp) = F/enﬁllian(S) cst(vpr)},
1

where P, is some given predicate. Léit be the list of all leaves of the designed
subtree, ordered in accordance with the values of the estim&tcand/ub be the
least upper bound of previously computed values of the estinratorUsing the
sets of verticegnl(i), unp(i), gnr(i) (i = 0,1,...,k), the following algorithm
for the set p(S) design via the branch-and-bound method can be proposed.

Algorithm 3.

Step 1.lub := oo, Ist := {wvp}, £ := 0.

Step 2.1f Ist = (), then HALT, else go to Step 3.

Step 3.Setv* the first element of the ligtst, Ist := Ist\{v*}.

Step 4.vrnts(v*) := {f € F|lbl(v*) € Dom f}.

Step 5.If vrnts(v*) # 0, then go to Step 6, else go to Step 2.

Step 6.Setf the first element of the seints(v*), vrnts(v*) := vrnts(v*)\{f}.

Step 7.Insert a vertex into the (lvl(v*) + 1)th level. Insert an arc that starts in
the vertexv* and terminates in the vertex Label the inserted vertex and
the inserted arc, respectively, by the situatitii(v*)f and by the
elementary operatof.

Step 8.1f v ¢ gnrp, (Ivl(v*) + 1) U fnlp, (lvl(v*) + 1), then go to Step 13, else
go to Step 9.

Step 9.1f est(v) < lub, then go to Step 10, else go to Step 13.

Step 10.1f v € V;,, then go to Step 11, else go Step 12.
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Step 11.If est(v) = lub, thenL := L U {str(va,v)}, elselub := cst(v) and
L = {str(va,v)}.

Step 12.ist := Ist U {v} and go to Step 5.

Step 13.Delete the vertexr; and the arc that terminates in it, and go to Step 5.

Theorem 3.If the setC is designed by Algorithr8, thenl = Lp(S).

Proof. The cutting rules used in Algorithm 3 are stronger than the ones used
in Algorithm 2. This reinforcement results in deleting any vertefand all arcs
connected to it), whose cost exceeds the cost of previously desitgradrds of

the setCp, (S). As a result of the execution of Steps 9-11 the/Setould consist

only of the cheapest previously designed elements of th& sgtS). Since the
estimatorest is a nondecreasing oné, ¢ Lp(S) for any operator', formed by

the labels of arcs of any path which started in the root and passed thiwigértex

v. This fact and the validity of Algorithm 2 imply that any operafore Lp(S) is
represented in the subtr@edesigned by Algorithm 3 via the labels of arcs of some
path which started in the root of the trée Thus,L = Lp(S). O

The number of vertices of the tré@ designed by any of Algorithms 1-3 is
estimated a®)(|F|*¥) (k — oo). Thus, the time complexity of each of these
algorithms is some exponent. Space of exponential size is needed to store the
explicit form of the treeD. This storage is necessary for Algorithms 1 and 3, only.
Thus, the space complexity of Algorithms 1 and 3, each, is some exponef. As
Algorithm 2, it is necessary to store the single analysed patfisi...si—1fis;

(1t =0,1,...,k). Thus, the space complexity of Algorithm 2a5k) (k — o0).
This estimation may be reinforced in the following important special case.

Theorem 4. If the setF generates a commutative semigrothen space complexity
of Algorithm2is O(|F|) (k — o).

Proof. Sincef;f; = f;fi (fi,f; € F), any operatot’ € F* can be rewritten
in the form F = fM...f% (o € Z4i(i = 1,...,m)). This form is pre-

sented completely via then-tuples (aq,...,a,) and (&1, ...,&y), whereg;
(1t =1,...,m) is aflag (i.e. a Boolean variablgsuch that;, = 1 if and only
if the analysis of the operatgf* is completed. Space of the si@¥|F|) (k — co)
is sufficient to store the above-tuples. O

4. DESIGN OF PRESET SOLUTIONS

In [12] the structure of the winning operators set is characterized, in essence
in terms of situationgquidistantfrom the set of final situations. Thus, it looks
attractive to determine some partial ordering on the set of situations, caomnsiste
with the sets okquidistant situationsThis approach leads to the following class
of structured models.
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Definition 6. An M-modelis a systens = (.S, F, sin, Sfin) such that on the set
S some partial ordering<g is determined such that) if s; € S¢;, andsa<gs1,
thensy € Stin; 2)if s1 € Dom f (f € F) andsa<gsi, thensy € Dom f; 3) if
$9<g81,thensy f<gs1f (f € .7:)

Lemma 1.If s5<gs1,then 1) 73 O F;

51

2) soF<gs1F forall F e f:l
Proof. By induction over the length of an operator.

It seems that for a fixed\-model S = (S, F, sin, Stin) the following
problems are the basic ones (since a great number of problems of discrete
mathematics as well as of its numerous applications are reduced to these).

Problem 1. It is necessary to design the s&t"(S) of all minimal solutions for
anM-modelS.

Problem 2. It is necessary to design one (no matter which) minimal solution for an
M-modelS.

Problem 3. It is necessary to design the &t (S) of all irreducible solutions for
anM-modelS.

It is evident that to resolve Problem 2 it is sufficient to resolve Problem 1.
Unfortunately, this approach complicates resolving Problem 2 excésdige this
reason it is a matter of principle to extract sokeenel 7" (S) of the setC™"(S)
such that: 1) (S) € L£™"(S); 2) the design of a se}”", (S) is as simple as
possible; 31 (S) # @ if and only if L7™(S) # (0. Thus, Problem 2 is naturally
reduced to the following

Problem 4. It is necessary to design some kergg}’ (S) of the setL™"(S) for
anM-modelS.

To resolve Problems 1, 3, and 4, it is sufficient to determine the corrdsppn
sets of final, unprofitable, and generating vertices and then apply eitherithm
1 or Algorithm 2.

Theorem 5. If s;, F1<gsy Fb andd(Fy) < d(Fy), thenFoF ¢ £™7(S) for all
FeF; g-

Proof. Suppose that there exists some operdfoe F; . such thatfbF €
L£mn(8S). Sinces;, F1<gsi,Fy andF € VI it follows that (see Lemma 1)
F € f;nFl and (SinFl)Fés(Sian)F, ie. Sln(FlF)g‘gSm(FgF) Since
FBF € £™(S), it follows that si,(FoF) € Sfin. Sincesi,(FoF) € Stin
and s, (F1 F)<gsin(FoF), it follows that (see Definition 6y, (FiF) € Sfin,
i.e. [1F € L(S). Sinced(F1F) = d(F1) + d(F) < d(F») + d(F) = d(FyF), it
follows thatFy F € £(S), b F € £L™"(S) andd(Fy F) < d(F>F). Contradiction.
Thus, the supposition is false, i.By F ¢ L™"(S). O

Definition 7. An i-characteristic se¥;*"" (i = 0,1,...) is any minimal by
cardinality subset of the séf satisfying the following conditiarfor every vertex
vp € V; there exists some vertex: € Vf’” such thats;, F'<gs;, F.
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Lemma 2. Any i-characteristic set(i = 0,1,...) generates somé& + 1)-
characteristic set.

Proof. By induction over the length of an operator.

Theorem 6. If an operatorF' € ]—“;n can be presented in the forii = FFy
(Fy, F, € F1) such thats;, Fi <gs;,, I, thenF I3 ¢ £7(S) for all F; € fjnF

Proof. Suppose that there exists some operdtore F; . such thatF'Fs €
L7 (S). Sinces;, F1<gsi,F andF3 € F;. o itfollows thatFs € F;  and
(5inF1)F3<g(5;nF)F3, i.€. sin(F1F3)<gsin(FF3). SinceFFy € L7(S), it
follows that s;,(F'F3) € Spin. Sinces,(F1F3)<gsqy(FF3) and s;, (FF3) €
Stin, it follows that s;,(F1F3) € Spin, 8. F1F3 € L(S). Thus, we get
FIFRyFy € L7(S), 1Fy € L£(S) andF, € F*. Contradiction. Thus, the
supposition is false, i.e' F3 ¢ £7(S). O

Let the setsC™"(S), £ (S), and £"(S) be determined via predicates
pmin pmin - and P, These sets are finite. Thu®L = D(P,S) (P €
{pmm pmim Py, To resolve Problems 1, 3, and 4, the sets of final, unprofitable,

krnl>

and generating vertices would be determined in the following way: for all
i=0,1,...,

frlp(i) = {vp € Vi[(d(F) = i)&(sinF € Spin)} (P € {P™", PILL P},

unpp(i) = {vr € V;|AV(Tvr,)((d(F1) < d(F))&(sinF1<gsinF))}
(P e {P™™, PIib),
unppir(1){ve € Vi|AV (3up ) ((d(Fy) < d(F))&(3F; € FH)(F = F1 Fy)
&(sinF1<gsinF))},
whereA = (d(F) = ))& (Vf € F)(sinF ¢ Dom f),
gnr prin (i) = { 0, i frlpmin (i) £ 0
gnrpir (i) = Vi\unppi (i),

andgnrpﬁi,; (1) is any minimal by cardinality subset of the sgtr pmin (i) such

that the sef{s;, F|lvp € gnr pmin (¢)} consists of all minimal elements of the set

{sinF|vp € gnrpmin(i)}.

If it is necessary to design soniecooperative solution, it is natural to insert
the following additional restriction into arM-model S: the set(S,<g) is a
semilatticei.e. for all s, sy € S there exists the unique element S such that:

1) s<gs1 ands<gsg; 2) (Vs' € S)((s'<gs1)&(s'<gs2) = ('<gs)). Under
this condition some slight modification of Algorithm 1 is directly applied, intended
for the design of the sed""(S), if we setwy, = inf{sy,...,s;} (k € IN).

)
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To illustrate the approach developed above, in the rest of this Section some
problems of discrete mathematics will be briefly considered.

Example 1. A finite automatons a systemM = (@, X,Y,d, \), where@, X,

andY are finite sets, namelyhe set of stateghe input alphabetandthe output
alphabet§ : Q@ x X — @ is the transition mappingand) : @ x X — Y isthe
output mappingMappingss and) are extended to the s@tx X * via the identities

6(g,A) =q, d(q,px) =3(5(q,p),z), Mg, A) = A,
Ag, pz) = Xg,p)A(3(q,p), ).

A weakly initialized automatofw.i.a.) is an ordered paitM, Q) such that\/
is a finite automaton an@, (Qo C @, |Qo| > 2) is the set of initial statesFor a
w.i.a. (M, Qo) an input sequencee X is )
1) a distinguishingone if (Vq1, g2 € Qo)(A(q1,p) = g2, p) = @1 = g2);
2) a homingone if (Vq1, g2 € Qo)(A(q1,p) = Mgz, p) = d(q1,p) = 6(q1,Dp));

3) a synchronizingne if (Yq1, g2 € Qo)(0(q1,p) = 0(q1,p))-

For a w.i.a. (M, Qo) the set of all distinguishing, homing, or synchronizing
sequences will be denoted BY(M, Qo), H(M, Qy), or S(M, Qo), respectively.
These sets determirsimple preset experimeniatendedor identifying a stateof
aw.i.a.(M, Qo).

Let B(|Q|, |Qo|) = {W € P(Q)| [W| < |Qo|} (P(Z) is the power sebf a
setZ) andW(|Q|,|Qo|) be the subset dP(P(())) consisting of all elementd’
such that: 1jw| > 2 for all w € W; 2) if w1, we € W (w; # wy), then neither
wy C wp NOrwy C wi; 3) Y ,ew 1wl < |Qol. We set

Sthian = W(QLIQo]), X, {Qo}, {0)),

’S(hM,Qo) = (W(|Q‘v ‘QO’)7X7 {QO}v {0})7

S(S]\/[,QO) = (B(|Q|7 |Q0D’X7 QOa B(’Q|7 1))7

where Wz = {i(q,2)}(W € B(|Q|,|Qo]),z € X) and Wz (W =
{wi,...;wp} € W(|Q,|Qo|), z € X) is computed via the following Procedure 1
fora systemS‘(dM’QO) and Procedure 2 for a systeﬁiﬁM’QO)

Procedure 1.

Step 1.Wp = {w;(y)lj = 1,...,hyy € Y}, wherew;(y) = {0(q,2)|qg €
x)=yrt(G=1,....hy€Y).

Step 2.If there existsj € {1,...,h} such thaty_ ., |w;(y)| < |w;|, thenWz
is not determined and HALT, else go to Step 3.

Step 3. Wz := {w € Wi| |w| > 2} and HALT.
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Procedure 2.

Step 1.W;

= {wjW)lj = 1,...,hy € Y}, wherew;(y) = {d(¢,7)|q €
wj, Mg, x)

=yt (J=1...,hyeY).
Step 2. Wz := {w € Wi| |w| > 2} and HALT.

Each of the set®8V(|Q|, |Qo|) andB(|Q), |Qo|) is partially ordered in the following
way:

Wo<yyWi <= (Ywy € Wa)(Fwr € Wh)(wa Cwr)  (Wh, Wa € W(|Q),Qol)),

Wo<gWi <= Wy C W, (Wl,W2 € B(|Q’, ‘QOD)

It was verified in f] thatS(dMyQO), S(’ZMQO), andeMQo) are M-models such that

L(Stig) = DM, Qo), L(S(ar0,) = HM, Qo), L(S{ar0,)) = S(M, Qo).

Thus, prefix design (see 'f]) of distinguishing, homing, and synchronizing
sequences for a w.i.a. can be developed systematically on the bagisddels.

Let Q¥ = {{g1,@}a,¢2 € Qiqt # @} Po,(QP) = {W ¢
P(Q®)|(V{q1, 2} € W)({q1, 42} Z Qo)}, Tl be the set of all partitions of the

setQ, I} (Qo) = {m € Ig| lg, = 0g,}, I3 (Qo) = {7 € g| 7lg, = 1, }-
We set

,T((}l\/[,Qo) - (HQ7 X, 1q, HdQ(QO));

Thiqn = (PQP). X, Q%) Py, Q).
Tir.0 = (Mg, X, 00,115 (Q0)).

Elementary operators are determined in the following way:
1) fora systemT(jlw Qo) We setrz = m (m,m € llg;z € X), where

@1 = q@(m) <= 0(q1,x) = 0(q2, 2)(m) A Ma1, ) = Mgz, x);

2) for asystent;, ,  we setWz = Wy (W, Wy € P(Q®));z € X), where

Wl - {{QMQQ} S Q(Q)‘{(S(qlax)a (QQHU)} S W7 )\(th) = /\(%71’)}7
3) fora system?'(ﬁwgo) we setrx = m (7, m € llg;z € X), where
q1 = q2(m1) <= 6(q1, ) = 6(ga, z)(7).

The sets of situations of systen’fgi Q) T(’}w Qo) @Nd75 are partially

. . (MvQO)
ordered in the following way:
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d

1) for a systemT(M’Q0
(7T1,7T2 S HQ);

2) forasystenﬂ'(%’QO

3) for a systemT( M.00)
(7[‘1,77‘2 S HQ).

It was verified in []that7¢, .
that

)We setr < my <= (VBl S 7T1)(E|Bg S 7T2)(Bl - Bz)

) we setWy <, Wp <= Wi C Wy (W1, Wa € P(Q®?));
we setr; <,my <= (VB3 € m2)(3B; € m1)(B2 C By)

7,

h S
(1100 @NAT 5, ) @reM-models such

LSty o) = (DM, Q)7
L(Th o) = (H(M, Q)7
L(Ty00) = (S(M,Q0)) .

Thus, suffix design (see 'F]) of distinguishing, homing, and synchronizing
sequences for a w.i.a. can be developed systematically on the basisabdels.
Moreover, since the set of situations for each of/themodelsf(%’%) andT(’}V[QD)

is a semilattice, thes&1-models are valid for the design kfcooperative solutions,
i.e. multiple preset distinguishingndhomingexperiments with a w.i.a.

Example 2. It is well known that Boolean functions are widely used in the role
of mathematical models for combinational circuits. It was verified %t []
that controllability/observability analysis for Boolean functigx, ..., x,) is
reduced to the design ahinterms(i.e. of prime implicant}. Indeed (see, for
details, ['%16]), anyirreducible set ofa-controllability (o € {0,1}) for £ is (in
essence) some minterm for the Boolean functfénwhile anyirreducible set of

(i, v)-observability(a € {0,1};4 = 1,...,n) for f is (in essence) some minterm
for the Boolean functiorf; ,, where

Nfz‘,a = {(517 s 7/8i—17047ﬁi+17 .. 7ﬂn)
€ N¢l(B1, .o, Bic1, @, Big1s -+, Bn) & Ny}

For any Boolean functiow(z1,...,z,) any minterm, which covers some fixed
point (o1,...,0,) € Ng, can be designed via sequential deleting of literals in
the implicantz{* ... x5 (see, for details,’['2:1%16]). Thus, a very simplem-
model, with the set of elementary operators being the generating set for some
commutative semigroup, is applied to the design of minterms, which cover some
fixed point. On this basis, backtracking for the design of disjunctive nbrma
forms, consisting of minterms only, was developed. These forms are applied
estimation of controllability/observability parameters (via computing or estimation
of the minimal rank of minterms for the analysed Boolean function), as well as to
the design obtuck-at faultdocalization tests. We should note the following factor.
For almost all Boolean functions € P»(n) (n — oo) the value of the minimal
rank of a minterm is an element of the segmient- logn + 2; n — loglogn + 1].

Thus, if the rank of any minterm is selected in the role of an estimation of the
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controllability/observability parameters, then in almost all cases the mistake of
approximation does not exceed the valdigog —>—) (n — o).

logn

Example 3. The design ofrreducible sets of representativésr a given family
of sets seems to be a model problem of discrete mathematics, to which many
problems, both theoretic and applied, are naturally reduced (such agstgnd
of these or other bases for Boolean functions, design of disjunctiraaldorms,
tests design for one-level combinational circuits, etc.) (see, for detallg)[ An
irreducible set of representativésr a family of nonempty subsetd = {«; }icr
of some selU is determined to be any sét (V C U) such thatV Nna; # 0
for all i € I. The approach for the design of the 3&t of all irreducible sets of
representatives for the family of setswas developed in’['']. It consists of three
stages. Firstly, the family is partitioned intanaximal connected subfamiliéand
these subfamilies can be analysed independenit)y()j € J) via the equivalence
relation =1, determined as followsivy =15 if and only if there exists a finite
sequencey = o, ,, .. ., oy, = ao Of elements ofd such that;, Ny, # 0
forallr € {1,...,n — 1}. Secondly, every subfamily; (j € J) is converted
into the family offactor-setsd; = {a|=,,|a € A;}, where=;, (j € J) is the
equivalence relation on the gétsuch that

w=jur <= (Va € Aj)(u € a <= ug € a)(ur,uz € U).

Thirdly, under the supposition that any equivalence class of the relatjen
coversall factor-setsy| , in which itis included (and, thus, the set of equivalence
class of the relation=;, is converted into a partially-ordered one), there is
implemented sequential design of mieducible coveringgas well as oiminimal
covering$ of the set4; via someM-model, with the set of elementary operators
being the generating set for some commutative semigroup.

5. DESIGN OF ADAPTIVE SOLUTIONS

The approach developed above can be easily extended for desiglaiptive
solutions.

Definition 8. An AM-model is a systel§ = (S, H, Sin, Stin) (H C F x G) such
that some partial ordering< g is determined on the sét, so that 1) if s; € Sy,
and sy <gsi, thensy € Spipn; 2)if s1 € Dom (f,g) ((f,g) € H) and sa<gs1,
then() # G, r C Gy, 5: 3) if s9<gs1, thensa(f, 9)<gs1(f,9) (9 € Gss,1)-

Lemma 3. If s9<gs1, thensoH<gs1H for all H € H* such thats;,sy €
Dom H.

Proof. By induction over the length of an operator.

It is evident that if|G| = 1, then anAM-modelS is also anM-model. A
very important interrelation exists betweehM-models andM-models in the
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general case. Let som&M-modelS = (S, H, sin, Stin) (H C F x G) be fixed.
We setYy = {U S P(S)‘(VSl,SQ S J)((31§532) V (82§581) = (81 = 82))}
and will determine the partial ordering on the setin the following way:
01<s09 <= (Vs1 € 01)(3s2 € 09)(s1<gs2). Any f € F is considered as
(possibly, partial) mapping : > — X such that the value f is computed via the
following

Procedure 3.

Step 1.If there existss € o such thatg, ; = 0, theno f is not determined and
HALT, else go to Step 2.

Step 2.0" := U e, {5(f,9)lg € Gs s}

Step 3.0” := {s € ¢’|s is the maximal element ' relative to the relation<g}.

Step 4.0 f := 0"\ St and HALT.

Thus, some model = (X, F, {si,},0) can be associated with angM-
modelS. It was verified in {] thatC is anM-model. LetF = fi...f; € L7(C)
and Br : G* — F be any partial mapping such that: A) € Dom Bp;
2)G(r)=g1...9r € Dom Bp (r=1,...,1)ifandonly if G(r — 1) € Dom Bp,
Sin € Dom (fl,gl) . (fr, gr), andsm(fl, 91) R (fra.gr) ¢ Sfm, 3) the Identlty
Br(G(r)) = fr4+1 holds for allG(r) € Dom Bp (r =0,...,1—1). Itis evident
that the mappind3r (F € £ (C)) is some adaptive solution for tb&M-modelS.

Let S = (S,H,sin,Srn) (H C F x G) be a fixed AM-model.
The relation <g can be extended to the s&(S) in the following way:
01<g02 <= (Vs1 € 01)(3s2 € 02)(51<352) (01,02 € B(S5)). We set

SH(f,*) = {SZnH(fag)’(fag) € HvsinH € Dom (f’g)} (H € Hzmvf € ]:)

Let B be any adaptive solution for thé M-modelS, G(r) = ¢;...9, € Dom B,
f=B(G(r)) and

H(r) = (B(A),01)(B(91), 92). - (B(g1- - -gr-1), gr)-

The following two propositions can be verified by backward induction,(fare
details, []).

Lemma 4. If there existsf' € F such thatG,, pgyp 70 and Sy s
<sSH(r)(f,+) then there exists some adaptive solutiBhfor an AM-modelS
such that 1) B'(G(i)) = B(G(i)) foralli =0,1,...,r — 1, 2) B'(G(r)) = f".

Lemma 5. If there existsj € {1,...,r — 1} such thats;, H(j)<gsinH (),
then there exists some adaptive solutiBh for an AM-model S such that
1) B'(G(i)) = B(G(3i)) foralli =0,1,...,5 — 1; 2) B'(G(j)) = B(G(r)).

42



Let p : H;, — P(F) be any mapping such thdiSys.)|f € p(H),
Gs,.m,r # 0} is a minimal by cardinality set consisting of all minimal (relative to
partial ordering<g) elements of the s€tSy(s.)|f € F,Gs,, m,y # 0}. Lemmas
4 and 5 imply that to design some adaptive solution for thef-model S, it is
sufficient to design a subtreB¢ of the treeDs, determined by the following
cutting rules: 1) a vertexys (H € H*, f € F) and all its descendants are
deleted if f ¢ p(H); 2) a vertexvy (H € H*) and all its descendants are
deleted if some vertexy (d(H') < d(H)) is placed on the path leading from
the rootv, to vy such thats;,, H'<gs;, H; 3) a vertexvy and all its descendants
are deleted if some vertex;: (d(H') < d(H)) is placed on the path leading from
the rootv, to vy such thats;, H € Sy;,. Itis evident that the subtre? can be
transformed into some (possibly partial) initialized finite automaton. Thus, some
unified approach intended to present adaptive solutionglfot-models via finite
automata is developed.

Example 4. AM-models provide us with powerful tools, sufficient to implement
adaptive experimentwith the given w.i.a. (M, Qo) in the form of automata-
experimentersindeed, let us consider generalized adaptive homing experiment
i.e. the one intended for identifying the block of the given partitiore Ilg,

in which the final state of the w.i.a. is contained. It is sufficient to design some
adaptive solution for thel M-model

St 00 (™) = (B(QI, 1Qo]), X x ¥, Q0. B™(1Q]. Q).

whereB™(|Q|, |Qo|) = {o € B(Q[,|Qo])|(3B € 7)(c C B)} anda(z,y)
(e € B(]Q],]Qol), (z,y) € X xY) is computed via the following

Procedure 4.

Step 1.1f A(¢,z) # yforall ¢ € o, theno(x,y) is not determined and HALT, else
go to Step 2.

Step 2.0(z,y) := {d(q,2)|q € 0;A\(¢,x) = y} and HALT.

If the above adaptive solution exists, the tree,,
. . (11,00) (™)
transformed into the corresponding automaton-experimenter.

Similarly, let us consideran adaptive distinguishing experiment It is
sufficient to design some adaptive solution for theM-model S&@QO =

(B(IQl, |1Qol), X x ¥, Qo, (B(|Q], 1)), whereo(z, y) (o € B(IQ],|Qu]), (. ) €

X x YY) is computed via the following

can be easily

Procedure 5.

Step 1.1f A\(q,x) # y forall ¢ € o, theno(z,y) is not determined and HALT, else
go to Step 2.
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Step 2.If there existq1, g2 € o (1 # g2) such thatd(¢q1,z) = d(ge,x) and
Maq1, ) = AMge, x), theno(x, y) is not determined and HALT, else go to
Step 3.

Step 3.0(z,y) = {d(q,z)|q € o; \(¢,x) = y} and HALT.

If the above adaptive solution exists, the trex,, ()
(M,Qu)\™

transformed into the corresponding automaton-experimenter.

can be easily

6. CONCLUSIONS

In this paper the basics of theearching metatheoryere worked out.
The schemes of breadth-first searching, backtracking, and thehseard-bound
method were developed, in essence, in the form of some transduadtitsgroia
some potentially infinite tree, whose vertices are labelled by finite labelled trees.
Transducer’s actions were presented in terms of get§i), unp(i), andgnr(:)
for any specific problem and any searching scheme. Thus, thes@satsdme
base for unified analysis of inherent complexity of specific problemsidBssany
researcher is provided with the medaglisposeof the same transducer to resolve
different problems. The last possibility was illustrated in Section 4 by resplvin
problems for the design of minimal and irreducible solutions.

The notions of anM-model and an4AAM-model were determined in terms
of monotone operators acting in some partially-ordered set of situationg Th
interrelation established between these models provides us with some means,
sufficient to apply some additional information to terminate searching on some
intermediate stage. In particular, this is the generalization of the resultsljsistab
in ['2] for experiments with finite automata. The power.bf-models andA M-
models is characterized by their successful applications to resolvingfispec
problems of discrete mathematics (some illustrations were presented in the paper
via examples). Thus, it looks attractive to develop a similar approachoéait
search(includinggenetic algorithm) This is the subject of future research.
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Otsimine: mudelid ja meetodid
Volodymyr G. Skobelev

Esitatakse Uldised teoreetilised mudelid otsimiseks osaliselt jarjestatud struk-

tuurides eeldusel, et elementaaroperaatorid on monotoondentudel fikseeritud

ja AM-mudel adaptiivsete lahendite jaoks. Demonstreeritakse esitatud mudelite
rakendust monele diskreetse matemaatika probleemile: hulkade pere tdandatu
esindajate hulga leidmine, eksperimendid 16plike automaatidega ja mintermide

ning taieliku disjunktiivse normaalkuju konstrueerimine.
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