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Abstract. Searching in a partially ordered structure under the supposition that the set of
elementary operators consists only of monotone ones is developed on the basis of schemes
determined via some predicate. Models for the design of preset and adaptive solutions, namely
an M-model and anAM-model, are determined and investigated. Interrelations between
these models are established in the general case. Schemes for the design of solutions of all
basic (minimal, irreducible, cooperative, and adaptive) types are developed. It is shown that
the suggested approach can be applied to resolve some basic problems of discrete mathematics,
such as the design of irreducible sets of representatives for a family of sets, design of
experiments with finite automata, design of minterms and disjunctive normal forms consisting
of minterms only.

Key words: searching schemes and models, preset and adaptive solutions, experiments with
finite automata, disjunctive normal forms.

1. INTRODUCTION

On the basis of a set-theoretic (linguistic, in essence) approachsearching theory
was developed in terms ofoperatorsacting in somespace of situations[1−3] (to
avoid collisions, the termsituation is used instead of the termstate). The notion
of exhaustive searchingis applied to schemes designed under the suppositions that
a set of situations is an abstract one (i.e. it is provided with no structure) and
any operator is some (possibly, partial) mapping of this abstract set into itself.
High complexity of exhaustive searching played the role ofthe catalystfor the
design of more effective specific schemes based on the notion ofan estimator,
i.e. someeasily computable functionestimatingthe distancebetween a situation
and the target(in essence, this means that a set of situations is provided with
somepseudo-metric spacestructure). Unfortunately, all attempts to apply this
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approach to resolve some fundamental problems ofdiscrete mathematics, such
as finite automata identification, disjunctive normal forms design, etc., have been
unsuccessful. The main reasons for this situation are the following. Firstly,the
requirement for the existence of an estimator is too strong (as a consequence,
only for a few problems estimators were designed). Secondly, there is no formal
constructive definition ofan estimator(as a consequence, problems of its existence
and effective design remained also unresolved). Thus, there naturallyarises the
necessity to develop some approach for searching schemes design suchthat: 1) it
is free of the above listed shortages; 2) it includes, as special cases, the set-
theoretic approach as well as the one based on the notion of an estimator. In
the present paper this problem is investigated via providing a set of situations
with somepartial ordering structure and by dealing withmonotone operators
only to implement the possibilityof comparing the distancesbetween any two
situations andthe targetwithout estimatingthe valuesof thesedistances[4−9].
The power of the proposed approach is illustrated by its applications to resolve
problems related to the identification of internal states of finite automata, design of
irreducible sets of representatives for a family of sets, design of minterms as well
as disjunctive normal forms consisting of minterms only [9−12]. Resolving the last
problem provides us with powerful tools for controllability/observability analysis
of combinational circuits (see [9,13]).

The paper is organized as follows. Section 2 introduces basic notions. InSec-
tion 3 schemes for the design of preset solutions, determined by some predicate, are
developed. In Section 4 a model for preset solutions design, namely, anM-model,
is determined and problems of the design of minimal, irreducible, and cooperative
solutions are resolved. In Section 5 a model for the design of adaptive solutions,
namely, anAM-model, is determined, its interrelations with theM-model are
investigated, and the problem of the design of some adaptive solution is resolved.
Concluding remarks are given in Section 6.

2. BASIC NOTIONS

As a rule, in the role ofa modelintended forpreset solutionsdesign, some
systemS = (S,F , sin, Sfin) is selected such thatS is a finite set ofsituations, F
is a finite set ofelementary operators, i.e. (possibly, partial) mappings fromS to S,
sin (sin ∈ S) is the initial situation, andSfin (Sfin ⊆ S\{sin}) is the set of final
situations. The set ofoperatorsis the free semigroupF∗ (i.e. F∗ = {Λ} ∪ F+,
where Λ is the empty stringand F+ =

⋃
∞

i=1 F i) under the assumption that
the action of any stringF ∈ F∗ on any situations ∈ S is determined by the
following identities: sΛ = s, sF = (. . .(sf1). . .)fr (F = f1. . .fr ∈ F+). Let
F∗

s = {F ∈ F∗|s ∈ Dom F} (s ∈ S). The setL(S) = {F ∈ F∗
sin

|sinF ∈ Sfin}
will be called the set ofwinning operators. It is supposed thatthe set of solutions
Ω (Ω ⊆ L(S)) is determined via some predicateP : F∗ → {0, 1} such that
(∀F ∈ F∗)(P (F ) = 1 ⇐⇒ F ∈ Ω) (i.e. P is the characteristic functionof a

27



setΩ). We setLP (S) = Ω. Basic types of preset solutions are determined in the
following way (d(F ) (F ∈ F∗) denotesthe lengthof a stringF ).

Definition 1. For a systemS = (S,F , sin, Sfin):

1. minimal and irreduciblesolutions are determined, respectively, via the pre-
dicatesPmin andP ir such that

Pmin(F ) = 1 ⇐⇒ (F ∈ L(S))

&(∀F1 ∈ F+)((d(F1) < d(F )) ∨ (d(F1) > d(F )) =⇒ Pmin(F1) = 0),

P ir(F ) = 1 ⇐⇒ (F ∈ L(S))&(∀F1 ∈ erase(F ))(P ir(F1) = 0),

whereerase(F ) is the set of all operators obtained by deleting of at least one
letter inF ;

2. k-cooperative solutions (k ≥ 2) are determined via the predicate
P cp:F∗ × · · · × F∗

︸ ︷︷ ︸

k times

→ {0, 1} such that

P cp(F1, . . . , Fk) = 1 ⇐⇒ (ωk(sinF1, . . . , sinFk) ∈ Sfin)

&(∀F ′
1 ∈ erase(F1)) . . . (∀F ′

k ∈ erase(Fk))(ωk(sinF ′
1, . . . , sinF ′

k) /∈ Sfin),

whereωk : S × · · · × S
︸ ︷︷ ︸

k times

→ S is some fixed operation.

Remark. If k-cooperativesolutions are designed, it is usually supposed that
an operationωk and a predicateP cp are symmetric, i.e. ωk(s1, . . . , sk) =
ωk(sα(1), . . . , sα(k)) and P cp(F1, . . . , Fk) = P cp(Fα(1), . . . , Fα(k)) for any
permutationα of the set{1, . . . , k}. It is worth noting that these conditions are
not necessary ones.

As a rule, in the role of a model intended foradaptive solutionsdesign, some
systemS = (S,H, sin, Sfin) (H ⊆ F × G) is selected. An elementary operator
(f, g) ∈ H is interpreted as follows:f (f ∈ F) is an elementary operator in
the usual sense of this word, whileg (g ∈ G) is the name of some specific case,
determined as a result of some additional analysis of the situation that takes place,
i.e. g represents some analogy with the CASE operator of a programming language.
Let Gs,f = {g ∈ G|(f, g) ∈ H, s ∈ Dom (f, g)}.

Definition 2. For a systemS = (S,H, sin, Sfin) (H ⊆ F×G) an adaptive solution
is any partial mappingB : G∗ → F such that: 1) Λ ∈ DomB; 2) G(r) =
g1. . .gr ∈ DomB (r = 1, 2, . . . ) if and only if G(r − 1) ∈ Dom B,
sin ∈ Dom H(r), sinH(r) /∈ Sfin, where H(r) = (B(Λ), g1)(B(g1), g2). . .
(B(g1. . .gr−1), gr); 3) if G(r)g /∈ Dom B for all g ∈ G, thenGsnH(r),B(G(r)) 6= ∅
and sinH(r)(B(G(r)), g′) ∈ Sfin for all g′ ∈ GsnH(r),B(G(r)); 4) there exists
lS ∈ IN such thatd(G) ≤ lS for all G ∈ Dom B.
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Any searching schemeintended for preset solutions design is reduced to explicit
design of someacceptor, which presents the set of solutions, asa language.
It is worth noting that this acceptor is designed by extracting a specialsubtree
of (possibly, infinite) tree, presented implicitly. This tree can be determined
inductively in the following way.

Definition 3. For a systemS = (S,F , sin, Sfin) the rooted oriented labelled tree
DS is such that: 1) the root is labelled by the elementsin; 2) an arc labelled by
an elementf ∈ F starts from a vertex labelled by an elements ∈ S if and only
if s ∈ Dom f , and this arc terminates in a vertex labelled by an elementsf ;
3) different arcs that started from the same vertex are labelled by different elements
of the setF .

If the labels of arcs of some path which started in the root of the treeDS form
the stringF = f1. . .fr (r = 0, 1, . . . ), then the terminal vertex of this path is
denoted byvF . Thus, the root of the treeDS is denoted byvΛ. The vertices of
the treeDS are placed into sequential levels enumerated by nonnegative integers,
i.e. theith level(i = 0, 1, . . . ) consists of all verticesvF such thatF ∈ F∗

sin
and

d(F ) = i.
Similarly, the followingtree is determined inductively if adaptive solutions are

designed.

Definition 4. For a systemS = (S,H, sin, Sfin) (H ⊆ F ×G) the rooted oriented
labelled treeDS is such that: 1) the root is labelled by the elementsin and is
placed into the0th level; 2) different arcs that started from any vertex are labelled
by different elements; 3) let v be a vertex labelled by an elements (s ∈ S) and
placed into the2ith level(i = 0, 1, . . . ). An arc labelled by an elementf (f ∈ F)
starts from the vertexv if and only ifGs,f 6= ∅. This arc terminates in an unlabelled
vertexv′v,f placed into the(2i+1)th level. An arc labelled by an elementg (g ∈ G)

starts from the vertexv′v,f if and only ifg ∈ Gs,f . This arc terminates in a vertex
labelled by the elements(f, g) and placed into the2(i + 1)th level.

Remark. It is evident that the treeDS determines someone-person gameif preset
solutions are designed (see Definition 3) and sometwo-persons gameif adaptive
solutions are designed (see Definition 4). Thus, any searching scheme isreduced
to the design of somewinning strategyfor the corresponding class of games.

3. SCHEMES FOR LP (S) DESIGN

Let D(P,S) be the minimal (by the number of vertices) subtree of the tree
DS consisting of the root and the set of verticesVfin = {vF |F ∈ LP (S)}. The
setLP (S) is the language determined by the acceptor(D(P,S), vΛ, Vfin). Any
searching scheme for the setLP (S) is determined by the mode in which a sequence
of trees

D(0),D(1), . . . (1)
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is designed such that: 1) the root of the treeDS is the root of every treeD(i)
(i = 1, 2, . . . ); 2) D(P,S) ⊆ D(0) ∪ D(1) ∪ · · · ⊆ DS ; 3) any treeD(i)
(i = 1, 2, . . . ) is uniquely determined by the sequenceD(0), . . . ,D(i − 1); 4) any
treeD(i) (i = 1, 2, . . . ) consists ofas few vertices as possible; 5) if D(P,S) is a
finite tree, then the sequence (1) is also finite; 6) if the sequence (1) is infinite, then

lim
h→∞

|V ((
⋃

∞

i=1 D(i))[h])|

|V (D(P,S)[h])|
= 1,

whereD[h] (h = 0, 1, . . . ) is the maximal subtree of the heighth of the treeD and
V (D) is the set of vertices of the treeD.

Remark. The word combination “a treeD consists of as few vertices as possible”
is used in the following sense: “in the process of the design of considered solutions
there exist no cutting rules for a treeDS producing a proper subtree of the treeD”.

In what follows, it is supposed that the setLP (S) is a regular one. As
a rule, this claim is true if any searching is applied. Moreover, it provides us
with a sufficient condition for eliminating any problem connected withthe halting
problem, as well as with a possibility of converting the treeD(P,S) into somefinite
treeDP

S
. The latter tree, in its turn, can be converted into some finite acceptor,

which determines the languageLP (S). Taking the above supposition into account,
it is assumed in what follows that the sequence (1) of trees is finite.

Remark. As a rule, the heightL
DP

S

of the treeDP
S

is not known in advance and is

determined only in the process of the design of the treeDP
S

in the explicit form.

In the remainder of the Section three basic schemes for the design of the set
LP (S) are developed.

3.1. Breadth-first searching

Sequential design of the treeDP
S

, one level after another, leads to the design
of the finite sequence of treesD(0),D(1), . . . ,D(k) such that: 1) the root of the
treeDS is the root of every treeD(i) (i = 0, 1, . . . , k); 2) the height of the tree
D(i) is equal toi for all i = 0, 1, . . . , k − 1, and the height of the treeD(k)
is equal toL

DP
S

; 3) DP
S

[i] ⊆ D(i) ⊆ DS [i] (i = 0, 1, . . . , k); 4) any treeD(i)

(i = 1, . . . , k) is uniquely determined by the sequenceD(0), . . . ,D(i − 1); 5) any
treeD(i) (i = 1, . . . , k) consists of as few vertices as possible.

Let Vi (i = 1, . . . , k) be the set of all vertices placed into theith level of the
treeD(i).

Definition 5. A vertexvF ∈ Vi is considered to be: 1) a finalone ifF ∈ LP (S);
2) an unprofitableone if it is wittingly known thatF is not a prefix of any element
of the setLP (S); 3) a generatingone ifvF generates at least one vertex placed in
the(i + 1)th level of the treeD(i + 1).
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Let fnl(i), unp(i), gnr(i) (i = 0, 1, . . . , k) be the sets of all, respectively,
final, unprofitable, and generating vertices of the treeD(i). To determine these sets
in the explicit form, it is necessary to investigate the structure of the setLP (S). As
a rule, this is done via verification of the validity of propositions of the following
type (the symbol ### is placed instead of the word combination “the following
conditions:. . . hold”).

Proposition 1. A vertexvF placed into theith level(i = 1, 2, . . . ) of the treeDS

is a final one if and only ifsinF ∈ Sfin and there exists no vertexvF ′ of the tree
DS [i] such that ###.

Proposition 2. A vertexvF placed into theith level(i = 1, 2, . . . ) of the treeDS is
an unprofitable one if and only if ### and there exists a vertexvF ′ of the treeDS [i]
such that ###.

Proposition 3. The setgnr(i) (i = 1, 2, . . . ) is any minimal by cardinality subset
of vertices located in theith level of the treeDS [i] and such that ###.

It is evident that the setgnr(i) (i = 0, 1, . . . ) is determined uniquely if and
only if eithergnr(i) = Vi\unp(i), or gnr(i) = Vi\(unp(i) ∪ fnl(i)). Otherwise,
it is necessary to search some setgnr(i). The complexity of this searching depends
on the cardinality of the setsVi\unp(i) andVi\(unp(i) ∪ fnl(i)), respectively.
Besides, it is necessary to verify the validity of the following proposition.

Proposition 4. Any setgnr(i) (i = 0, 1, . . . ) generates some setgnr(i + 1).

The setsfnl(i), unp(i), gnr(i) (i = 0, 1, . . . , L
DP

S

) form the base for the
design of the setLP (S) via breadth-first searching. To implement the characteristic
“any treeD(i) (i = 1, . . . , L

DP
S

) consists of as few vertices as possible”, the
following procedure forgarbage deletingwould be applied.

ProcedureGRBG(D(i)).

Step 1.Provide every vertexv ∈ Vi\(gnr(i)∪fnl(i)) with the mark♠, j := i−1.

Step 2.If j = 0, then go to Step 5, else go to Step 3.

Step 3.Provide with the mark♠ every vertexv, placed into thejth level, such that
all arcs starting inv terminate in vertices of the(j + 1)th level, each
provided with the mark♠.

Step 4.If there exists a vertexv placed into thejth level and provided with the
mark♠, thenj := j − 1 and go to Step 2, else go to Step 5.

Step 5.Delete all vertices provided with the mark♠ (and all arcs incidental to
these vertices) and HALT.

The validity of the procedureGRBG is evident. Thus, the following algorithm
for the setLP (S) design via breadth-first searching can be proposed.
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Algorithm 1.

Step 1.D(0) := DS [0], D := DS [1], i := 1.

Step 2.D := GRBG(D), D(i) := D.

Step 3.If gnr(i) = ∅, then HALT, else go to Step 4.

Step 4.SetD to be the tree obtained by insertion intoD(i) of the part of the
(i + 1)th level of the treeDS , generated by the setgnr(i).

Step 5.i := i + 1 and go to Step 2.

Theorem 1. If the sequenceD(0),D(1), . . . ,D(k) is designed by Algorithm1,
thenD(k) = DP

S
.

Proof. As a result of the execution of the procedureGRBG no element of the set
Vfin is deleted. Thus, it is sufficient to verify that any leaf placed into theith level
(i ≥ 1) of the treeD(k) (if such a leaf exists) is an element of the setVfin.

Algorithm 1 terminates only in Step 3. Transition to Step 3 takes place only if
the procedureGRBG is executed in Step 2. Sincegnr(k) = ∅, as a result of the
kth execution of the procedureGRBG any vertexv ∈ Vk\fnl(k) is provided with
the mark♠ and is deleted. Thus,Vk ⊆ Vfin.

Let vF be any leaf placed into theith level(i = 1, . . . , k − 1) of the treeD(k).
Suppose thatvF /∈ Vfin. As a result of theith execution of the procedureGRBG
all elements of the setunp(i) are deleted. Thus,sinF ∈ Dom f , for at least one
f ∈ F . This implies that there exists somej ∈ {i, . . . , k} such that in the process
of thejth execution of the procedureGRBG all descendants of the vertexvF are
provided with the mark♠. For this reason, in the process of thejth execution of the
procedureGRBG the vertexvF is also provided with the mark♠ and is deleted,
i.e. there is no vertexvF in the treeD(k). Contradiction. Thus, the supposition is
false, i.e.vF ∈ Vfin.

3.2. Backtracking

Informally speaking, some routing via some minimal subtreeD is executed,
such that

DP
S ⊆ D ⊆ DS [k], (2)

in accordance with the following two rules: (a) move forward, while it is possible;
(b) if forward move is impossible, then annul the last action, return to the previous
situation, and then apply rule (a).

Remark. It is evident that any routing via the treeD is based on the supposition
that the setF is a linearly-ordered one.

Let lbl(v) be the label of a vertexv, lvl(v) be the number of the level into
which the vertexv is placed, andstr(vΛ, v) be the string formed by the labels of
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arcs of the path leading from the root of the treeDS to the vertexv. Using the sets
of verticesfnl(i), unp(i), gnr(i) (i = 0, 1, . . . , k), the following backtracking
algorithm can be proposed for the design of the setLP (S) by executing routing via
some subtree of the tree

⋃ k
i=1 D(i).

Algorithm 2.

Step 1.v∗ := vΛ, L := ∅.

Step 2.vrnts(v∗) := {f ∈ F|lbl(v∗) ∈ Dom f}.

Step 3.If vrnts(v∗) 6= ∅, then go to Step 4, else go to Step 11.

Step 4.Setf the first element of the setvrnts(v∗), vrnts(v∗) := vrnts(v∗)\{f}.

Step 5.Insert a vertexv into the(lvl(v∗) + 1)th level. Insert an arc that starts in
the vertexv∗ and terminates in the vertexv. Label the inserted vertex and
the inserted arc, respectively, by the situationlbl(v∗)f and by the
elementary operatorf .

Step 6.If v /∈ gnr(lvl(v∗) + 1) ∪ fnl(lvl(v∗) + 1), then go to Step 7, else go to
Step 8.

Step 7.Delete the vertexv and the arc that terminates in it and go to Step 3.

Step 8.v∗ := v and go to Step 9.

Step 9.If v∗ ∈ fnl(lvl(v∗) + 1), thenL := L ∪ {str(vΛ, v∗)}.

Step 10.Go to Step 2.

Step 11.If v∗ = vΛ, then HALT, else go to Step 12.

Step 12.If v∗ = vFf (F ∈ F∗, f ∈ F), thenvrnts(vF ) := vrnts(vF )\{f},
v∗ := vF , delete the vertexvFf and the arc that terminates in it, and go to
Step 3.

Theorem 2. If the setL is designed by Algorithm2, thenL = LP (S).

Proof. Steps 1 and 9 imply thatL ⊆ LP (S). Steps 1–8, 11, and 12 imply that
there is implemented some routing via some subtreeD ⊆

⋃ k
i=1 D(i) satisfying the

inclusions (2). Thus, any operatorF ∈ LP (S) is represented in the treeD via the
labels of arcs of some path which started in the root of the treeD. Taking Steps 1
and 9 into account, we getL ⊇ LP (S). InclusionsL ⊆ LP (S) andL ⊇ LP (S)
imply that the identityL = LP (S) holds.
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3.3. Branch-and-bound method

Informally speaking, searching forthe cheapest solutionscan be reduced to the
design of some minimal subtreeD of the tree

⋃ k
i=1 D(i) in accordance with the

following rule: at any step there are generated and analysed direct descendants of
the cheapest vertex, i.e. some vertexv, such thatthe costof the stringstr(vΛ, v) is
the lowest.

Let someestimatorcst : V (DS) → IR+ be fixed, satisfying the inequality
cst(Ff) ≥ cst(F ) (fF ∈ F+

sin
). Since there is a one-to-one correspondence

between the setF∗
sin

and the set of all vertices of the treeDS , we setcost(vF ) =
cost(F ), for all F ∈ F∗

sin
. It is supposed that the target is the set of solutions

LP (S) such that

LP (S) ⊆ {F ∈ LP1(S)|cst(vF ) = min
F ′∈LP1

(S)
cst(vF ′)},

whereP1 is some given predicate. Letlst be the list of all leaves of the designed
subtree, ordered in accordance with the values of the estimatorcst, andlub be the
least upper bound of previously computed values of the estimatorcst. Using the
sets of verticesfnl(i), unp(i), gnr(i) (i = 0, 1, . . . , k), the following algorithm
for the setLP (S) design via the branch-and-bound method can be proposed.

Algorithm 3.

Step 1.lub := ∞, lst := {vΛ}, L := ∅.

Step 2.If lst = ∅, then HALT, else go to Step 3.

Step 3.Setv∗ the first element of the listlst, lst := lst\{v∗}.

Step 4.vrnts(v∗) := {f ∈ F|lbl(v∗) ∈ Dom f}.

Step 5.If vrnts(v∗) 6= ∅, then go to Step 6, else go to Step 2.

Step 6.Setf the first element of the setvrnts(v∗), vrnts(v∗) := vrnts(v∗)\{f}.

Step 7.Insert a vertexv into the(lvl(v∗) + 1)th level. Insert an arc that starts in
the vertexv∗ and terminates in the vertexv. Label the inserted vertex and
the inserted arc, respectively, by the situationlbl(v∗)f and by the
elementary operatorf .

Step 8.If v /∈ gnrP1(lvl(v∗) + 1) ∪ fnlP1(lvl(v∗) + 1), then go to Step 13, else
go to Step 9.

Step 9.If cst(v) ≤ lub, then go to Step 10, else go to Step 13.

Step 10.If v ∈ Vfin, then go to Step 11, else go Step 12.
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Step 11.If cst(v) = lub, thenL := L ∪ {str(vΛ, v)}, elselub := cst(v) and
L := {str(vΛ, v)}.

Step 12.lst := lst ∪ {v} and go to Step 5.

Step 13.Delete the vertexvFf and the arc that terminates in it, and go to Step 5.

Theorem 3. If the setL is designed by Algorithm3, thenL = LP (S).

Proof. The cutting rules used in Algorithm 3 are stronger than the ones used
in Algorithm 2. This reinforcement results in deleting any vertexv (and all arcs
connected to it), whose cost exceeds the cost of previously designed elements of
the setLP1(S). As a result of the execution of Steps 9–11 the setL would consist
only of the cheapest previously designed elements of the setLP1(S). Since the
estimatorcst is a nondecreasing one,F /∈ LP (S) for any operatorF , formed by
the labels of arcs of any path which started in the root and passed throughthe vertex
v. This fact and the validity of Algorithm 2 imply that any operatorF ∈ LP (S) is
represented in the subtreeD designed by Algorithm 3 via the labels of arcs of some
path which started in the root of the treeD. Thus,L = LP (S).

The number of vertices of the treeD designed by any of Algorithms 1–3 is
estimated asO(|F|k) (k → ∞). Thus, the time complexity of each of these
algorithms is some exponent. Space of exponential size is needed to store the
explicit form of the treeD. This storage is necessary for Algorithms 1 and 3, only.
Thus, the space complexity of Algorithms 1 and 3, each, is some exponent. Asto
Algorithm 2, it is necessary to store the single analysed pathsinf1s1. . .si−1fisi

(i = 0, 1, . . . , k). Thus, the space complexity of Algorithm 2 isO(k) (k → ∞).
This estimation may be reinforced in the following important special case.

Theorem 4. If the setF generates a commutative semigroup, then space complexity
of Algorithm2 is O(|F|) (k → ∞).

Proof. Sincefifj = fjfi (fi, fj ∈ F), any operatorF ∈ F∗ can be rewritten
in the form F = fα1

1 . . .fαm
m (αi ∈ Z+(i = 1, . . . , m)). This form is pre-

sented completely via them-tuples (α1, . . . , αm) and (ξ1, . . . , ξm), where ξi

(i = 1, . . . , m) is a flag (i.e. a Boolean variable) such thatξi = 1 if and only
if the analysis of the operatorfαi

i is completed. Space of the sizeO(|F|) (k → ∞)
is sufficient to store the abovem-tuples.

4. DESIGN OF PRESET SOLUTIONS

In [1,2] the structure of the winning operators set is characterized, in essence,
in terms of situationsequidistantfrom the set of final situations. Thus, it looks
attractive to determine some partial ordering on the set of situations, consistent
with the sets ofequidistant situations. This approach leads to the following class
of structured models.
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Definition 6. AnM-modelis a systemS = (S,F , sin, Sfin) such that on the set
S some partial ordering≤S is determined such that: 1) if s1 ∈ Sfin ands2≤Ss1,
thens2 ∈ Sfin; 2) if s1 ∈ Dom f (f ∈ F) ands2≤Ss1, thens2 ∈ Dom f ; 3) if
s2≤Ss1, thens2f≤Ss1f (f ∈ F).

Lemma 1. If s2≤Ss1, then: 1)F∗
s2

⊇ F∗
s1

; 2) s2F≤Ss1F for all F ∈ F∗
s1

.

Proof. By induction over the length of an operator.

It seems that for a fixedM-model S = (S,F , sin, Sfin) the following
problems are the basic ones (since a great number of problems of discrete
mathematics as well as of its numerous applications are reduced to these).

Problem 1. It is necessary to design the setLmin(S) of all minimal solutions for
anM-modelS.

Problem 2. It is necessary to design one (no matter which) minimal solution for an
M-modelS.

Problem 3. It is necessary to design the setLir(S) of all irreducible solutions for
anM-modelS.

It is evident that to resolve Problem 2 it is sufficient to resolve Problem 1.
Unfortunately, this approach complicates resolving Problem 2 excessively. For this
reason it is a matter of principle to extract somekernelLmin

krnl(S) of the setLmin(S)
such that: 1)Lmin

krnl(S) ⊆ Lmin(S); 2) the design of a setLmin
krnl(S) is as simple as

possible; 3)Lmin
krnl(S) 6= ∅ if and only ifLmin(S) 6= ∅. Thus, Problem 2 is naturally

reduced to the following

Problem 4. It is necessary to design some kernelLmin
krnl(S) of the setLmin(S) for

anM-modelS.

To resolve Problems 1, 3, and 4, it is sufficient to determine the corresponding
sets of final, unprofitable, and generating vertices and then apply either Algorithm
1 or Algorithm 2.

Theorem 5. If sinF1≤SsinF2 andd(F1) < d(F2), thenF2F /∈ Lmin(S) for all
F ∈ F∗

sinF2
.

Proof. Suppose that there exists some operatorF ∈ F∗
sinF2

such thatF2F ∈

Lmin(S). SincesinF1≤SsinF2 andF ∈ F∗
sinF2

, it follows that (see Lemma 1)
F ∈ F∗

sinF1
and (sinF1)F≤S(sinF2)F , i.e. sin(F1F )≤Ssin(F2F ). Since

F2F ∈ Lmin(S), it follows that sin(F2F ) ∈ Sfin. Sincesin(F2F ) ∈ Sfin

and sin(F1F )≤Ssin(F2F ), it follows that (see Definition 6)sin(F1F ) ∈ Sfin,
i.e. F1F ∈ L(S). Sinced(F1F ) = d(F1) + d(F ) < d(F2) + d(F ) = d(F2F ), it
follows thatF1F ∈ L(S), F2F ∈ Lmin(S) andd(F1F ) < d(F2F ). Contradiction.
Thus, the supposition is false, i.e.F2F /∈ Lmin(S).

Definition 7. An i-characteristic setV chr
i (i = 0, 1, . . . ) is any minimal by

cardinality subset of the setVi satisfying the following condition: for every vertex
vF ∈ Vi there exists some vertexvF ′ ∈ V chr

i such thatsinF ′≤SsinF .
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Lemma 2. Any i-characteristic set(i = 0, 1, . . . ) generates some(i + 1)-
characteristic set.

Proof. By induction over the length of an operator.

Theorem 6. If an operatorF ∈ F+
sin

can be presented in the formF = F1F2

(F1, F2 ∈ F+) such thatsinF1≤SsinF , thenFF3 /∈ Lir(S) for all F3 ∈ F+
sinF .

Proof. Suppose that there exists some operatorF3 ∈ F∗
sinF such thatFF3 ∈

Lir(S). SincesinF1≤SsinF andF3 ∈ F∗
sinF , it follows thatF3 ∈ F∗

sinF1
and

(sinF1)F3≤S(sinF )F3, i.e. sin(F1F3)≤Ssin(FF3). SinceFF3 ∈ Lir(S), it
follows that sin(FF3) ∈ Sfin. Sincesin(F1F3)≤Ssin(FF3) and sin(FF3) ∈
Sfin, it follows that sin(F1F3) ∈ Sfin, i.e. F1F3 ∈ L(S). Thus, we get
F1F2F3 ∈ Lir(S), F1F3 ∈ L(S) and F2 ∈ F+. Contradiction. Thus, the
supposition is false, i.e.FF3 /∈ Lir(S).

Let the setsLmin(S), Lmin
krnl(S), and Lir(S) be determined via predicates

Pmin, Pmin
krnl , and P ir. These sets are finite. Thus,DP

S
= D(P,S) (P ∈

{Pmin, Pmin
krnl , P

ir}). To resolve Problems 1, 3, and 4, the sets of final, unprofitable,
and generating vertices would be determined in the following way: for all
i = 0, 1, . . . ,

fnlP (i) = {vF ∈ Vi|(d(F ) = i)&(sinF ∈ Sfin)} (P ∈ {Pmin, Pmin
krnl , P

ir}),

unpP (i) = {vF ∈ Vi|A∨(∃vF1)((d(F1) < d(F ))&(sinF1≤SsinF ))}

(P ∈ {Pmin, Pmin
krnl}),

unpP ir(i){vF ∈ Vi|A ∨ (∃vF1)((d(F1) < d(F ))&(∃F2 ∈ F+)(F = F1F2)

&(sinF1≤SsinF ))},

whereA = (d(F ) = i)&(∀f ∈ F)(sinF /∈ Dom f),

gnrP min(i) =

{
Vi\unpP min(i), if fnlP min(i) = ∅
∅, if fnlP min(i) 6= ∅,

gnrP ir(i) = Vi\unpP ir(i),

andgnrP min
krnl

(i) is any minimal by cardinality subset of the setgnrP min(i) such
that the set{sinF |vF ∈ gnrP min

krnl
(i)} consists of all minimal elements of the set

{sinF |vF ∈ gnrP min(i)}.
If it is necessary to design somek-cooperative solution, it is natural to insert

the following additional restriction into anM-model S: the set(S,≤S) is a
semilattice, i.e. for alls1, s2 ∈ S there exists the unique elements ∈ S such that:
1) s≤Ss1 ands≤Ss2; 2) (∀s′ ∈ S)((s′≤Ss1)&(s′≤Ss2) =⇒ (s′≤Ss)). Under
this condition some slight modification of Algorithm 1 is directly applied, intended
for the design of the setLmin

krnl(S), if we setωk = inf{s1, . . . , sk} (k ∈ IN).
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To illustrate the approach developed above, in the rest of this Section some
problems of discrete mathematics will be briefly considered.

Example 1. A finite automatonis a systemM = (Q, X, Y, δ, λ), whereQ, X,
andY are finite sets, namely,the set of states, the input alphabet, andthe output
alphabet, δ : Q × X → Q is the transition mapping, andλ : Q × X → Y is the
output mapping. Mappingsδ andλ are extended to the setQ×X∗ via the identities

δ̃(q, Λ) = q, δ̃(q, px) = δ(δ̃(q, p), x), λ̃(q, Λ) = Λ,

λ̃(q, px) = λ̃(q, p)λ(δ̃(q, p), x).

A weakly initialized automaton(w.i.a.) is an ordered pair(M, Q0) such thatM
is a finite automaton andQ0 (Q0 ⊆ Q, |Q0| ≥ 2) is the set of initial states. For a
w.i.a. (M, Q0) an input sequencep ∈ X+ is
1) a distinguishingone if (∀q1, q2 ∈ Q0)(λ̃(q1, p) = λ̃(q2, p) =⇒ q1 = q2);
2) a homingone if (∀q1, q2 ∈ Q0)(λ̃(q1, p) = λ̃(q2, p) =⇒ δ̃(q1, p) = δ̃(q1, p));
3) a synchronizingone if (∀q1, q2 ∈ Q0)(δ̃(q1, p) = δ̃(q1, p)).

For a w.i.a. (M, Q0) the set of all distinguishing, homing, or synchronizing
sequences will be denoted byD(M, Q0), H(M, Q0), or S(M, Q0), respectively.
These sets determinesimple preset experiments, intendedfor identifying a stateof
a w.i.a.(M, Q0).

Let B(|Q|, |Q0|) = {W ∈ P(Q)| |W | ≤ |Q0|} (P(Z) is the power setof a
setZ) andW(|Q|, |Q0|) be the subset ofP(P(Q)) consisting of all elementsW
such that: 1)|w| ≥ 2 for all w ∈ W ; 2) if w1, w2 ∈ W (w1 6= w2), then neither
w1 ⊂ w2 norw1 ⊂ w1; 3)

∑

w∈W |w| ≤ |Q0|. We set

Sd
(M,Q0) = (W(|Q|, |Q0|), X, {Q0}, {∅}),

Sh
(M,Q0) = (W(|Q|, |Q0|), X, {Q0}, {∅}),

Ss
(M,Q0) = (B(|Q|, |Q0|), X, Q0,B(|Q|, 1)),

where Wx = {δ(q, x)}(W ∈ B(|Q|, |Q0|), x ∈ X) and Wx (W =
{w1, . . . , wh} ∈ W(|Q|, |Q0|), x ∈ X) is computed via the following Procedure 1
for a systemSd

(M,Q0) and Procedure 2 for a systemSh
(M,Q0)

Procedure 1.

Step 1.W1 := {wj(y)|j = 1, . . . , h; y ∈ Y }, wherewj(y) = {δ(q, x)|q ∈
wj , λ(q, x) = y} (j = 1, . . . , h; y ∈ Y ).

Step 2.If there existsj ∈ {1, . . . , h} such that
∑

y∈Y |wj(y)| < |wj |, thenWx
is not determined and HALT, else go to Step 3.

Step 3.Wx := {w ∈ W1| |w| ≥ 2} and HALT.
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Procedure 2.

Step 1.W1 := {wj(y)|j = 1, . . . , h; y ∈ Y }, wherewj(y) = {δ(q, x)|q ∈
wj , λ(q, x) = y} (j = 1, . . . , h; y ∈ Y ).

Step 2.Wx := {w ∈ W1| |w| ≥ 2} and HALT.

Each of the setsW(|Q|, |Q0|) andB(|Q|, |Q0|) is partially ordered in the following
way:

W2≤WW1 ⇐⇒ (∀w2 ∈ W2)(∃w1 ∈ W1)(w2 ⊆ w1) (W1, W2 ∈ W(|Q|, |Q0|)),

W2≤BW1 ⇐⇒ W2 ⊆ W1 (W1, W2 ∈ B(|Q|, |Q0|)).

It was verified in [9] thatSd
(M,Q0), S

h
(M,Q0), andSs

(M,Q0) areM-models such that

L(Sd
(M,Q0)) = D(M, Q0), L(Sh

(M,Q0)) = H(M, Q0), L(Ss
(M,Q0)) = S(M, Q0).

Thus, prefix design (see [13]) of distinguishing, homing, and synchronizing
sequences for a w.i.a. can be developed systematically on the basis ofM-models.

Let Q(2) = {{q1, q2}|q1, q2 ∈ Q; q1 6= q2}, PQ0(Q
(2)) = {W ∈

P(Q(2))|(∀{q1, q2} ∈ W )({q1, q2} 6⊆ Q0)}, ΠQ be the set of all partitions of the
setQ, Πd

Q(Q0) = {π ∈ ΠQ| π|Q0 = 0Q0}, Πs
Q(Q0) = {π ∈ ΠQ| π|Q0 = 1Q0}.

We set
T d

(M,Q0) = (ΠQ, X,1Q, Πd
Q(Q0)),

T h
(M,Q0) = (P(Q(2)), X, Q(2),PQ0(Q

(2))),

T s
(M,Q0) = (ΠQ, X,0Q, Πs

Q(Q0)).

Elementary operators are determined in the following way:
1) for a systemT d

(M,Q0) we setπx = π1 (π, π1 ∈ ΠQ; x ∈ X), where

q1 ≡ q2(π1) ⇐⇒ δ(q1, x) ≡ δ(q2, x)(π) ∧ λ(q1, x) = λ(q2, x);

2) for a systemT h
(M,Q0) we setWx = W1 (W, W1 ∈ P(Q(2)); x ∈ X), where

W1 = {{q1, q2} ∈ Q(2)|{δ(q1, x), (q2, x)} ∈ W ; λ(q1, x) = λ(q2, x)};

3) for a systemT s
(M,Q0) we setπx = π1 (π, π1 ∈ ΠQ; x ∈ X), where

q1 ≡ q2(π1) ⇐⇒ δ(q1, x) ≡ δ(q2, x)(π).

The sets of situations of systemsT d
(M,Q0), T

h
(M,Q0), andT s

(M,Q0) are partially
ordered in the following way:
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1) for a systemT d
(M,Q0) we setπ1≤dπ2 ⇐⇒ (∀B1 ∈ π1)(∃B2 ∈ π2)(B1 ⊆ B2)

(π1, π2 ∈ ΠQ);
2) for a systemT h

(M,Q0) we setW1≤hW2 ⇐⇒ W1 ⊆ W2 (W1, W2 ∈ P(Q(2)));
3) for a systemT s

(M,Q0) we setπ1≤sπ2 ⇐⇒ (∀B2 ∈ π2)(∃B1 ∈ π1)(B2 ⊆ B1)

(π1, π2 ∈ ΠQ).
It was verified in [9] that T d

(M,Q0), T
h
(M,Q0), andT s

(M,Q0) areM-models such
that

L(Sd
(M,Q0)) = (D(M, Q0))

−1,

L(T h
(M,Q0)) = (H(M, Q0))

−1,

L(T s
(M,Q0)) = (S(M, Q0))

−1.

Thus, suffix design (see [14]) of distinguishing, homing, and synchronizing
sequences for a w.i.a. can be developed systematically on the basis ofM-models.
Moreover, since the set of situations for each of theM-modelsT d

(M,Q0) andT h
(M,Q0)

is a semilattice, theseM-models are valid for the design ofk-cooperative solutions,
i.e. multiple preset distinguishingandhomingexperiments with a w.i.a.

Example 2. It is well known that Boolean functions are widely used in the role
of mathematical models for combinational circuits. It was verified in [9,15,16]
that controllability/observability analysis for Boolean functionf(x1, . . . , xn) is
reduced to the design ofminterms(i.e. of prime implicants). Indeed (see, for
details, [9,12,16]), any irreducibleset ofα-controllability (α ∈ {0, 1}) for f is (in
essence) some minterm for the Boolean functionfα, while anyirreducibleset of
(i, α)-observability(α ∈ {0, 1}; i = 1, . . . , n) for f is (in essence) some minterm
for the Boolean functionfi,α, where

Nfi,α
= {(β1, . . . , βi−1, α, βi+1, . . . , βn)

∈ Nf |(β1, . . . , βi−1, α, βi+1, . . . , βn) /∈ Nf}.

For any Boolean functiong(x1, . . . , xn) any minterm, which covers some fixed
point (σ1, . . . , σn) ∈ Ng, can be designed via sequential deleting of literals in
the implicantxσ1

1 . . . xσn
n (see, for details, [9,12,15,16]). Thus, a very simpleM-

model, with the set of elementary operators being the generating set for some
commutative semigroup, is applied to the design of minterms, which cover some
fixed point. On this basis, backtracking for the design of disjunctive normal
forms, consisting of minterms only, was developed. These forms are appliedto
estimation of controllability/observability parameters (via computing or estimation
of the minimal rank of minterms for the analysed Boolean function), as well as to
the design ofstuck-at faultslocalization tests. We should note the following factor.
For almost all Boolean functionsh ∈ P2(n) (n → ∞) the value of the minimal
rank of a minterm is an element of the segment[n − log n + 2;n − log log n + 1].
Thus, if the rank of any minterm is selected in the role of an estimation of the
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controllability/observability parameters, then in almost all cases the mistake of
approximation does not exceed the valueO(log n

log n
) (n → ∞).

Example 3. The design ofirreducible sets of representativesfor a given family
of sets seems to be a model problem of discrete mathematics, to which many
problems, both theoretic and applied, are naturally reduced (such as the design
of these or other bases for Boolean functions, design of disjunctive normal forms,
tests design for one-level combinational circuits, etc.) (see, for details, [9,11]). An
irreducible set of representativesfor a family of nonempty subsetsA = {αi}i∈I

of some setU is determined to be any setV (V ⊆ U) such thatV ∩ αi 6= ∅
for all i ∈ I. The approach for the design of the setVA of all irreducible sets of
representatives for the family of setsA was developed in [9,11]. It consists of three
stages. Firstly, the familyA is partitioned intomaximal connected subfamilies(and
these subfamilies can be analysed independently)Aj (j ∈ J) via the equivalence
relation≡1, determined as follows:α1≡1α2 if and only if there exists a finite
sequenceα1 = αi1 , αi2 , . . . , αin = α2 of elements ofA such thatαir ∩ αir+1 6= ∅
for all r ∈ {1, . . . , n − 1}. Secondly, every subfamilyAj (j ∈ J) is converted
into the family of factor-setsAj = {α|≡j,2 |α ∈ Aj}, where≡j,2 (j ∈ J) is the
equivalence relation on the setU such that

u1≡j,2u2 ⇐⇒ (∀α ∈ Aj)(u1 ∈ α ⇐⇒ u2 ∈ α)(u1, u2 ∈ U).

Thirdly, under the supposition that any equivalence class of the relation≡j,2

coversall factor-setsα|≡j,2 in which it is included (and, thus, the set of equivalence
class of the relation≡j,2 is converted into a partially-ordered one), there is
implemented sequential design of allirreducible coverings(as well as ofminimal
coverings) of the setAj via someM-model, with the set of elementary operators
being the generating set for some commutative semigroup.

5. DESIGN OF ADAPTIVE SOLUTIONS

The approach developed above can be easily extended for designing adaptive
solutions.

Definition 8. AnAM-model is a systemS = (S,H, sin, Sfin) (H ⊆ F ×G) such
that some partial ordering≤S is determined on the setS, so that: 1) if s1 ∈ Sfin

and s2≤Ss1, thens2 ∈ Sfin; 2) if s1 ∈ Dom (f, g) ((f, g) ∈ H) and s2≤Ss1,
then∅ 6= Gs2,f ⊆ Gs1,f ; 3) if s2≤Ss1, thens2(f, g)≤Ss1(f, g) (g ∈ Gs2,f ).

Lemma 3. If s2≤Ss1, then s2H≤Ss1H for all H ∈ H∗ such thats1, s2 ∈
Dom H.

Proof. By induction over the length of an operator.

It is evident that if|G| = 1, then anAM-modelS is also anM-model. A
very important interrelation exists betweenAM-models andM-models in the
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general case. Let someAM-modelS = (S,H, sin, Sfin) (H ⊆ F × G) be fixed.
We setΣ = {σ ∈ P(S)|(∀s1, s2 ∈ σ)((s1≤Ss2) ∨ (s2≤Ss1) ⇒ (s1 = s2))}
and will determine the partial ordering on the setΣ in the following way:
σ1≤Σσ2 ⇐⇒ (∀s1 ∈ σ1)(∃s2 ∈ σ2)(s1≤Ss2). Any f ∈ F is considered as
(possibly, partial) mappingf : Σ → Σ such that the valueσf is computed via the
following

Procedure 3.

Step 1.If there existss ∈ σ such thatGs,f = ∅, thenσf is not determined and
HALT, else go to Step 2.

Step 2.σ′ :=
⋃

s∈σ{s(f, g)|g ∈ Gs,f}.

Step 3.σ′′ := {s ∈ σ′|s is the maximal element inσ′ relative to the relation≤S}.

Step 4.σf := σ′′\Sfin and HALT.

Thus, some modelC = (Σ,F , {sin}, ∅) can be associated with anyAM-
modelS. It was verified in [9] that C is anM-model. LetF = f1. . .fl ∈ Lir(C)
and BF : G∗ → F be any partial mapping such that: 1)Λ ∈ Dom BF ;
2) G(r) = g1. . .gr ∈ Dom BF (r = 1, . . . , l) if and only if G(r− 1) ∈ Dom BF ,
sin ∈ Dom (f1, g1) . . . (fr, gr), andsin(f1, g1) . . . (fr, gr) /∈ Sfin; 3) the identity
BF (G(r)) = fr+1 holds for allG(r) ∈ Dom BF (r = 0, . . . , l − 1). It is evident
that the mappingBF (F ∈ Lir(C)) is some adaptive solution for theAM-modelS.

Let S = (S,H, sin, Sfin) (H ⊆ F × G) be a fixed AM-model.
The relation ≤S can be extended to the setP(S) in the following way:
σ1≤Sσ2 ⇐⇒ (∀s1 ∈ σ1)(∃s2 ∈ σ2)(s1≤Ss2) (σ1, σ2 ∈ B(S)). We set

SH(f,∗) = {sinH(f, g)|(f, g) ∈ H, sinH ∈ Dom (f, g)} (H ∈ H∗
sin

, f ∈ F).

Let B be any adaptive solution for theAM-modelS, G(r) = g1. . .gr ∈ Dom B,
f = B(G(r)) and

H(r) = (B(Λ), g1)(B(g1), g2). . .(B(g1. . .gr−1), gr).

The following two propositions can be verified by backward induction (see, for
details, [9]).

Lemma 4. If there existsf ′ ∈ F such that GsinH(r),f ′ 6= ∅ and SH(r)(f ′,∗)

≤SSH(r)(f,∗), then there exists some adaptive solutionB′ for an AM-modelS
such that: 1) B′(G(i)) = B(G(i)) for all i = 0, 1, . . . , r − 1; 2) B′(G(r)) = f ′.

Lemma 5. If there existsj ∈ {1, . . . , r − 1} such thatsinH(j)≤SsinH(r),
then there exists some adaptive solutionB′ for an AM-model S such that:
1) B′(G(i)) = B(G(i)) for all i = 0, 1, . . . , j − 1; 2) B′(G(j)) = B(G(r)).

42



Let ρ : H∗
sin

→ P(F) be any mapping such that{SH(f,∗)|f ∈ ρ(H),
GsinH,f 6= ∅} is a minimal by cardinality set consisting of all minimal (relative to
partial ordering≤S) elements of the set{SH(f,∗)|f ∈ F ,GsinH,f 6= ∅}. Lemmas
4 and 5 imply that to design some adaptive solution for theAM-modelS, it is
sufficient to design a subtreeDa

S
of the treeDS , determined by the following

cutting rules: 1) a vertexvHf (H ∈ H∗, f ∈ F) and all its descendants are
deleted if f /∈ ρ(H); 2) a vertexvH (H ∈ H∗) and all its descendants are
deleted if some vertexvH′ (d(H ′) < d(H)) is placed on the path leading from
the rootvΛ to vH such thatsinH ′≤SsinH; 3) a vertexvH and all its descendants
are deleted if some vertexvH′ (d(H ′) < d(H)) is placed on the path leading from
the rootvΛ to vH such thatsinH ∈ Sfin. It is evident that the subtreeDa

S
can be

transformed into some (possibly partial) initialized finite automaton. Thus, some
unified approach intended to present adaptive solutions forAM-models via finite
automata is developed.

Example 4. AM-models provide us with powerful tools, sufficient to implement
adaptive experimentswith the given w.i.a. (M, Q0) in the form of automata-
experimenters. Indeed, let us considera generalized adaptive homing experiment,
i.e. the one intended for identifying the block of the given partitionπ ∈ ΠQ,
in which the final state of the w.i.a. is contained. It is sufficient to design some
adaptive solution for theAM-model

Sah
(M,Q0)(π) = (B(|Q|, |Q0|), X × Y, Q0,B

(π)(|Q|, |Q0|)),

whereB
(π)(|Q|, |Q0|) = {σ ∈ B(|Q|, |Q0|)|(∃B ∈ π)(σ ⊆ B)} andσ(x, y)

(σ ∈ B(|Q|, |Q0|), (x, y) ∈ X × Y ) is computed via the following

Procedure 4.

Step 1.If λ(q, x) 6= y for all q ∈ σ, thenσ(x, y) is not determined and HALT, else
go to Step 2.

Step 2.σ(x, y) := {δ(q, x)|q ∈ σ; λ(q, x) = y} and HALT.

If the above adaptive solution exists, the treeDa
Sah

(M,Q0)
(π)

can be easily

transformed into the corresponding automaton-experimenter.
Similarly, let us consideran adaptive distinguishing experiment. It is

sufficient to design some adaptive solution for theAM-model Sad
(M,Q0) =

(B(|Q|, |Q0|), X × Y, Q0, (B(|Q|, 1)), whereσ(x, y) (σ ∈ B(|Q|, |Q0|), (x, y) ∈
X × Y ) is computed via the following

Procedure 5.

Step 1.If λ(q, x) 6= y for all q ∈ σ, thenσ(x, y) is not determined and HALT, else
go to Step 2.
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Step 2.If there existq1, q2 ∈ σ (q1 6= q2) such thatδ(q1, x) = δ(q2, x) and
λ(q1, x) = λ(q2, x), thenσ(x, y) is not determined and HALT, else go to
Step 3.

Step 3.σ(x, y) = {δ(q, x)|q ∈ σ; λ(q, x) = y} and HALT.

If the above adaptive solution exists, the treeDa
Sad

(M,Q0)
(π)

can be easily

transformed into the corresponding automaton-experimenter.

6. CONCLUSIONS

In this paper the basics of thesearching metatheorywere worked out.
The schemes of breadth-first searching, backtracking, and the branch-and-bound
method were developed, in essence, in the form of some transducer’s routing via
some potentially infinite tree, whose vertices are labelled by finite labelled trees.
Transducer’s actions were presented in terms of setsfnl(i), unp(i), andgnr(i)
for any specific problem and any searching scheme. Thus, these sets form some
base for unified analysis of inherent complexity of specific problems. Besides, any
researcher is provided with the meansto disposeof the same transducer to resolve
different problems. The last possibility was illustrated in Section 4 by resolving
problems for the design of minimal and irreducible solutions.

The notions of anM-model and anAM-model were determined in terms
of monotone operators acting in some partially-ordered set of situations. The
interrelation established between these models provides us with some means,
sufficient to apply some additional information to terminate searching on some
intermediate stage. In particular, this is the generalization of the results, established
in [12] for experiments with finite automata. The power ofM-models andAM-
models is characterized by their successful applications to resolving specific
problems of discrete mathematics (some illustrations were presented in the paper
via examples). Thus, it looks attractive to develop a similar approach forlocal
search(includinggenetic algorithms). This is the subject of future research.
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Otsimine: mudelid ja meetodid
Volodymyr G. Skobelev

Esitatakse üldised teoreetilised mudelid otsimiseks osaliselt järjestatud struk-
tuurides eeldusel, et elementaaroperaatorid on monotoonsed:M-mudel fikseeritud
ja AM-mudel adaptiivsete lahendite jaoks. Demonstreeritakse esitatud mudelite
rakendust mõnele diskreetse matemaatika probleemile: hulkade pere taandatud
esindajate hulga leidmine, eksperimendid lõplike automaatidega ja mintermide
ning täieliku disjunktiivse normaalkuju konstrueerimine.
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