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Abstract. The compression property of wavelets in the analysis of aruéen problem
(with unsmooth initial conditions) is investigated. Thdeefiveness of wavelets both in the
reduction of complexity (number of coefficients) and in betipproximation is shown. Haar
wavelets, having the simplest interpretation of the wehaefficients, are used for defining the
wavelet solution of an evolution (parabolic-hyperbolicdiplem. The approximate solution, at
a given fixed scale (resolution), results from the supersitjzm of (a small set of) fundamental
wavelets, thus giving (also) a physical interpretation tvelets. Since Haar wavelets are not
smooth enough, a numerical derivative algorithm, whicbvedl the scale approximation of
partial differential evolution operators, is also definAd.application, the heat propagation (of
an initial square wave) is explicitly given in terms of wasfsl.

Key words: wavelet, Haar, Haar transform, interpolation, differahtbperator, discrete
operator.

1. INTRODUCTION
Let us consider the (one-dimensional) evolution problem, in the unknown

functionu(x,t) : (R C L*(R)) x [0,7] — R, defined by the partial differential
equation

2
(aa— + bg + c) u(z,t) = Lu(z,t),

otz ot
(x e Rt €(0,T),T < o0, a,b,c € R)
N ®
L=2 Mgy

J=1

(p < o0, \j=const,j=1,...,p),
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and by the initial conditions

’U,(x,()) = uO(w)y
9 - - @
5 u(x,t) T ugy(z), (only if a #0) .

The solution of the problem (1)-(2) might be obtained by a series expansio
terms of evolving coefficients;(¢) with respect to an orthonormal (fixed) basis of
functions{p;(x)}:

u(z,t) =Y Bi(t)p;(x) - (3)
j=0

At a given approximation the corresponding truncated series, inser(éjl igives

rise, by using the Petrov—Galerkin method, to a finite set of ordinary difted
equations in the unknown coefficient(t). The number of the unvanishing
functionsg;(t) depends on the approximation method, on the basis functions, and
namely on the function to be reconstructed. Usually, trigonometric functsueh (

as for the Fourier series expansion) or some other orthogonal fugetiertaken as
baseqp;(x)}, butin order to give a sufficiently “good" approximation of the initial
functionug(x), the number of significant coefficients might increase considerably.

Quite recently many successful attempts to solve differential equations have
been made by using regular bases of wavelet$][ mostly Daubechies wavelets
or interpolating wavelets'{’]. However, one of the main properties of wavelets, the
compression, was not significantly emphasized in the construction of theletav
solutions. The compression, indeed, features the smallest number fiieo&s,
which, according to the wavelet theord?’], are needed to reconstruct completely
any L2(R) function.

In the following we shall consider the Haar waveletpwhich are piecewise
constant finitely defined functions, each one with compact support onita fi
interval. Since they are not differentiable functions, in order to compuikoitky
the connection coefficients, the derivative of the Haar wavelets is fdand
a numerical algorithm©[7], through a suitable smooth interpolation of points.
Namely, the accuracy would improve by choosing more appropriate intéirmpla
functions, but, even if some rough estimates of the error are given, thepurgiose
of this paper is not the investigation of the error. It will be shown, instézat,
also the simple Haar wavelets can be used to describe, at a given approxjma
evolution problems, and, moreover, their use might strongly reduce thearwhb
unknown functions. It follows that the differential operatotis transformed into
a discrete operatof which maps piecewise constant functions (Haar series) into
piecewise constant functions.

Haar wavelets will be used for the definition of the wavelet solutijrof the
evolution problem (1)—(2), but their use, instead of some other smoottletay],
is justified not only by the simplest and closed definition. In fact, dealing with
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experimental problems, only an initial discrete set of numerical data, \xbei

some fixed time intervals (giving histograms), is known. Thus the initial function
uo(z) is a histogram that can be completely represented by a Haar series having
the smallest number of coefficients (in comparison with other wavelet families).
In general, other wavelets, such as the interpolating wavelets and theaeh
families (except for D2), are smooth functions which allow an easy reptagon

of smooth functions but are unsuitable, at least in principle, for the septation

(at a fixed scale approximatiaW < oo) of functions with finite jumps.

With the segmentation of the discrete Haar wavelet transform algorithm, shortly
calledreduced Haar transforni], it is possible also to reduce further the number
of basis functions and to keep unchanged the piecewise constant latenpof
the Haar series, thus, to reduce the complexity of the Haar wavelet tramsfm
application in the heat propagation theory is given in order to compute explicitly
the Haar wavelet solution and to show the very low number of coefficiersalu
compression.

2. DISCRETE HAAR TRANSFORM

LetY = {Y;}, (i =0,...,2M —1, 2M = N < 00, M € N), be a real and
square summable time seri¥se KV ¢ 12, with K real field;z; = i/(2M —1),
the regular equispaced grid dyadic pointson the intervak2 = [0, 1]. TheHaar
scaling functionp(z) is the characteristic function df, 1]; its family of translated
and dilated scaling functions is defined [ 1]) as

() =2 2p(2"x — k), (0<mn,0<k<2"-1),
kE k+1 (4)
1 Qp Q== —
) HANS k> k |:2n’ 2n > 9
0, x & Q.

The Haar waveletfamily {¢7(x)} is the orthonormal basis for th&?([0, 1])
functions [°]:

Yp(e) =222 — k), |[p(@)lle = 1,
E k+1/2
_9—n/2 -
? € e |:2TL7 271 > )
g = k+1/2 k+1
@Z}k(x) 2—%/27 CCE|: zn/7 ;),(OSH,OSkSQH—l),
0, elsewhere

()

which fulfills the recursive equations
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22 oh(a) = ot (@) +epa (@),
@) = @) - e ().
Although, without loss of generality, we restrict ourselve®tel n, 0 < k <
2" — 1 = Qp C [0,1], the family of the Haar scaling functions and wavelets
is defined also outsidf), 1], for other integer values of, making it possible to
extend the following considerations to any intervalRof
The discrete Haar wavelet transforns the operatotVy : KV c 2 —

K~ < 1? which associates with a given finite energy vedbthe finite energy
vector of thewavelet coefficientso , 5} }:

(6)

WNYZ{O‘)ﬁS?"') %[ill_l}, Y:{YVO, )/1, ---aYN—1}7 (QJV[:N)
(7)
The N x N matrix W can be computed by the recursive formd][
M
WNYE [H ((P2k: @IQJW?2I<:)(H2]<: @IQJWW@))] Y7 (8)
k=1

(@ being the direct sum), which is based on thih-order identity matrix/y,
on the kth-order permutation (shuffle) matrik,, which moves the odd (place)
components of a vecto¥ into the first half positions and the even (place)
components into the second half, and on lditéice coefficientg:th-order matrix
Hy,, which follows from a matrix factorization of the recursive equation coieffits

in (6):
1/vV2 1/V2
Hy = , Hiy=Ho®d H,,....
YNNG

For example, withV = 4, M = 2, assuming the empty sé& = () as the neutral
term for the direct sum, itis

W4 - H [(PQI@ @ I4_2k)(H2k @ I4_2k)}
k=12

= (P2 @ I2)(H2 ® I2)] oy [(P1 ® 10)(Hs & Io)]
= [(PQ D IQ)(HQ D .[2)] [P4H4] .

The wavelet coefficients of the discrete Haar transform have a simplprietar
tion in terms of finite differences. If we define the mean average VElye, =
(s +1)71 324 vy, it follows, with easy computatiorf], that
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o = Y0,2M—17

_ o9o(M—-2-r)/2 A%
B, = 2 )/ 5(M_1_T)hY]€+21\/1727r+2k7k+21b1727r+2k+M_r_2+21v17'r72 ,

M—1_ 5—1/2
p P2ApYoy

where r = 0,....M —2, k = 0,...,2M=1 — 1 h = 2M and the forward
and central (finite) difference formulas, as usual, Ag; = (Y;.nny — Y;) and
oY = (Yienn — Yionn), respectively. Therefore the wavelet coefficiefitslso
called details coefficients, express (at least in the Haar wavelet agpppribe finite
differences, i.e. the first-order approximate derivative.

2.1. Haar series

Let Viy, N € Z, the subspace OIQ(]R), of the piecewise constant functions
y(x) with compact support oRY (N fixed, k € Z) be

Vv ={y(z) € LQ(R) cy(z) = y,]CV =const, x € Qév, y(zr) =0,z ¢ ch\]},

so that any(x) € Vy with y(m)|x€QkN =Yi(k=0,...,N —1), according to (4),
admits the representation

N-1

y(@) =272 3 v, o (@), (©)

k=0

TheHaar wavelet seriess the piecewise constant functigfiz), defined irt2 =
[0, 1], interpolating the point§z;, Y;}, with z; = i/(2M — 1), i =0,...,2M — 1,

M-12"-1

y(x) =ap(z)+ > Y Brp(a 2" = N), (10)

n=0 k=0

such thaty(z) = y(z;) = Y;, for allz € QF. Thus, the discrete Haar transform
might also be considered as an operat? : KV c I>— Vy, which, according
to (4), (5), (7), makes (10) equivalent {®).

In the general framework of the wavelet theofy’], any function (not only
piecewise constanfy(z) in L?(R) can be completely reconstructed as

v)= Y BRvR(a), (11)

n,k€Z

while, by fixing thescaleof approximation, oresolutionM < oo, the (wavelet)
approximation of F(z) is 7™ F(z). The projection of F(z) into Vi, namely
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7N F(z), is given by the right-hand side of E.0), where the wavelet coefficients
are computed using thdyadic discretizationof F'(z): F = {Fy}, Fp =
F(zy), k = 0,...,2M — 1, shortly F = VVF(z), (N = 2M). According
to the wavelet theory®P], when M — oo, it is, at least in the weak
sense ], limps o0 HF(w) —7r2MF(ac)HL2 = 0. In general, for a function
F(x), belonging to the Sobolev spadé@f“(R), the approximation is?|:
HF(x) — 7r2MF(:c)HLp = O(2~MSHD)) M — oo, so that, for the Haar wavelet
reconstruction (10), the approximation2~") at the resolution\/.

The scalar product of two functio§(x), G(x), of L*(R), is (F(z), G(z)) =
[ F(2)G(x)dx, where the bar stands for complex conjugation. Taking into
account (11) and the orthonormality conditions

(i (), oy’ (x)) = 6" 0nk,  (p(@),p' (@) = 0, (Yp (), 5’ () = 0" Onk,

(12)
and since for the Haar waveletg (z) = % (z), we have
F q

(F(z),G(x)) = Y BLBL

n,k€EZ

F e} (13)
(F(x) Y Biwi(), Gla)= ) ﬁmm).

n,k€Z n,k€Z

As a consequence, from E@.0) it follows that||Y||2 = |[WYY | 2.

2.2. The p-parameters reduced (or windowed) Haar discrete wavelet
transform

The wavelet transforn{7) implies the computation oV = 2 wavelet
coefficients, at the resolutiof/, with N basis functions);(x) involved, and a
computation complexity?(N?). However, if we consider only = 2™ < N
basis functions, the complexity reduces2p /N ). This corresponds to the slicing
of data with a fixed window, as it is usually done, for instance, in the loca sin
and cosine transforms or in the wavelet packet decomposittoi][ With the
following reduced Haar transform it is possible both to reduce the nuniliersis
functions and the computational complexity and to keep unchanged the Eecew
constant interpolation (9).

Let the sey” = {Y;} of N data, segmented into= N/p segments op = 2™
data f] be

o—1
Y = {Vitico,..no1 = @Y}, Y ={Yy, Vi1, .o, Yoprp ).
5=0
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The p-parameters reduced (or windowed) discrete Haar wavelet transédrinis
WP?Y , where explicitly

( o—1 o—1
wre = EHWr, Y = EBYS,
s=0
o—1
WPeY = (@ Wp> (EB WPYS> )
s=0
| W2y :{ 06 g0 gl gl ;’};_15?1}, (2™ = p).

The corresponding Haar series interpolation gives

o—1
y(x) = Zys(
( m—12"—1
Os s nis
yi () = 0" (@) + > > B (1) 1 € [ Taprp1)
n=0 k=0
0, elsewhere

each functiony®(x) being with compact support in the intervat,, zps4+p—1)
which corresponds to the data segmafit The p basis functions{p(®)(z),

1/}8(5)(‘7")771/]2; 11 ( )} are

(5)( ) { p(x), =€ [‘rspvxsp—i-p—l)
pT) =

0, elsewhere,

sz(s)(fﬁ) B { Vi (@), @€ (@ Topip-1)

0, elsewhere

In general, for a vector a2 elementsy = {Yitico, om_q, the Haar wavelet

transform is the vectorV2"' Y, while there are different reduced transforms that
can be done with one of the following matricg®V?" > },,,;_/, even if the
resulting piecewise interpolation will be the same. Of course, whea 1 —
p=NandWry = WNY,

3. GENERALIZED DERIVATIVE IN Vy

The generalized derivativé ] is a derivative algorithm that maps any discrete
set of data into discrete sets of data, and, after a dyadic discretizationarals
function F'(x) into a discrete set (the discrete derivativeldfr)).

51



Through the discrete set of poin = {Y;}, at the dyadic nodes; =
i/(N—1), (i=0,...,N—1), N =2 the Lagrange interpolation polynomial
is defined as

N-1 _
L()Y;,  Li(z) = I1 &=—a)

=0 k=0,....i—14i+1,..,.N—1 (i — k)

l;(x) being the Lagrange coefficients. This polynomial is a differentiable fumctio
and, after a dyadic discretization, the following definition of the generalized
derivative may be given.

Definition 1 (Generalized gth-order derivative of Y e KV [67]). The
generalizedgth-order derivative of theV-length vectorY is the vectorY' @ =
5@Y, wheres@ : KN — KN is

dq
(@ — N 4 pN
o9 =v dqu. (14)

This operator can be extended also to any functicrn) € Vy assumingY(Q) =
5OV Ny(z), with y(z) given by Egs. (9), (10).

Definition 2 (Generalizedgth-order derivative of y(z) € Vy). The generalized
qth-order derivative of the piecewise constant functidm) € Vy is the piecewise
functions\Vy(x), wheres\?) : Viy — K is

8¢ = s@vN, (15)

In particular, this operator can be applied to any function after a projeitr:lion

the generalized derivatlv@(]\? () gives the apprOX|mat|on (prOJectlon intdy)
of the derivative(d?/dz?) F(x).

3.1. Error estimate

Let us first evaluate the approximation eriy (z) for the L2-function F'(z)
after a dyadic discretization and Lagrange interpolati(:) = PV (z)+ Ry (z) .
AssumingF'(x) differentiable up taV + 1, the errorRy in z* # z;, x* € [0, 1],
is given [1?] by

FON+D (3 N 1 dN+1
*Y * (N+1) —
Ry(z7) = NEESIE 11 2% — <F —deHF),
so that it can be estimated by

(N+1)
maXgzeo,1] F (z)

< —x; 16

YN S T H ol 09
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and, for the first derivative, at the nodes it is estimated by'?]

< max;—o, n_1 FNT2)(2;) 1 ’ N — oM
(N +1)! MN-1

In practice, if we take as a rough estimate of the approximation error of 8te fir
generalized derivative (at the nodes)

d
Eﬂgfﬂv(zd

max
i=0,...,N—1

E(F(z),N) = _max |

)

vV (dgf")) _ S F(x)

i

we see that the error decay depends on the increasing number of Nodeer
instance, for the functionsin 272 ande” discretized respectively ih6 and 32
(dyadic) nodes, we obtain

E(sin 27 x,16) = 0.0544876, E(sin27x,32) = 0.00434216,
E(e*,16) = 0.000185967, E(e*,32) = 0.0000219477.

Of course, the above numerical estimates of the error for functionsotdon
directly extended to discrete sequend&sbut we might assume that when the
generalized derivative acts on sequences whose length is 16 (teryrédae error

estimate ofd(? is substantially the same Qir(]\?) applied to functions. Haar
wavelets give a bad approximation at low scales, but the approximationoboth
the function and of its derivatives, improves for increasing resolutioaldeand
gives the complete reconstruction, f&f — oo. Moreover, with the windowed
(reduced) Haar transform, also the complexity might be strongly reduldeas a
sufficiently good reconstruction of the derivative (see Fig. 1) is obthin& very
short computation time. With respect to the segmenta¥on- @g;(} Y’ the
generalized derivative is not a linear function, that is

o—1 o—1
5@y = 5@ @ys + @5((1)1/3’
s=0 s=0

because of the Lagrange interpolation acting, in general, on diffeg&nbgnodes.
However, Eq. (14) can be approximated by

o—1 o—1
5@ @ Vol @ s@ys
s=0 s=0

In any case, it is easy to check that the accuracy of the generalizetiler
converges more slowly to the derivative when the frequency functioigleh(see
Fig. 1).
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Fig. 1. The functiony(z) = sin 200 z2(x — 1) (top left) with its derivative (right) and the
generalized derivative at various scale resolutions. Hmeegalized derivative at the resolution
N = 2048 has been obtained using the reduced Haar transform witlslicitey into 16-length
segments.

3.2. Generalized derivative as a linear operator onk”

The generalized derivative, according to (14), is a linear operatir'brwhich
maps finite vectors into vectors. For instadt¥ ¢ K", so that, taking Eq. (9) into

account, itis
N—-1

5Y =22 Y vl ),
k=0

where the componenfs, are related to the componerits of Y by the matrix

AEAkh:
N-1

Yk/ = Z Akth.
h=0

At the lower scales we have
e M =1 N=2
-1 1
a=(3 )

so that for a vectofY;, Y>} the numerical derivative is the vectdYy =
{AnY1 + A1oYo, AoiY1 + ApYs} = {Ys — Y1, Y1 — Yal.
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o M =2 N=4

-55 9 —4.5 1

-1 —-15 3 -0.5
A= 0.5 -3 15 1

-1 45 -9 55

For higher scales, it can be seen that among the components of the
matrix A = {Apy} the relationsAyj = —Agum on_j1q, Agj = —Agm_y v _j1q,
(j=1,....2M) forall M, andAy; = Api141, 2 <k <2 -2 1 <j<
2M _ 1), hold so that, in general, we have

o M >2 N=2M

—11(2M —1)/6  3(2M —1) —32M -1)/2 (2M -1)/3
—(2M —1)/3  —(2M -1)/2 @M -1) —(2M -1)/6 O
@M-un/6  -@M-1) @M-1/2 @M-1/
A @Y -1/6 -@M-1) (@M-1/2 M-/
0 2M -1)/6 —(2M 1) (@M _1)/2 (@M -1)/3
@M -1)/6 —(2M -1) (M -1)/2 (@M -1)/3

—(2M —1)/3 3(2M - 1)/2 -3(2M —1) 11(2M - 1)/6

3.3. Connection coefficients

In this paragraph, the generalized first derivative of the Haar wasvgldx) is
explicitly given. In a fixedV/y,, we have from (9)

WP (z) = 2 N/2 anzv N (g

whereppY = VNy?(z),h = 0,..., N — 1, according to (5), is eithef0, 1, —1}.
Thus, taking Eq. (14) into account, the first derivative of the Haarelas is

W) = VNG () = 27N Zg”év oh (x) (N fixed),

iy = (AVVY(x),

Ui N(z)) being the component of)'7 (x) with respect to
v (Z).
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In terms of wavelet coefficients, according to (10), tiile-order generalized
derivative is

M-12"m—1

(q)vag(x) =app(x Z Z Vi Vh( (N = 2M)7

m=0 h=0

where theconnection coefficients;, 77",

ap = (0N (2), (@), A= EDVVR (), 0f (@), (A7)

are expressed by

<a2 @’Yﬂn)m:o,...,M—l; h=0,..,2m—1 =W
= WV ((ATVN G (), oh (@)
(N = 2M)?

A? being theg-power matrix.

At the resolutionN = 2™, the dyadic discretization of the functiafy! (),
k < 271 gives only2™—" unvanishing components. Therefore, in order to have
nontrivial generalized derivatives af} (), with 4 unvanishing components, we
should take at least/ = 3 (see Tables 1, 2 for the first and second derivative,
respectively).

Table 1. Wavelet components of the first generalized derivative 1//",: (x)=0 ’Vgt//,': (%)

0 1 1 2 2 2 2
4 Yo Yo 4] Yo ¥ "2 V3

v —0.145839 -3.7123 233335 -12.25 0.0000212132 3.29983 -9.89949 -7.42462

v, —0291672 -2.47485 5.83335 2.33333 19.799 —11.5494 4.94975 0

y' —0.875001 —-0.824964 —1.16667 ~2.33334 0 1.64991 8.24957 —19.799
we 320833 -9.07452 -19.8333 0 247487 659967 0 0
w2 0874999 742462 233334 35 148492 824958 6.59967 0
w2 145833 57747 —1.16667 ~2.33334 0 1.64991 8.24958 14.8492
w 379167 379167 0 17.5 0 0  —1.64991 24.7487
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Table 2. Wavelet components of the second generalized derivative ", (x) =0 "Vgl//;: (x)

0 1 1 2 2 2 2
(4 Yo ) 4] Yo 4 D) W3

¥ —253506 —114.05 24.4997 -44.2361 -11.5496 23.0988 -65.4466 —112.607

(//,O 39.4722 -55.8221 -287.194 -28.5834 -167.466 —19.2489 7.69954 28.8736
l//'1 -449167 -10587 —12.25 -259.972 5.7747 —11.5494 53.8972 -236.763
W, —54.7845 143405 292.638 8.16669 167.465  26.9486 13.4744 0

v, —28243 70.2588 215.055 20.4166 196.34  —-53.8973 123.194 34.6483
v, 520625 160.729 —6.80555 157.889  5.7747  —3.84981 -9.62443 369.581

w5 63.6319 63.6319 0 270.861 0 0 —3.84981 242.538

4. HAAR WAVELET SOLUTIONS

Let us first define the projection of the differential operatanto V.

Definition 3 (Discrete operator £V associated with the differential operator
L). The projection of the operatoL in (1), into Vi is the discrete operator
LNV — Wy,

q .
N =3"n0, (18)
j=1

with 6%) given by(15), so thatC™ approximated., at the scale resolutiotV,
aNp =N, (19)

4.1. Approximate wavelet solution

Let us consider, according to (11), the Haar wavelet series

u(:c,t) = Z ﬂl?(t)l/]l?(x)v (n7 ke Z)v (20)

n,k=—00

as a solution of Eq. (1). From (1), (2), there follows a system for theelea
coefficientsg}(t), (x € R,t € (0,7], T < o0, a, b,c € R),

& 2an n oo
> <ad 552(15) +bd%t(t) +cﬁg(t)> dpe) =L Y Brt)vi(z),

n,k=—o0

n,k=—o0
(21)
together with the initial conditions,
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e (22)

YR (x) = up(z), onlyif a# 0.
t=0

Thus, at a given resolutioN, we have from (20).

Definition 4. The approximate Haar wavelet soluticat the resolutionV = 2
and for a fixed timef € [0,7), is the vector U(t) = {a(?), B(),...,

2M i (B} ie.

0o M—-12"—1
U@ =cNue D) =7 Y O = a@Be@)+ Y Y. AOUE
n,k=—o0 n=0 k=0

where the projectiom” acts onu(z, t) by keeping =  fixed. It follows that
d? d?
N N
"o T dw”
From the above we get

q=0,1,... (23)

Theorem 1. The approximate Haar wavelet solution of Eds), (2), at the
resolution NV (pro;ectlon of (20) into Vy), is the vector function U(t) =

{a(t), BY@),. ﬁzM 1_,(t)}. The corresponding truncated wavelet series is
M-12"-1
Ut) = altye(x) + Y > Brvi@), (N=2"te[0,1]), (24)
n=0 k=0

where o(t) and 5;}(t) are the solution of the Cauchy problep = 0,...,
M~-1, k=0,...,2" —1)

M-12"-1

d2a(t) da(t)
T +0b T +coa(t —l-nz;)kzoakﬁk
(25)
4230 (1 a4 M-12m—1 .
a dj;()w C’;t()+ Ot =D, D, wiBR(t
m=0 h=0

with the initial conditions
a(0) = (uo(2), p(x)), Br(0) = (uo(x), ¥y (2))-

da(t) B dgp(t)
dt |, dt |,

= (ug(x), 95 (x)), (only if a # 0).

(26)
The connection coefficients},~;;", at the resolution N and according to
(17), (18), are
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ap = (LR (), p(x),  n = (LR (@), i (@) (27)
Proof. From Egs. (20), (21), the projection intg; is

2
7TN<CL%+5—+C) Z B (t z) =7VL Z B ()Y (),

n,k=—o00 n,k=—00

and taking Egs. (19)—(23) into account,

2@ (6%
<addt§“ +bdd5f) +ca(t)> o)

M-127—1 9
N O R

M-12"-1
=LV [a@)e@) + > ﬂZ(WZ(w))

n=0 k=0

M-12"-1

+ ) Br) LN ()

n=0 k=0

By using the orthonormality conditions (12) and the connection coeffici@as (
(17), (18), there follows the Haar wavelet solution (24)—(26).

5. HEAT EQUATION

Let us reduce Eg. (1) to the one-dimensional heat equation for an irifiaite
Q — R, with normalized physical constants

ou 02
and the initial condition
u(x,0) = ug(r), —oo <z <oo, t=0. (29)

The box function
() LzeA A={z:0<pp<z<l<l1}
TN 0,z g A

is taken as the initial function. It follows that the solution of the problem (&8));
in terms of Fourier integrals, is (see Fig. 2, left):

(30)

I 2
u(x,t) = 2\;% l exp {—(x 4t§> }dg, t #0. (31)
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Fig. 2. Fourier solution (left) and Haar wavelet solution of the thequation with initial
rectangle function.

On the other hand, for the projection of the differential operator we have

zN—era—Q—(s”vN—AA
0 ox2 B

so that, assuming, e.do = 1, Iy = 3, the Haar wavelet approximate solution
(25), at the resolutiolv = 8, is

d 2 2"—1
M+ D s ®),
n=0 k=0
2m—1
dﬂk Z > (n=0,1,2k=0,...,2" 1),
m=0 h=0

with the initial conditions 67 (0) = (ug(z), ¥} (z))),

a(0) = (ug(z), p(x)) = 1/4, BJ(0) = —1/4, By(0) =1, (32)

the remaining coefficients being zero. Thus we have,

99D — 1) + a1 + b (1),

AOE) _ 380+ 8h 3 ) @)
d 1

500 _ 1a068(t) + abh(e).

With the connection coefficients (see Table 2)
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ol = —25.3506, A% = —114.05, 0 = 24.997,
af = —39.4722, ) = —55.8221, 55 = —287.194,
and the initial conditions (32), the system (33) is solved by
a(x,t) = iu(a,t) = a(t)p(x) + 65 (£)g (x) + 85 (t)¢h (),
a(t) = 0.137146 ' 4 (0.122886 e 27872 — 0.010032 ¢~ 122:5241) |
BY(t) = (—0.146473 e~278-72% — (.103527 ¢~ 122:524F) |
B4(t) = (0.964905 e 27872 4 0.035095 e 1225241 |

e

(34)

The detailed coefficients, responsible for the jumps of the solution, degégly

to zero and the initial function, after a short time, becomes a smooth flat fanctio
(see Fig. 3). With the time stefp001 we obtain the approximate Haar wavelet
solution of Fig. 2 (right) after 8 time step%'(= 0.008). Figure 2 (left) represents
the Fourier series solution

1 2.2
up(x,t,N) = Z+ Ela(n) cos(nmax)e ™ ™
n—=
() 2 ( nm n7r)
a(n) = — (sin — — sin —
nw 2 47’

where, in order to reconstruct also the initial functidh = 60 trigonometric basis
functions have been used (agaifét= 8 of the Haar wavelet technique), thus

Fig. 3. Haar wavelet solutioii34) at the scale resolutioh! = 3.
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0.25

0.05

Fig. 4. Error of the Fourier series solution and the Haar wavelattgoi (solid line) with
respect to the integral solutidB1).

showing the undesirable Gibbs phenomenon and the powerful comprassio
wavelets.

Let us evaluate the approximation errérat 8 dyadic nodes, = k/7,
k=0,...,7, with respect to the solution (31), both for the Haar solution (34):

En(t) = max_|up(zx,t) - ulzp, 1)),

and the 60 terms Fourier series:

(C/'F(t) = kg(lJaX'Y |UF(I'k, t7 60) - U(l‘k, t)| ;
respectively. Except for the initial time= 0, it is possible to compute the error at
the first set of values df.01 < ¢ < 0.5 with the time stef.08. It follows that (see
Fig. 4) even with the simple Lagrange interpolation, also from the numeriaat po
of view the error in the Haar wavelet solution (at a very low sé@dle= 3, with only

3 coefficients) is lower in comparison with the Fourier series with 60 codfiisie

6. CONCLUSIONS

In this paper, the physical meaning of wavelets was discussed by sk ése
solution of evolution problems in terms of wavelets. In particular, the comipress
property of wavelets strongly reduces the number of basis functioitfhas been
shown from the propagation of heat, described by Haar wavelets.
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Haari lainekestel p&hinev tehnika evolutsioonitlesannets
Carlo Cattani

On uuritud lainekeste kompressiooniomadusi mittesiledate algtingimustega
evolutsioonililesannete anallsil ning naidatud, et lainekeste kasutaniinal-vd
dab vahendada ulesande keerukust (kordajate arvu) ja annahgpkileenduse.
Konkreetselt on vaadeldud Haari lainekesi kui lihntsaimaid vdimalikke lasieke
Et Haari lainekesed ei ole siledad, on kasutatud tuletise lahendamiseksilisamb
diferentseerimise meetodit.
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