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Abstract. The compression property of wavelets in the analysis of an evolution problem
(with unsmooth initial conditions) is investigated. The effectiveness of wavelets both in the
reduction of complexity (number of coefficients) and in better approximation is shown. Haar
wavelets, having the simplest interpretation of the wavelet coefficients, are used for defining the
wavelet solution of an evolution (parabolic-hyperbolic) problem. The approximate solution, at
a given fixed scale (resolution), results from the superimposition of (a small set of) fundamental
wavelets, thus giving (also) a physical interpretation to wavelets. Since Haar wavelets are not
smooth enough, a numerical derivative algorithm, which allows the scale approximation of
partial differential evolution operators, is also defined.As application, the heat propagation (of
an initial square wave) is explicitly given in terms of wavelets.

Key words: wavelet, Haar, Haar transform, interpolation, differential operator, discrete
operator.

1. INTRODUCTION

Let us consider the (one-dimensional) evolution problem, in the unknown
functionu(x, t) : (R ⊂ L2(R)) × [0, T ] → R, defined by the partial differential
equation
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)

u(x, t) = Lu(x, t),

(x ∈ R, t ∈ (0, T ], T ≤ ∞, a, b, c ∈ R)

L ≡
p
∑

j=1

λj
∂j

∂xj
,

(p <∞, λj = const., j = 1, . . . , p) ,

(1)
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and by the initial conditions











u(x, 0) = u0(x),

∂

∂t
u(x, t)

∣

∣

∣

∣

t=0

= u′0(x), (only if a 6= 0) .
(2)

The solution of the problem (1)–(2) might be obtained by a series expansion in
terms of evolving coefficientsβj(t) with respect to an orthonormal (fixed) basis of
functions{pj(x)}:

u(x, t) =
∞
∑

j=0

βj(t)pj(x) . (3)

At a given approximation the corresponding truncated series, inserted in(1), gives
rise, by using the Petrov–Galerkin method, to a finite set of ordinary differential
equations in the unknown coefficientsβj(t). The number of the unvanishing
functionsβj(t) depends on the approximation method, on the basis functions, and
namely on the function to be reconstructed. Usually, trigonometric functions (such
as for the Fourier series expansion) or some other orthogonal functions are taken as
bases{pj(x)}, but in order to give a sufficiently “good" approximation of the initial
functionu0(x), the number of significant coefficients might increase considerably.

Quite recently many successful attempts to solve differential equations have
been made by using regular bases of wavelets [1−3], mostly Daubechies wavelets
or interpolating wavelets [4,5]. However, one of the main properties of wavelets, the
compression, was not significantly emphasized in the construction of the wavelet
solutions. The compression, indeed, features the smallest number of coefficients,
which, according to the wavelet theory [4,5], are needed to reconstruct completely
anyL2(R) function.

In the following we shall consider the Haar wavelets [5] which are piecewise
constant finitely defined functions, each one with compact support on a finite
interval. Since they are not differentiable functions, in order to compute explicitly
the connection coefficients, the derivative of the Haar wavelets is foundby
a numerical algorithm [6,7], through a suitable smooth interpolation of points.
Namely, the accuracy would improve by choosing more appropriate interpolating
functions, but, even if some rough estimates of the error are given, the mainpurpose
of this paper is not the investigation of the error. It will be shown, instead,that
also the simple Haar wavelets can be used to describe, at a given approximation,
evolution problems, and, moreover, their use might strongly reduce the number of
unknown functions. It follows that the differential operatorL is transformed into
a discrete operatorL which maps piecewise constant functions (Haar series) into
piecewise constant functions.

Haar wavelets will be used for the definition of the wavelet solution [8] of the
evolution problem (1)–(2), but their use, instead of some other smooth wavelets [5],
is justified not only by the simplest and closed definition. In fact, dealing with
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experimental problems, only an initial discrete set of numerical data, observed at
some fixed time intervals (giving histograms), is known. Thus the initial function
u0(x) is a histogram that can be completely represented by a Haar series having
the smallest number of coefficients (in comparison with other wavelet families).
In general, other wavelets, such as the interpolating wavelets and the Daubechies
families (except for D2), are smooth functions which allow an easy representation
of smooth functions but are unsuitable, at least in principle, for the representation
(at a fixed scale approximationM <∞) of functions with finite jumps.

With the segmentation of the discrete Haar wavelet transform algorithm, shortly
calledreduced Haar transform[6], it is possible also to reduce further the number
of basis functions and to keep unchanged the piecewise constant interpolation of
the Haar series, thus, to reduce the complexity of the Haar wavelet transform. An
application in the heat propagation theory is given in order to compute explicitly
the Haar wavelet solution and to show the very low number of coefficients due to
compression.

2. DISCRETE HAAR TRANSFORM

Let YYY ≡ {Yi}, (i = 0, . . . , 2M − 1, 2M = N < ∞, M ∈ N), be a real and
square summable time seriesYYY ∈ K

N ⊂ l
2, with K real field;xi = i/(2M − 1),

the regular equispaced grid ofdyadic pointson the intervalΩ = [0, 1]. TheHaar
scaling functionϕ(x) is the characteristic function on[0, 1]; its family of translated
and dilated scaling functions is defined (in[0, 1]) as


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


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

ϕn
k(x) ≡ 2n/2ϕ(2nx− k), (0 ≤ n, 0 ≤ k ≤ 2n − 1),

ϕ(2nx− k) =







1, x ∈ Ωn
k , Ωn

k ≡
[

k

2n
,
k + 1

2n

)

,

0, x 6∈ Ωn
k .

(4)

The Haar waveletfamily {ψn
k (x)} is the orthonormal basis for theL2([0, 1])

functions [4,5]:
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


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















ψn
k (x) ≡ 2n/2ψ(2nx− k), ||ψn

k (x)||L2 = 1,

ψn
k (x) =























−2−n/2, x ∈
[

k

2n
,
k + 1/2

2n

)

,

2−n/2, x ∈
[

k + 1/2

2n
,
k + 1

2n

)

, (0 ≤ n , 0 ≤ k ≤ 2n − 1),

0, elsewhere,
(5)

which fulfills the recursive equations
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





2n+1/2 ϕn
k(x) = ϕn+1

k (x) + ϕn+1
k+1(x),

2n+1/2 ψn
k (x) = ϕn+1

k (x) − ϕn+1
k+1(x).

(6)

Although, without loss of generality, we restrict ourselves to0 ≤ n, 0 ≤ k ≤
2n − 1 =⇒ Ωn

k ⊆ [0, 1], the family of the Haar scaling functions and wavelets
is defined also outside[0, 1], for other integer values ofk, making it possible to
extend the following considerations to any interval ofR.

The discrete Haar wavelet transformis the operatorWN : K
N ⊂ l

2 →
K

N ⊂ l
2 which associates with a given finite energy vectorYYY the finite energy

vector of thewavelet coefficients{α , βn
k }:

WNYYY = {α, β0
0 , . . . , β

M−1
2M−1−1

} , YYY = {Y0, Y1, . . . , YN−1} , (2M = N) .
(7)

TheN ×N matrixWN can be computed by the recursive formula [6,7]

WNYYY ≡
[

M
∏

k=1

(

(P2k ⊕ I2M−2k)(H2k ⊕ I2M−2k)
)

]

YYY , (8)

(⊕ being the direct sum), which is based on thekth-order identity matrixIk,
on thekth-order permutation (shuffle) matrixPk, which moves the odd (place)
components of a vectorYYY into the first half positions and the even (place)
components into the second half, and on thelattice coefficientskth-order matrix
Hk, which follows from a matrix factorization of the recursive equation coefficients
in (6):

H2 =





1/
√

2 1/
√

2

−1/
√

2 1/
√

2



 , H4 = H2 ⊕H2 , . . . .

For example, withN = 4, M = 2, assuming the empty setI0 ≡ ∅ as the neutral
term for the direct sum, it is

W4 =
∏

k=1,2

[

(P2k ⊕ I4−2k)(H2k ⊕ I4−2k)
]

= [(P2 ⊕ I2)(H2 ⊕ I2)]k=1 [(P4 ⊕ I0)(H4 ⊕ I0)]k=2

= [(P2 ⊕ I2)(H2 ⊕ I2)] [P4H4] .

The wavelet coefficients of the discrete Haar transform have a simple interpreta-
tion in terms of finite differences. If we define the mean average valueY i,i+s ≡
(s+ 1)−1

∑i+s
k=i Yk, it follows, with easy computation [6], that
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

















α = Y 0,2M−1,

βr
k = 2(M−2−r)/2δ(M−1−r)hY k+2M−2−r+2k,k+2M−2−r+2k+M−r−2+2M−r−2 ,

βM−1
k = 2−1/2∆hY2k ,

where r = 0, . . . ,M − 2, k = 0, . . . , 2M−1 − 1, h = 2M and the forward
and central (finite) difference formulas, as usual, are∆hYi ≡ (Yi+hN − Yi) and
δhYi ≡ (Yi+hN − Yi−hN ), respectively. Therefore the wavelet coefficientsβ, also
called details coefficients, express (at least in the Haar wavelet approach) the finite
differences, i.e. the first-order approximate derivative.

2.1. Haar series

Let VN , N ∈ Z, the subspace ofL2(R), of the piecewise constant functions
y(x) with compact support onΩN

k (N fixed, k ∈ Z) be

VN ≡ {y(x) ∈ L2(R) : y(x) = yN
k = const., x ∈ ΩN

k , y(x) = 0, x 6∈ ΩN
k },

so that anyy(x) ∈ VN with y(x)|x∈ΩN
k

= Yk(k = 0, . . . , N − 1), according to (4),
admits the representation

y(x) = 2−N/2
N−1
∑

k=0

Yk ϕ
N
k (x). (9)

TheHaar wavelet seriesis the piecewise constant functiony(x), defined inΩ =
[0, 1], interpolating the points{xi, Yi}, with xi = i/(2M − 1), i = 0, . . . , 2M − 1,

y(x) = αϕ(x) +
M−1
∑

n=0

2n
−1
∑

k=0

βn
kψ

n
k (x), (2M = N), (10)

such thaty(x) = y(xi) = Yi, for all x ∈ ΩN
i . Thus, the discrete Haar transform

might also be considered as an operatorWN : K
N ⊂ l

2→ VN , which, according
to (4), (5), (7), makes (10) equivalent to(9).

In the general framework of the wavelet theory [4,5], any function (not only
piecewise constant)F (x) in L2(R) can be completely reconstructed as

F (x) =
∑

n,k∈Z

βn
kψ

n
k (x), (11)

while, by fixing thescaleof approximation, orresolutionM < ∞, the (wavelet)
approximation ofF (x) is πNF (x). The projection ofF (x) into VN , namely
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πNF (x), is given by the right-hand side of Eq.(10), where the wavelet coefficients
are computed using thedyadic discretizationof F (x): FFF = {Fk}, Fk ≡
F (xk), k = 0, . . . , 2M − 1, shortlyFFF = ∇NF (x), (N = 2M ). According
to the wavelet theory [5,9], when M → ∞, it is, at least in the weak

sense [5], limM→∞

∣

∣

∣

∣

∣

∣F (x) − π2M

F (x)
∣

∣

∣

∣

∣

∣

L2
= 0. In general, for a function

F (x), belonging to the Sobolev spaceWS+1
p (R), the approximation is [9]:

∣

∣

∣

∣

∣

∣
F (x) − π2M

F (x)
∣

∣

∣

∣

∣

∣

Lp
= O(2−M(S+1)), M → ∞, so that, for the Haar wavelet

reconstruction (10), the approximation isO(2−M ) at the resolutionM .
The scalar product of two functionsF (x), G(x), of L2(R), is 〈F (x), G(x)〉 ≡

∫

∞

−∞
F (x)G(x)dx, where the bar stands for complex conjugation. Taking into

account (11) and the orthonormality conditions

〈ϕn
k(x), ϕm

h (x)〉 = δnmδhk, 〈ϕ(x), ψm
h (x)〉 = 0, 〈ψn

k (x), ψm
h (x)〉 = δnmδhk,

(12)
and since for the Haar waveletsψn

k (x) = ψn
k(x), we have

〈F (x), G(x)〉 =
∑

n,k∈Z

F
β n

k

G
β n

k ,



F (x) =
∑

n,k∈Z

F
β n

kψ
n
k (x), G(x) =

∑

n,k∈Z

G
β n

kψ
n
k (x)



 .

(13)

As a consequence, from Eq.(10) it follows that||YYY ||l2 = ||WNYYY ||l2 .

2.2. The p-parameters reduced (or windowed) Haar discrete wavelet
transform

The wavelet transform(7) implies the computation ofN = 2M wavelet
coefficients, at the resolutionM , with N basis functionsψn

k (x) involved, and a
computation complexityO(N2). However, if we consider onlyp = 2m ≤ N
basis functions, the complexity reduces toO(pN). This corresponds to the slicing
of data with a fixed window, as it is usually done, for instance, in the local sine
and cosine transforms or in the wavelet packet decomposition [10,11]. With the
following reduced Haar transform it is possible both to reduce the number of basis
functions and the computational complexity and to keep unchanged the piecewise
constant interpolation (9).

Let the setYYY = {Yi} of N data, segmented intoσ = N/p segments ofp = 2m

data [6] be

YYY = {Yi}i=0,...,N−1 =
σ−1
⊕

s=0

{YYY s} , YYY s ≡ {Ysp, Ysp+1, . . . , Ysp+p−1}.
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Thep-parameters reduced (or windowed) discrete Haar wavelet transformof YYY is
Wp,σYYY , where explicitly



































Wp,σ ≡
σ−1
⊕

s=0

Wp, YYY =
σ−1
⊕

s=0

YYY s,

Wp,σYYY =

(

σ−1
⊕

s=0

Wp

)

YYY =

(

σ−1
⊕

s=0

WpYYY s

)

,

W2m

YYY s =
{

α
0(s)
0 , β

0(s)
0 , β

1(s)
0 , β

1(s)
1 , . . . , β

m−1(s)
2m−1−1

}

, (2m = p).

The corresponding Haar series interpolation gives































y(x) =
σ−1
∑

s=0

ys(x),

ys(x) =











α
0(s)
0 ϕ(s)(x) +

m−1
∑

n=0

2m
−1
∑

k=0

β
n(s)
k ψ

n(s)
k (x), x ∈ [xsp, xsp+p−1)

0, elsewhere,

each functionys(x) being with compact support in the interval(xps, xps+p−1)

which corresponds to the data segmentYYY s. The p basis functions{ϕ(s)(x),

ψ
0(s)
0 (x), . . . , ψ

m−1(s)
2m−1−1

(x)}, are

ϕ(s)(x) =

{

ϕ(x), x ∈ [xsp, xsp+p−1)

0, elsewhere,

ψ
n(s)
k (x) =

{

ψn
k (x), x ∈ [xsp, xsp+p−1)

0, elsewhere.

In general, for a vector of2M elements,YYY = {Yi}i=0,...,2M−1, the Haar wavelet

transform is the vectorW2M

YYY , while there are different reduced transforms that
can be done with one of the following matrices{W2i,2j}i+j=M , even if the
resulting piecewise interpolation will be the same. Of course, whenσ = 1 →
p = N andWpσYYY = WNYYY .

3. GENERALIZED DERIVATIVE IN VN

The generalized derivative [6,7] is a derivative algorithm that maps any discrete
set of data into discrete sets of data, and, after a dyadic discretization, also any
functionF (x) into a discrete set (the discrete derivative ofF (x)).
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Through the discrete set of pointsYYY = {Yi}, at the dyadic nodesxi =
i/(N − 1), (i = 0, . . . , N − 1), N = 2M , the Lagrange interpolation polynomial
is defined as

PN (YYY ) =
N−1
∑

i=0

li(x)Yi, li(x) ≡
∏

k=0,...,i−1,i+1,...,N−1

(x− xk)

(xi − xk)
,

li(x) being the Lagrange coefficients. This polynomial is a differentiable function
and, after a dyadic discretization, the following definition of the generalized
derivative may be given.

Definition 1 (Generalized qth-order derivative of YYY ∈ K
N [6,7]). The

generalizedqth-order derivative of theN -length vectorYYY is the vectorYYY (q) =
δ(q)YYY , whereδ(q) : K

N → K
N is

δ(q) ≡ ∇N dq

dxq
PN . (14)

This operator can be extended also to any functiony(x) ∈ VN assumingYYY (q) =
δ(q)∇Ny(x), with y(x) given by Eqs. (9), (10).

Definition 2 (Generalizedqth-order derivative of y(x) ∈ VN ). The generalized
qth-order derivative of the piecewise constant functiony(x) ∈ VN is the piecewise

functionδ(q)N y(x), whereδ(q)N : VN → K
N is

δ
(q)
N ≡ δ(q)∇N . (15)

In particular, this operator can be applied to any function after a projectioninto
VN , i.e. F (x) ∈ L2([0, 1]), or such thatmaxi=0,...,N−1

{

∇NF (x)
}

i
< ∞, so that

the generalized derivativeδ(q)N F (x) gives the approximation (projection intoVN )
of the derivative(d q/dxq)F (x).

3.1. Error estimate

Let us first evaluate the approximation errorRN (x) for theL2-functionF (x)
after a dyadic discretization and Lagrange interpolation:F (x) = PN (x)+RN (x) .
AssumingF (x) differentiable up toN + 1, the errorRN in x∗ 6= xi, x

∗ ∈ [0, 1],
is given [12] by

RN (x∗) =
F (N+1)(x∗)

(N + 1)!

N−1
∏

i=0

|x∗ − xi|,
(

F (N+1) ≡ dN+1

dxN+1
F

)

,

so that it can be estimated by

max
x∈[0,1]

|RN (x)| ≤
maxx∈[0,1] F

(N+1)(x)

(N + 1)!
max

x∈[0,1]

N−1
∏

i=0

|x− xi| , (16)
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and, for the first derivative, at the nodesxi, it is estimated by [12]

max
i=0,...,N−1

∣

∣

∣

∣

d
dx

RN (xi)

∣

∣

∣

∣

≤ maxi=0,...,N−1 F
(N+2)(xi)

(N + 1)!

(

1

MN−1

)

, N = 2M .

In practice, if we take as a rough estimate of the approximation error of the first
generalized derivative (at the nodes)

E(F (x), N) = max
i=0,...,N−1

∣

∣

∣

∣

∇N

(

dF (x)

dx

)

− δ′NF (x)

∣

∣

∣

∣

i

,

we see that the error decay depends on the increasing number of nodesN . For
instance, for the functionssin 2πx and ex discretized respectively in16 and 32
(dyadic) nodes, we obtain

E(sin 2π x, 16) = 0.0544876, E(sin 2πx, 32) = 0.00434216,

E(ex, 16) = 0.000185967, E(ex, 32) = 0.0000219477.

Of course, the above numerical estimates of the error for functions cannot be
directly extended to discrete sequencesYYY , but we might assume that when the
generalized derivative acts on sequences whose length is 16 (or greater), the error
estimate ofδ(q) is substantially the same ofδ(q)N applied to functions. Haar
wavelets give a bad approximation at low scales, but the approximation, bothof
the function and of its derivatives, improves for increasing resolution levels and
gives the complete reconstruction, forM → ∞. Moreover, with the windowed
(reduced) Haar transform, also the complexity might be strongly reduced.Thus a
sufficiently good reconstruction of the derivative (see Fig. 1) is obtained in a very
short computation time. With respect to the segmentationYYY =

⊕σ−1
s=0 YYY

s, the
generalized derivative is not a linear function, that is

δ(q)YYY = δ(q)
σ−1
⊕

s=0

YYY s 6=
σ−1
⊕

s=0

δ(q)YYY s,

because of the Lagrange interpolation acting, in general, on different sets of nodes.
However, Eq. (14) can be approximated by

δ(q)
σ−1
⊕

s=0

YYY s ∼= σ
σ−1
⊕

s=0

δ(q)YYY s.

In any case, it is easy to check that the accuracy of the generalized derivative
converges more slowly to the derivative when the frequency function is higher (see
Fig. 1).
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Fig. 1. The functiony(x) = sin 200x2(x − 1) (top left) with its derivative (right) and the
generalized derivative at various scale resolutions. The generalized derivative at the resolution
N = 2048 has been obtained using the reduced Haar transform with dataslicing into 16-length
segments.

3.2. Generalized derivative as a linear operator onKN

The generalized derivative, according to (14), is a linear operator onK
N , which

maps finite vectors into vectors. For instanceδ′YYY ∈ K
N , so that, taking Eq. (9) into

account, it is

δ′YYY = 2−N/2
N−1
∑

k=0

Y ′

kϕ
N
k (x),

where the componentsY ′

k are related to the componentsYk of YYY by the matrix
AAA ≡ Akh:

Y ′

k ≡
N−1
∑

h=0

AkhYh.

At the lower scales we have

• M = 1, N = 2

AAA =

(

−1 1
1 −1

)

so that for a vector{Y1, Y2} the numerical derivative is the vectorAAAYYY =
{A11Y1 +A12Y2, A21Y1 +A22Y2} = 1

2{Y2 − Y1, Y1 − Y2}.
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• M = 2, N = 4

AAA =









−5.5 9 −4.5 1
−1 −1.5 3 −0.5
0.5 −3 1.5 1
−1 4.5 −9 5.5









.

For higher scales, it can be seen that among the components of the
matrixAAA = {Ahk} the relationsA1j = −A2M ,2M−j+1, A2j = −A2M−1,2M−j+1,

(j = 1, . . . , 2M ), for all M , andAkj = Ak+1,j+1, (2 < k < 2M − 2, 1 < j <
2M − 1), hold so that, in general, we have

• M > 2, N = 2M

3.3. Connection coefficients

In this paragraph, the generalized first derivative of the Haar waveletsψn
k (x) is

explicitly given. In a fixedVN , we have from (9)

ψn
k (x) = 2−N/2

N−1
∑

h=0

pnN
kh ϕN

h (x),

wherepnN
kh ≡ ∇Nψn

k (x), h = 0, . . . , N − 1, according to (5), is either{0, 1, −1}.
Thus, taking Eq. (14) into account, the first derivative of the Haar wavelets is

ψ′n
k(x) ≡ δ′∇Nψn

k (x) = 2−N/2
N−1
∑

h=0

gnN
kh ϕN

h (x) (N fixed),

gnN
kh = 〈AAA∇Nψn

k (x), ϕN
h (x)〉 being the component ofψ′n

k(x) with respect to
ϕN

h (x).
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In terms of wavelet coefficients, according to (10), theqth-order generalized
derivative is

δ(q)∇Nψn
k (x) = αn

kϕ(x) +
M−1
∑

m=0

2m
−1
∑

h=0

γnm
kh ψm

h (x), (N = 2M ),

where theconnection coefficientsαn
k , γ

nm
kh ,

αn
k ≡ 〈δ(q)∇Nψn

k (x), ϕ(x)〉, γnm
kh ≡ 〈δ(q)∇Nψn

k (x), ψm
h (x)〉, (17)

are expressed by

(

αn
k

⊕

γnm
kh

)

m=0,...,M−1; h=0,...,2m−1
= WNgnN

kh

= WN
(

〈AAAq∇Nψn
k (x), ϕN

h (x)〉
)

,

(N = 2M ),

AAAq being theq-power matrix.
At the resolutionN = 2M , the dyadic discretization of the functionψn

k (x),
k ≤ 2n−1, gives only2M−n unvanishing components. Therefore, in order to have
nontrivial generalized derivatives ofψn

k (x), with 4 unvanishing components, we
should take at leastM = 3 (see Tables 1, 2 for the first and second derivative,
respectively).
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4. HAAR WAVELET SOLUTIONS

Let us first define the projection of the differential operatorL into VN .

Definition 3 (Discrete operatorLN associated with the differential operator
L). The projection of the operatorL in (1)2 into VN is the discrete operator
LN : VN → VN ,

LN ≡
q
∑

j=1

λjδ
(j)
N , (18)

with δ(j)N given by(15), so thatLN approximatesL, at the scale resolutionN ,

πNL ∼= LN . (19)

4.1. Approximate wavelet solution

Let us consider, according to (11), the Haar wavelet series

u(x, t) =
∞
∑

n,k=−∞

βn
k (t)ψn

k (x), (n, k ∈ Z), (20)

as a solution of Eq. (1). From (1), (2), there follows a system for the wavelet
coefficientsβn

k (t), (x ∈ R, t ∈ (0, T ], T ≤ ∞, a, b, c ∈ R),
∞
∑

n,k=−∞

(

a
d2βn

k (t)

d t2
+ b

dβn
k (t)

d t
+ c βn

k (t)

)

ψn
k (x) = L

∞
∑

n,k=−∞

βn
k (t)ψn

k (x),

(21)
together with the initial conditions,
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





















∞
∑

n,k=−∞

βn
k (0)ψn

k (x) = u0(x),

∞
∑

n,k=−∞

dβn
k (t)

d t

∣

∣

∣

∣

t=0

ψn
k (x) = u′0(x), only if a 6= 0.

(22)

Thus, at a given resolutionN , we have from (20).

Definition 4. The approximate Haar wavelet solution, at the resolutionN = 2M

and for a fixed timet ∈ [0, T ], is the vector UUU(t) = {α(t), β0
0(t), . . . ,

βM−1
2M−1−1

(t)}, i.e.

UUU(t) ≡ πNu(x, t) = πN
∞
∑

n,k=−∞

βn
k (t)ψn

k (x) = α(t)ϕ(x)+
M−1
∑

n=0

2n
−1
∑

k=0

βn
k (t)ψn

k (x),

where the projectionπN acts onu(x, t) by keepingt = t fixed. It follows that

πN d q

d tq
=

d q

d tq
πN , q = 0, 1, . . . (23)

From the above we get

Theorem 1. The approximate Haar wavelet solution of Eqs.(1), (2), at the
resolution N (projection of (20) into VN ), is the vector function UUU(t) =
{α(t), β0

0(t), . . . , βM−1
2M−1−1

(t)}. The corresponding truncated wavelet series is

UUU(t) = α(t)ϕ(x) +

M−1
∑

n=0

2n
−1
∑

k=0

βn
k (t)ψn

k (x), (N = 2M , t ∈ [0, T ]), (24)

where α(t) and βn
k (t) are the solution of the Cauchy problem(n = 0, . . . ,

M − 1, k = 0, . . . , 2n − 1)






























a
d2α(t)

dt2
+ b

dα(t)

dt
+ c α(t) = α(t) +

M−1
∑

n=0

2n
−1
∑

k=0

αn
kβ

n
k (t),

a
d2βn

k (t)

dt2
+ b

dβn
k (t)

dt
+ c βn

k (t) =
M−1
∑

m=0

2m
−1
∑

h=0

γnm
kh β

m
h (t),

(25)

with the initial conditions










α(0) = 〈u0(x), ϕ(x)〉, βn
k (0) = 〈u0(x), ψ

n
k (x)〉.

dα(t)

dt

∣

∣

∣

∣

t=0

= 〈u′0(x), ϕ(x)〉, dβn
k (t)

dt

∣

∣

∣

∣

t=0

= 〈u′0(x), ψn
k (x)〉, (only if a 6= 0).

(26)
The connection coefficientsαn

k , γ
nm
kh , at the resolutionN and according to

(17), (18), are
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αn
k ≡ 〈LNψn

k (x), ϕ(x)〉, γnm
kh ≡ 〈LNψn

k (x), ψm
h (x)〉. (27)

Proof. From Eqs. (20), (21), the projection intoVN is

πN

(

a
d2

d t2
+ b

d
d t

+ c

) ∞
∑

n,k=−∞

βn
k (t) ψn

k (x) = πNL

∞
∑

n,k=−∞

βn
k (t)ψn

k (x),

and taking Eqs. (19)–(23) into account,
(

a
d2α(t)

d t2
+ b

dα(t)

d t
+ c α(t)

)

ϕ(x)

+
M−1
∑

n=0

2n
−1
∑

k=0

(

a
d2βn

k (t)

d t2
+ b

dβn
k (t)

d t
+ c βn

k (t)

)

ψn
k (x)

=LN

(

α(t)ϕ(x) +
M−1
∑

n=0

2n
−1
∑

k=0

βn
k (t)ψn

k (x)

)

=α(t)ϕ(x) +
M−1
∑

n=0

2n
−1
∑

k=0

βn
k (t) LNψn

k (x) .

By using the orthonormality conditions (12) and the connection coefficients (27),
(17), (18), there follows the Haar wavelet solution (24)–(26).

5. HEAT EQUATION

Let us reduce Eq. (1) to the one-dimensional heat equation for an infinitebar
Ω → R, with normalized physical constants

∂u

∂t
= Lu, L ≡ ∂2

∂x2
, (28)

and the initial condition

u(x, 0) = u0(x), −∞ ≤ x ≤ ∞, t = 0. (29)

The box function

u0(x) =

{

1, x ∈ Λ, Λ ≡ {x : 0 < l0 ≤ x ≤ l1 < 1}
0, x 6∈ Λ

(30)

is taken as the initial function. It follows that the solution of the problem (28)–(30),
in terms of Fourier integrals, is (see Fig. 2, left):

u(x, t) =
1

2
√
πt

∫ l1

l0

exp

{

−(x− ξ)2

4t

}

dξ, t 6= 0. (31)
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Fig. 2. Fourier solution (left) and Haar wavelet solution of the heat equation with initial
rectangle function.

On the other hand, for the projection of the differential operator we have

LN = πN ∂2

∂x2
= δ′′∇N = AAAAAA,

so that, assuming, e.g.,l0 = 1
4 , l1 = 1

2 , the Haar wavelet approximate solution
(25), at the resolutionN = 8, is



























dα(t)

d t
= α(t) +

2
∑

n=0

2n
−1
∑

k=0

αn
kβ

n
k (t),

dβn
k (t)

d t
=

2
∑

m=0

2m
−1
∑

h=0

γnm
kh β

m
h (t), (n = 0, 1, 2; k = 0, . . . , 2n − 1),

with the initial conditions (βn
k (0) = 〈u0(x), ψ

n
k (x)〉),

α(0) = 〈u0(x), ϕ(x)〉 = 1/4, β0
0(0) = −1/4, β1

0(0) = 1, (32)

the remaining coefficientsβ being zero. Thus we have,































dα(t)

d t
= α(t) + α0

0β
0
0(t) + α1

0β
1
0(t),

dβ0
0(t)

d t
= γ00

00β
0
0(t) + γ01

00β
1
0(t),

dβ1
0(t)

d t
= γ10

00β
0
0(t) + γ11

00β
1
0(t).

(33)

With the connection coefficients (see Table 2)
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α0
0 = −25.3506, γ00

00 = −114.05, γ01
00 = 24.997,

α1
0 = −39.4722, γ10

00 = −55.8221, γ11
00 = −287.194,

and the initial conditions (32), the system (33) is solved by

uH(x, t) ≡ π8u(x, t) = α(t)φ(x) + β0
0(t)ψ0

0(x) + β1
0(t)ψ1

0(x),

α(t) = 0.137146 et +
(

0.122886 e−278.72t − 0.010032 e−122.524t
)

,

β0
0(t) =

(

−0.146473 e−278.72t − 0.103527 e−122.524t
)

,

β1
0(t) =

(

0.964905 e−278.72t + 0.035095 e−122.524t
)

.

(34)

The detailed coefficients, responsible for the jumps of the solution, decay rapidly
to zero and the initial function, after a short time, becomes a smooth flat function
(see Fig. 3). With the time step0.001 we obtain the approximate Haar wavelet
solution of Fig. 2 (right) after 8 time steps (T = 0.008). Figure 2 (left) represents
the Fourier series solution















uF (x, t,N) =
1

4
+

N
∑

n=1

a(n) cos(nπ x) e−n2 π2 t,

a(n) ≡ 2

nπ

(

sin
nπ

2
− sin

nπ

4

)

,

where, in order to reconstruct also the initial function,N = 60 trigonometric basis
functions have been used (againstN = 8 of the Haar wavelet technique), thus

Fig. 3.Haar wavelet solution(34) at the scale resolutionM = 3.

61



Fig. 4. Error of the Fourier series solution and the Haar wavelet solution (solid line) with
respect to the integral solution(31).

showing the undesirable Gibbs phenomenon and the powerful compression of
wavelets.

Let us evaluate the approximation errorE at 8 dyadic nodesxk = k/7,
k = 0, . . . , 7, with respect to the solution (31), both for the Haar solution (34):

EH(t) ≡ max
k=0,...,7

|uH(xk, t) − u(xk, t)| ,

and the 60 terms Fourier series:

EF (t) ≡ max
k=0,...,7

|uF (xk, t, 60) − u(xk, t)| ,

respectively. Except for the initial timet = 0, it is possible to compute the error at
the first set of values of0.01 ≤ t ≤ 0.5 with the time step0.08. It follows that (see
Fig. 4) even with the simple Lagrange interpolation, also from the numerical point
of view the error in the Haar wavelet solution (at a very low scaleM = 3, with only
3 coefficients) is lower in comparison with the Fourier series with 60 coefficients.

6. CONCLUSIONS

In this paper, the physical meaning of wavelets was discussed by expressing the
solution of evolution problems in terms of wavelets. In particular, the compression
property of wavelets strongly reduces the number of basis functions, asit has been
shown from the propagation of heat, described by Haar wavelets.
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Haari lainekestel põhinev tehnika evolutsiooniülesannetes

Carlo Cattani

On uuritud lainekeste kompressiooniomadusi mittesiledate algtingimustega
evolutsiooniülesannete analüüsil ning näidatud, et lainekeste kasutamine võimal-
dab vähendada ülesande keerukust (kordajate arvu) ja annab parema lähenduse.
Konkreetselt on vaadeldud Haari lainekesi kui lihtsaimaid võimalikke lainekesi.
Et Haari lainekesed ei ole siledad, on kasutatud tuletise lähendamiseks numbrilise
diferentseerimise meetodit.
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