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Abstract. A three-level Markovian noise as a model of nonequilibriumctliations is
presented and the effect of flatness of fluctuations on thserdriven nonequilibrium dynamics
of overdamped Brownian particles in nonlinear systems isiciered. Examples of exactly
soluble models of stochastic transport are given and theitons of current reversals in
ratchet systems are discussed.
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1. INTRODUCTION

Over the past two decades, the behaviour of open systems depending on
environmental fluctuations (noise) has received considerable atter8imme
recently discovered phenomena, such as stochastic resorinoeige-induced
transitions ], noise-induced phase transitions in spatially extended systeths [
and stochastic transport in ratche’tsﬁ], have raised the idea that noise is able to
induce order in nonlinear nonequilibrium systems.

Theoretical investigations indicate that noise-induced nonequilibriunctsffe
are sensitive to noise flatness, that is, to the ratio of the fourth moment to the
square of the second moment (s&e'f]). Although the flatness of fluctuations has
obvious significance, its role has not received due attention. Therefa purpose
of the present paper is twofold: first, to provide a compact review ofiassef
our earlier papers'{—'#] in which coloured noises were modelled as trichotomous
fluctuations and a number of exact results were obtained, and secodidctiss
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— on the basis of the above-mentioned exact results — some novel phenomen
stochastic systems where the role of noise flatness as a control paramaierak

Here we report for the first time (i) that triple and quadruple currenensais,

i.e. changes in the sign of the current while one control parameter is yaried
found in ['6~18] at the large flatness limit, are also present in the case of moderate
flatnesses and (ii) that even as many as six current reversals vergeigion time
occur in ratchets with a simple sawtooth potential.

A major virtue of the models with trichotomous noise is that they constitute a
case admitting exact analytical solutions for some nonlinear stochastic mmble
such as coloured-noise-induced transitiols'{] and reversals of noise-induced
flow [**16]. Furthermore, it is remarkable that for trichotomous noises the flatness
parameterp, contrary to the cases of the Gaussian coloured ngise §) and the
symmetric dichotomous noise (= 1), can have any value from 1 to. This extra
degree of freedom proves to be useful when modelling actual fluctgation

2. MODEL WITH TRICHOTOMOUS NOISE

We extend the idea of dichotomous noise further to a symmetric three-level
random telegraph process(t) called the trichotomous procesS]. This is a
random stationary Markovian process that consists of jumps betweenvidirees
z = ap,0,—ag. The jumps follow in time according to a Poisson process, while
the values occur with the stationary probabilities

Ps(ag) = Ps(—ap) = q, Ps(0) =1—2gq, Q)

so that the trichotomous process is a special case of the kangarosijce
with the switching rates. The transition probabilities between the statéy =
ag, 0, —ag can be obtained as follows:

P(+ap,t +7|0,t) = P(fap,t + 7 | Fap,t) = q(1 —e™¥7),
P(0,t+7 [ +ao,t) = (1 —2¢)(1 —e™7), )
T>0, 0<¢g<1/2, v>0.

One can also calculate the mean va(ugt)) = 0 and the correlation function
(Z(t), Z(t")) = 2qate"!""¥|. The flatness parameter, indicating how long the
noise level dwells on the state= 0, is defined ag := (Z4(t))/(Z%(t))? = 1/2q.

We will apply the trichotomous noise to systems described by one variable, i.e.
to phenomenological kinetic equations of the type

dX
o = hl@) + Z(0) + (1), )

which are stochastic differential equations, whiere a deterministic function. The
thermal fluctuationg(¢) are modelled by a zero-mean Gaussian white noise with
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the correlation functioné(t1),£(t2)) = 2Dd(t1 — t2), whereD = const. For
brevity, in what follows, we shall calD temperature. The joint probability density
P, (z,t) for the position variable(t) and the fluctuation variable(t) satisfies the
Fokker—Planck master equation

Pl = =50 [ (W) + 50 D) Pue )] 4 T Ve, @

whereP,(x,t) denotes the probability density for the combined pro¢ess,, t);
n,m=1,2,3; 21 = —ag, 220 =0, 23 = ap andUy,,, = v[q+ (1 — 3q)0n2 — dnm)-

We consider overdamped motion of Brownian particles in a one-dimensional
spatially periodic potential’(z) = V(z + L) of the periodL and the barrier
heightVy = Vinax — Vimin. In what follows, we will use dimensionless units with
L =1andV; = 1, and suppose that the potenfi&(x) in the dynamical equation
(3) is piecewise linear (simple sawtoothlike), so that the correspondirg ier
h(z) = b := 1/d for z € (0,d) andh(z) = —c := —1/(1 — d) for z € (d,1).
Here the parametet € (0, 1) determines the asymmetry of the potential, which
is symmetric ifd = % So we can confine ourselves to the cdsel % The
Fokker—Planck equation (4) has a unique solution if on the stationarapili
densityP?(x) are imposed the conditions of periodic®j(z) = P$(xz+1) and of
normalization[, Ps(x)dz=1-2qwith [} P#(z)dz=gq,i=2,3, over the rescaled
period intervalL = 1. If we denoteP(z) = ) P;(x), Egs. (3) and (4) with
the imposed conditions will yield the following relation between the average of the
particle velocity(dX /dt) and the current’

1
(dX /dt) = /0 h(@)P(x)dz = J. (5)

3. THE CASE OF ZERO TEMPERATURE

In the case of zero temperatur® (= 0) the following characteristic regions
can be discerned for the noise amplituge

(i) There is no current ifd < ag < ¢, as there is a stationary stable point for
any staten.

(ii) In the case ofc < ag < b, there exists one stationary stable point for
z(t) = —ag, the motion to the left is switched off, and the current is positive.

(iii) In the case ofay > b the stochastic process(t) can, though need not,
induce a reversal of the current (CR).

Let us consider the last case in some detail. An exact yet complex formula
for the currentJ was derived by our group in'{] in which its properties
were also investigated. In the phase space of the paramefegs one can
distinguish between four domains of qualitatively different shapes of tinesiat
J(v), characterized also by sign reversals (see Fig. 1). The following fhote
must be pointed out:
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Fig. 1. The (g, ap) phase diagram for the dependence of the stationary cuirenty in the
case ofd = 0.25. The shape of the functiof(v) for the different domains formed by curves
(a)—(c) is sketched. Current reversals occur in domains 8lagsd 4. Curve (c) is determined
by Eq. (8). Curves (a) and (b) are found by numerical methods.

(i) There is a lower limit for the noise amplitude; = b + ¢, below which no
CR at anyv or ¢ occur.

(il) The correlation timer. = 1/v has an upper limit,o = 1/vy, over which
there cannot be more than one CR.

(iif) The flatness parametes has a critical valuer = 2. If ¢ < 2, then, as
the correlation time grows from O tso, there can be either two reversals or none,
and ifo > 2, one reversal may but need not occur. In the general case, thalcritic
switching rate, can be found from the following transcendental equation:

(vo + b2)€7'/0/b2 =(* - )+ (v + 62)671/0/62. (6)

For the calculation of the current reversal points J(v*) = 0, the following
transcendental equation can be applied:

F(v,ap) :=yn(a1, —p1) — qao(nfz2 — yaz) = 0, (7)
where

ap = eMt f M- =2 ag =Mt — M- B =eter fete — 2

Bp = et —er = /(1 =290 + ¢%a3, v:= /(1 —2¢)c? + ¢?af,
A+ = 7b(a§+b2)(qa(2) — b2 +apn), Mot = m(qa% — % £ agy).

It is remarkable that the phase boundary line (c) (see Fig. 1) can belwksby an
exact analytical formula< ¢ < 1)

2 _ 2 (1-2¢9)(b* +¢?)

ap = Qg 1—4q

(0> — c®)*(1 — 4q)
bt \/1 Tuewmperree|s ®
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Curve (b), whereyy, = a2(q), is determined by the system of equations

0
F(r.ax(q)) =0, =-F(v.ax(q)) = 0. ©)
It should be noted that the ratchet model with dichotomous noise belongsiaimo
No. 1 as a limit case of = % In this case no CR occurs.

4. THE CASE OF NONZERO TEMPERATURE

Starting from a simple sawtooth potential, a complex exact formula as a
guotient of two 1llth-order determinants can be derived from Eq. (#)tHe
probability current/ in the case ofD # 0. The method of finding the current
in this case is presented in detail if]} where a full analysis of the asymptotic
regimes of.J is performed. Here only the most interesting features will be
outlined. It is remarkable that & # 0 new cooperative effects occur between
the statistically independent white and symmetric trichotomous noises, namely,
multiple (more than two) current reversals and disjunct “windows” for thatrol
parameters.

From the asymptotic expressions .bfat D # 0 one can infer the following
facts:

(i) If we vary the amplitudezy, odd numbers of CRs occur.

(ii) If we vary the correlation time, the number of CRs is even or zero.

(iii) By changing the temperatur®, we have to distinguish between two cases.
First, if ap < az(q), orif ap > a2(q) andv < vj orv > v3, there can occur either
an even number of CRs or none (see also Fig. 1); here the critical svgjtchties
vy > vf are the solutions of Eq. (6). Secondgaif > a2(q) andvy < v < v3,
there are always odd numbers of CRs. Notably, ati andag > ag. the critical
switching ratev; = oco. Numerical analysis of an exact expression for the current
J has revealed that variation of the system parameters can bring forth naore th
two CRs. In particular, a change af can cause up to six, changebfup to four,
and that ofag up to three CRs.

As has been said above, in some cases the current exhibits characteristic
disjunct zones (“windows”) of temperature and switching rate whereitieetibn
of the current is opposite to that in the surroundings (see Fig. 2). Irageaf large
flatnessy > 1, the presence of the disjunct “windows” (DW) has been considered
in ['] with some discussion on possible applications of the effect in particle
separation techniques. Figure 2 exhibits zeros of the cursert, J(D,v) = 0,
at the large-flatness limitp — oo, for d = 0.005 at different values of,. For
certain values ofd, ag) closed curves appear on the plade, {) on which CRs
occur. Inside these curves the direction of the current is negativereab outside
them it is positive. The DWSs occur if and only if the surfa¢éD, ag,v) = 0
(with d = const) has a local extremum and a saddle point. If the saddle and the
extremum merge, the region of the existence of DWs shrinks to a critical\itnt
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Fig. 2. The surface of current reversals(D, ag,v) = 0, for a fixed asymmetry parameter
d = 0.005 in the case of large flatnegs > 1. The extremum lies aty = 22.95 and the
saddle point atiy = 26.223. By the choice ofiy a “window”, as small as necessary, can be
formed on thg D, v)-plane around the extremum where the current is reverseshagared to
the surrounding region.
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Fig. 3. Current vs temperature: two current reversals in the regfahe disjunct “windows”
on the plan€ D, v). For curves (1)—(3) = 0.007,q = 0.1,ap = 168.9 and the switching
rates are{1) v = 130, (2) v = 190, (3) v = 250.

the following coordinatesd,. ~ 0.009, a. =~ 19.40, D, ~ 0.250 andln v, =~ 5.25.
The occurrence of DWs is possibledfe (0,d.) andag € (ac, 00). Attention
should be called to the fact that in Fig. 2 the shapes of the plane curvesl rev
the occurrence of four CRs fof vs v at certain values of the temperatufe
Namely, for the curveg there are five critical temperatured; ~ 0.334, Dy ~
0.280, D3 =~ 0.062, D4y ~ 0.058, D5 =~ 0.050; within the valuesD > D; and
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D3 < D < Ds there is no CR; withinD, < D < Dy, Dy < D < D3 and
D < Ds there are two CRs; withis < D < D, there are just four CRs.

It is of importance that two effects, DWs and four CRs, both appear a&lso a
moderate values of the flathess parametes, 2, as was ascertained by numerical
analysis of an exact expression gf (the method of finding the current is
presented in'f]). Some curves = J(D) for the flatness = 5 illustrating the 2-
CR effect in the region of the DWs are shown in Fig. 3. We believe that DWs w
be useful for particle separation techniques. Comparing two possibleigees
of particle separation — one with two CRs (with no use of DWsY{23] and the
other with DWs — one can see certain advantages of the latter, becauablésn
one to obtain a sharp negative extremum/¢f) with a relatively large absolute
value. Another advantage of this model is that the control parameter is tetugeer
which is convenient for technology.

5. DISCUSSION

A three-level Markovian noise different from ours has been applied to
investigate the reversals of noise-induced flow'fiT 2], where most of the results
have been obtained for the limits of slow and fast noises. The three-lmedgs
applied in [%11] coincides with our trichotomous process at the limit of large
flatness,p > 1. However, variation of the flatness of the trichotomous noise
can cause systems to behave in unexpected ways. The authars*Hf Have
investigated a correlation ratchet in which directed transport is subjecteatto
thermal equilibrium noise and zero-mean asymmetric dichotomous fluctuations.
They show that the transport direction of Brownian particles can beatedrby
thermal noise, but not in the case of symmetric dichotomous fluctuations. It is
remarkable that such control is feasible in the case of a symmetric trichotomous
noise. Moreover, for certain system parameters more than two CRs oEour
example, in the vicinity of the system parameters’ phase space point
107°, D = 0.0927, ag = 17240, ¢ = 757.6) six current reversals vs correla-
tion time 7. can be seen. To our knowledge, so many CRs have never been
reported yet for correlation ratchets of simple sawtooth potentials. Howieve
the case of deterministic rocking ratchets the occurrence of infinitely marsy CR
is known B°]. Though we are not aware of any simple physical explanation for
the above-mentioned effects, the distinct behaviours of the currentseddoy
dichotomous and trichotomous noises are not surprising if we rememberehat th
is a so-called flashing barrier effect@t> 1, which generates a counter current
induced by dichotomous noise. An excellent explanation for the flashingeba
effect can be found in'f].
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Trihhotoomne mura: rakendused stohhastilise
transpordi juures

Romi Mankin, Ain Ainsaar ja Risto Tammelo

Kasitletud on kolmetasemelist Markovi mira kui mittetasakaaluliste fluktuat-
sioonide mudelit. Mittelineaarsetes siisteemides on vaadeldud mira tasasuspar
meetri moju mittetasakaaluliste fluktuatsioonide poolt kaitatud Browni osakeste

dinaamikale. On vaadeldud, millistel tingimustel esinevad hammaslatt-mudelites
voolupddrded.
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