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Abstract. A three-level Markovian noise as a model of nonequilibrium fluctuations is
presented and the effect of flatness of fluctuations on the noise-driven nonequilibrium dynamics
of overdamped Brownian particles in nonlinear systems is considered. Examples of exactly
soluble models of stochastic transport are given and the conditions of current reversals in
ratchet systems are discussed.
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1. INTRODUCTION

Over the past two decades, the behaviour of open systems depending on
environmental fluctuations (noise) has received considerable attention.Some
recently discovered phenomena, such as stochastic resonance [1], noise-induced
transitions [2], noise-induced phase transitions in spatially extended systems [3,4],
and stochastic transport in ratchets [5−8], have raised the idea that noise is able to
induce order in nonlinear nonequilibrium systems.

Theoretical investigations indicate that noise-induced nonequilibrium effects
are sensitive to noise flatness, that is, to the ratio of the fourth moment to the
square of the second moment (see [9−16]). Although the flatness of fluctuations has
obvious significance, its role has not received due attention. Therefore, the purpose
of the present paper is twofold: first, to provide a compact review of a series of
our earlier papers [13−18] in which coloured noises were modelled as trichotomous
fluctuations and a number of exact results were obtained, and second, todiscuss
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– on the basis of the above-mentioned exact results – some novel phenomena in
stochastic systems where the role of noise flatness as a control parameter iscrucial.
Here we report for the first time (i) that triple and quadruple current reversals,
i.e. changes in the sign of the current while one control parameter is varied,
found in [16−18] at the large flatness limit, are also present in the case of moderate
flatnesses and (ii) that even as many as six current reversals versus correlation time
occur in ratchets with a simple sawtooth potential.

A major virtue of the models with trichotomous noise is that they constitute a
case admitting exact analytical solutions for some nonlinear stochastic problems,
such as coloured-noise-induced transitions [13,15] and reversals of noise-induced
flow [14,16]. Furthermore, it is remarkable that for trichotomous noises the flatness
parameterϕ, contrary to the cases of the Gaussian coloured noise (ϕ = 3) and the
symmetric dichotomous noise (ϕ = 1), can have any value from 1 to∞. This extra
degree of freedom proves to be useful when modelling actual fluctuations.

2. MODEL WITH TRICHOTOMOUS NOISE

We extend the idea of dichotomous noise further to a symmetric three-level
random telegraph processZ(t) called the trichotomous process [13]. This is a
random stationary Markovian process that consists of jumps between three values
z = a0, 0,−a0. The jumps follow in time according to a Poisson process, while
the values occur with the stationary probabilities

Ps(a0) = Ps(−a0) = q, Ps(0) = 1 − 2q, (1)

so that the trichotomous process is a special case of the kangaroo process [9]
with the switching rateν. The transition probabilities between the statesz(t) =
a0, 0,−a0 can be obtained as follows:

P (±a0, t + τ | 0, t) = P (±a0, t + τ | ∓a0, t) = q(1 − e−ντ ),

P (0, t + τ | ±a0, t) = (1 − 2q)(1 − e−ντ ), (2)

τ > 0, 0 < q < 1/2, ν > 0.

One can also calculate the mean value〈Z(t)〉 = 0 and the correlation function
〈Z(t), Z(t′)〉 = 2qa2

0e
−ν|t−t′|. The flatness parameterϕ, indicating how long the

noise level dwells on the statez = 0, is defined asϕ := 〈Z4(t)〉/〈Z2(t)〉2 = 1/2q.
We will apply the trichotomous noise to systems described by one variable, i.e.

to phenomenological kinetic equations of the type

dX

dt
= h(x) + Z(t) + ξ(t), (3)

which are stochastic differential equations, whereh is a deterministic function. The
thermal fluctuationsξ(t) are modelled by a zero-mean Gaussian white noise with
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the correlation function〈ξ(t1), ξ(t2)〉 = 2Dδ(t1 − t2), whereD = const. For
brevity, in what follows, we shall callD temperature. The joint probability density
Pn(x, t) for the position variablex(t) and the fluctuation variablez(t) satisfies the
Fokker–Planck master equation

∂

∂t
Pn(x, t) = −

∂

∂x

[(

h(x) + zn − D
∂

∂x

)

Pn(x, t)

]

+
∑

m

UnmPm(x, t), (4)

wherePn(x, t) denotes the probability density for the combined process(x, zn, t);
n, m = 1, 2, 3; z1 ≡ −a0, z2 ≡ 0, z3 ≡ a0 andUnm = ν[q +(1−3q)δn2 − δnm].

We consider overdamped motion of Brownian particles in a one-dimensional
spatially periodic potential̃V (x̃) = Ṽ (x̃ + L̃) of the periodL̃ and the barrier
heightṼ0 = Ṽmax − Ṽmin. In what follows, we will use dimensionless units with
L = 1 andV0 = 1, and suppose that the potentialV (x) in the dynamical equation
(3) is piecewise linear (simple sawtoothlike), so that the corresponding force is
h(x) = b := 1/d for x ∈ (0, d) andh(x) = −c := −1/(1 − d) for x ∈ (d, 1).
Here the parameterd ∈ (0, 1) determines the asymmetry of the potential, which
is symmetric ifd = 1

2 . So we can confine ourselves to the cased ≤ 1
2 . The

Fokker–Planck equation (4) has a unique solution if on the stationary probability
densityP s

n(x) are imposed the conditions of periodicityP s
n(x) = P s

n(x+1) and of
normalization

∫ 1
0 P s

2 (x)dx=1−2q with
∫ 1
0 P s

i (x)dx=q, i=2, 3, over the rescaled
period intervalL = 1. If we denoteP (x) =

∑

n P s
n(x), Eqs. (3) and (4) with

the imposed conditions will yield the following relation between the average of the
particle velocity〈dX/dt〉 and the currentJ :

〈dX/dt〉 =

∫ 1

0
h(x)P (x)dx = J. (5)

3. THE CASE OF ZERO TEMPERATURE

In the case of zero temperature (D = 0) the following characteristic regions
can be discerned for the noise amplitudea0:

(i) There is no current if0 < a0 < c, as there is a stationary stable point for
any staten.

(ii) In the case ofc < a0 < b, there exists one stationary stable point for
z(t) = −a0, the motion to the left is switched off, and the current is positive.

(iii) In the case ofa0 > b the stochastic processZ(t) can, though need not,
induce a reversal of the current (CR).

Let us consider the last case in some detail. An exact yet complex formula
for the currentJ was derived by our group in [14] in which its properties
were also investigated. In the phase space of the parametersϕ, a0 one can
distinguish between four domains of qualitatively different shapes of the current
J(ν), characterized also by sign reversals (see Fig. 1). The following threefacts
must be pointed out:
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Fig. 1. The (q, a0) phase diagram for the dependence of the stationary currentJ on ν in the
case ofd = 0.25. The shape of the functionJ(ν) for the different domains formed by curves
(a)–(c) is sketched. Current reversals occur in domains Nos. 3 and 4. Curve (c) is determined
by Eq. (8). Curves (a) and (b) are found by numerical methods.

(i) There is a lower limit for the noise amplitude,a0 = b + c, below which no
CR at anyν or ϕ occur.

(ii) The correlation timeτc = 1/ν has an upper limitτc0 = 1/ν0, over which
there cannot be more than one CR.

(iii) The flatness parameterϕ has a critical valueϕ = 2. If ϕ < 2, then, as
the correlation time grows from 0 to∞, there can be either two reversals or none,
and ifϕ > 2, one reversal may but need not occur. In the general case, the critical
switching rateν0 can be found from the following transcendental equation:

(ν0 + b2)e−ν0/b2 = (b2 − c2) + (ν0 + c2)e−ν0/c2 . (6)

For the calculation of the current reversal pointsν∗, J(ν∗) = 0, the following
transcendental equation can be applied:

F (ν, a0) := γη(α1,−β1) − qa0(ηβ2 − γα2) = 0, (7)

where

α1 = eλ1+ + eλ1− − 2, α2 = eλ1+ − eλ1− , β1 = eλ2+ + eλ2− − 2,

β2 = eλ2+ − eλ2− , η :=
√

(1 − 2q)b2 + q2a2
0, γ :=

√

(1 − 2q)c2 + q2a2
0,

λ1± = − ν
b(a2

0
−b2)

(qa2
0 − b2 ± a0η), λ2± = ν

c(a2
0
−c2)

(qa2
0 − c2 ± a0γ).

It is remarkable that the phase boundary line (c) (see Fig. 1) can be described by an
exact analytical formula (0 < q < 1

4 )

a2
0 = a2

0c =
(1 − 2q)(b2 + c2)

1 − 4q

[

1 +

√

1 −
(b2 − c2)2(1 − 4q)

(1 − 2q)2(b2 + c2)2

]

. (8)
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Curve (b), wherea0 = a2(q), is determined by the system of equations

F (ν, a2(q)) = 0,
∂

∂ν
F (ν, a2(q)) = 0. (9)

It should be noted that the ratchet model with dichotomous noise belongs to domain
No. 1 as a limit case ofq = 1

2 . In this case no CR occurs.

4. THE CASE OF NONZERO TEMPERATURE

Starting from a simple sawtooth potential, a complex exact formula as a
quotient of two 11th-order determinants can be derived from Eq. (4) for the
probability currentJ in the case ofD 6= 0. The method of finding the currentJ
in this case is presented in detail in [16], where a full analysis of the asymptotic
regimes ofJ is performed. Here only the most interesting features will be
outlined. It is remarkable that atD 6= 0 new cooperative effects occur between
the statistically independent white and symmetric trichotomous noises, namely,
multiple (more than two) current reversals and disjunct “windows” for the control
parameters.

From the asymptotic expressions ofJ at D 6= 0 one can infer the following
facts:

(i) If we vary the amplitudea0, odd numbers of CRs occur.
(ii) If we vary the correlation timeτc, the number of CRs is even or zero.
(iii) By changing the temperatureD, we have to distinguish between two cases.

First, if a0 < a2(q), or if a0 > a2(q) andν < ν∗
1 or ν > ν∗

2 , there can occur either
an even number of CRs or none (see also Fig. 1); here the critical switching rates
ν∗
2 > ν∗

1 are the solutions of Eq. (6). Second, ifa0 > a2(q) andν∗
1 < ν < ν∗

2 ,
there are always odd numbers of CRs. Notably, atq < 1

4 anda0 > a0c the critical
switching rateν∗

2 = ∞. Numerical analysis of an exact expression for the current
J has revealed that variation of the system parameters can bring forth more than
two CRs. In particular, a change ofτc can cause up to six, change ofD up to four,
and that ofa0 up to three CRs.

As has been said above, in some cases the current exhibits characteristic
disjunct zones (“windows”) of temperature and switching rate where the direction
of the current is opposite to that in the surroundings (see Fig. 2). In the case of large
flatness,ϕ � 1, the presence of the disjunct “windows” (DW) has been considered
in [17] with some discussion on possible applications of the effect in particle
separation techniques. Figure 2 exhibits zeros of the current,J = J(D, ν) = 0,
at the large-flatness limit,ϕ → ∞, for d = 0.005 at different values ofa0. For
certain values of (d, a0) closed curves appear on the plane (D, ν) on which CRs
occur. Inside these curves the direction of the current is negative, whereas outside
them it is positive. The DWs occur if and only if the surfaceJ(D, a0, ν) = 0
(with d = const) has a local extremum and a saddle point. If the saddle and the
extremum merge, the region of the existence of DWs shrinks to a critical pointwith
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Fig. 2. The surface of current reversals,J(D, a0, ν) = 0, for a fixed asymmetry parameter
d = 0.005 in the case of large flatnessϕ � 1. The extremum lies ata0 = 22.95 and the
saddle point ata0 = 26.223. By the choice ofa0 a “window”, as small as necessary, can be
formed on the(D, ν)-plane around the extremum where the current is reversed as compared to
the surrounding region.

Fig. 3. Current vs temperature: two current reversals in the regionof the disjunct “windows”
on the plane(D, ν). For curves (1)–(3)d = 0.007, q = 0.1, a0 = 168.9 and the switching
rates are:(1) ν = 130, (2) ν = 190, (3) ν = 250.

the following coordinates:dc ≈ 0.009, ac ≈ 19.40, Dc ≈ 0.250 andln νc ≈ 5.25.
The occurrence of DWs is possible ifd ∈ (0, dc) anda0 ∈ (ac,∞). Attention
should be called to the fact that in Fig. 2 the shapes of the plane curves reveal
the occurrence of four CRs forJ vs ν at certain values of the temperatureD.
Namely, for the curvesI there are five critical temperatures:D1 ≈ 0.334, D2 ≈
0.280, D3 ≈ 0.062, D4 ≈ 0.058, D5 ≈ 0.050; within the valuesD > D1 and
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D3 < D < D2 there is no CR; withinD2 < D < D1, D4 < D < D3 and
D < D5 there are two CRs; withinD5 < D < D4 there are just four CRs.

It is of importance that two effects, DWs and four CRs, both appear also at
moderate values of the flatness parameter,ϕ > 2, as was ascertained by numerical
analysis of an exact expression ofJ (the method of finding the currentJ is
presented in [16]). Some curvesJ = J(D) for the flatnessϕ = 5 illustrating the 2-
CR effect in the region of the DWs are shown in Fig. 3. We believe that DWs will
be useful for particle separation techniques. Comparing two possible techniques
of particle separation – one with two CRs (with no use of DWs) [5,17−23] and the
other with DWs – one can see certain advantages of the latter, because it enables
one to obtain a sharp negative extremum ofJ(ν) with a relatively large absolute
value. Another advantage of this model is that the control parameter is temperature,
which is convenient for technology.

5. DISCUSSION

A three-level Markovian noise different from ours has been applied to
investigate the reversals of noise-induced flow in [10−12], where most of the results
have been obtained for the limits of slow and fast noises. The three-level process
applied in [10,11] coincides with our trichotomous process at the limit of large
flatness,ϕ � 1. However, variation of the flatness of the trichotomous noise
can cause systems to behave in unexpected ways. The authors of [22,24] have
investigated a correlation ratchet in which directed transport is subjected toboth
thermal equilibrium noise and zero-mean asymmetric dichotomous fluctuations.
They show that the transport direction of Brownian particles can be controlled by
thermal noise, but not in the case of symmetric dichotomous fluctuations. It is
remarkable that such control is feasible in the case of a symmetric trichotomous
noise. Moreover, for certain system parameters more than two CRs occur. For
example, in the vicinity of the system parameters’ phase space point(d =
10−5, D = 0.0927, a0 = 17240, ϕ = 757.6) six current reversals vs correla-
tion time τc can be seen. To our knowledge, so many CRs have never been
reported yet for correlation ratchets of simple sawtooth potentials. However, in
the case of deterministic rocking ratchets the occurrence of infinitely many CRs
is known [25]. Though we are not aware of any simple physical explanation for
the above-mentioned effects, the distinct behaviours of the currents induced by
dichotomous and trichotomous noises are not surprising if we remember that there
is a so-called flashing barrier effect atϕ > 1, which generates a counter current
induced by dichotomous noise. An excellent explanation for the flashing barrier
effect can be found in [10].
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Trihhotoomne müra: rakendused stohhastilise
transpordi juures

Romi Mankin, Ain Ainsaar ja Risto Tammelo

Käsitletud on kolmetasemelist Markovi müra kui mittetasakaaluliste fluktuat-
sioonide mudelit. Mittelineaarsetes süsteemides on vaadeldud müra tasasuspara-
meetri mõju mittetasakaaluliste fluktuatsioonide poolt käitatud Browni osakeste
dünaamikale. On vaadeldud, millistel tingimustel esinevad hammaslatt-mudelites
voolupöörded.
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