Proc. Estonian Acad. Sci. Phys. Math., 2082,1, 47-60

Quadratic spline collocation method for weakly
singular integral equations

Raul Kangro, Rene Pallav, and Arvet Pedas

Institute of Applied Mathematics, University of Tartu, Liivi 2, 50409 Tartu, Estonia,
raul.kangro@ut.ee, rene.pallav@ut.ee, arvet.pedas@ut.ee

Received 25 June 2001, in revised form 1 October 2001

Abstract. The quadratic spline collocation method for Fredholm integral equations of the
second kind with weakly singular kernels is studied. The rate of uniform convergence of this
method on quasi-uniform grids is derived.
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1. INTRODUCTION

We consider the linear integral equation

b

y(t) = / ot )t — Sy()ds + f(1), € [ad] 1)

a

where—co < a < b < oo, the given functiony : [a,b] X [a,b] — R,

Kk :la—bb—a]l\ {0} - R,andf : [a,b] — R are (at least) continuous,

and the functiom: may have at most a weak singularity at®¢r)| < const|r|~%,

0 < a < 1 (see the assumption (2) below). Equations of this type arise in the
potential theory, polymer physics, atmospheric physics, and many other fields (see
[*~3]). The main difficulty with equations in the form (1) is that the solutipis
generally not a smooth function even if the functignsnd f are smooth. Instead,

we find that the derivatives of the solutian starting from a certain order, are
unbounded at the points= « andt = b (see, for example’]). This complicates
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the construction of approximation methods with high accuracy for the numerical
solution of equations of the type (1) (s€e ).

To the authors’ knowledge very little has been written on the employing
of continuously differentiable quadratic splines as approximate solutions of the
integral equations with weakly singular kernels. In order to fill this gap we consider
in the present paper a wide class of weakly singular integral equations and establish
the conditions which guarantee the convergence of the numerical solutions obtained
by the collocation method with smooth quadratic splines on quasi-uniform grids.
Uniform convergence estimates are derived and numerical examples are given. The
main results of the paper are formulated in Theorems 2—4.

2. INTEGRAL EQUATION

In the following we denote byC|a,b] the Banach space of all continuous
functionsz : [a,b] — R with the norm||z||c(,s) = maxa<i<p |2(t)]. By C™(X)
the set of allm > 1 times continuously differentiable functions: X — R will
be denoted. For the Banach spac¢ésndY we denote by (X,Y) the Banach
space of all linear bounded operatots X — Y with the norm||A||;(xy) =
sup{||Az|ly : z € X, ||z||x = 1}.

LetD = [a — b,b — a] \ {0}. We shall make about the given functionss,
and f appearing in Eqg. (1) the following assumptions:

(i) g € C3([a,b] x [a,b]), k € C*(D), and for everyr € D

|"(T)] < 02|T]_5 (cg = const; 0 < 3 < 3); 2

(i) f € C®P[a,b], where

¥lot = {v e Coin e s Gy <o}

It follows from the estimate (2) that
K7 < ej(Ir| PP +1) (7€ D; ¢j =const, j=0,1; B#1, 8 #2);
if 3 =1, then

|“,(T)| <ci(|ln|r]|+1) (7 € D; ¢; = const);
|k(T)| <co (7 € D; ¢y = const);

if 5 =2,then
K (T)] <ea(lr|"'+1) (7 € D; ¢ = const);

|k(T)] < co(|In]|7||+1) (7 € D; ¢p = const).
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Notice thatC*[a, b] is a Banach space with respect to the norm

ly" (1)l 3,0
= t , e C”Pla,b).
1Yllesopa,) = max Jy( )!+as<1£b a7 Y [a, 0]

In caseB € (0,3) \ {1,2} we obtain for any € C35[a, b]:

W )] < dj [(t — a)=P+30 + (b—t)PH33]  (t € (a,b), j =1,2,3);
lyt)| <do (t € (a,b)).

If y € C3[a,b], then fory, 3/, andy™ the inequalities (3) hold and ©
y" ()] < da[[In(t — a)[ + [In(b — )| + 1] (t € (a,])); (4)
if y € C32[a, b], then fory, y”, andy” the inequalities (3) hold and
y'(0)] < di[|In(t —a)| +[In(b—t)| +1] (¢t € (a,b)). (5)

The quantitiesi;, i = 0, ...,3, appearing in the inequalities (3), (4), and (5) are
some positive constants.

The following result about the regularity properties of the solution of Eq. (1) is
sufficient for our purposes.

Theorem 1. ([%], p. 7) Let the assumption@) and (ii) hold. Ify is an integrable
solution of Eq(1), theny € C3#a, b].

3. QUADRATIC SPLINE INTERPOLATION

Forn € N let
a=ty<t1 <..<th,=0 (6)

be a partition of the intervak, b] such that

ogr?garf(—l(tiﬂ — ) - -
o, bt — )

wherer € [1, 00) is a given real number not dependingranT he partition {(6),(7)}
is called the quasi-uniform grid (in cagse= 1 we obtain the uniform grid).
Denote

A, ={t;:i=0,..,n}

hi = ti+1 - ti, 1= 0,...,71— 1.
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We shall seek the approximation of a given functipre C|a, b] in the space of
piecewise quadratic polynomiafs ; (A,,) defined as

S2.1(Ay)

={z€ Ca, b : 2l ti00) €2, 0=0,.,m =1, t; € Ay, i =0, ),
wherem, denotes the set of polynomials of the second order. The dimension of
this linear space is obviously + 2, so we neech + 2 interpolation conditions

to determine uniquely the interpolating function in this space. In order to give
those conditions, we introduce the interpolation oper#ipr. Cla,b] — Cla, b]
which assigns to every functione Cfa, b] a functionP,y € S 1(A,) C Cla, b]
satisfying

wherez;, i =0, ...,n + 1, are the interpolation points determined by the formulas
ro=a, ;i =ti1+nhi—1, i=1,...,n,  Tpp1 =0 9

Heren € (0, 1) is a given real number not dependingon

First we show that the operatoP, is well defined, i.e. the function
P,y € S21(A,) satisfying the conditions (8) is uniquely determined for any
functiony € Cla,b]. Indeed, lety € Cla,b] be given. On every interval
[ti, ti+1], © = 0,...,n — 1, we can represent the functidt)y in the form

2 2 2 2
(Poy)(t) = yit1 + u 277) hi (m;hi ‘) ] mi + [(t thz) B 772hz] Mit1,

(10)
wherey;1+1 = y(xiy1), @ = 0,...,n — 1, are given andn; = (P,y) (t;),
i = 0,..,n, are unknown quantities to be determined. In order to ensure

the continuity of the functionP,y on the intervala, ], we must demand that
(Poy)(ti —0) = (Poy)(t;i +0), i=1,..,n—1,ie.

1—1n)2h;_ 1—n3h,_
yi+7( 772) : 1mi71+7( 772) - 1mi

1—n)?2 -1k 2h;
:yiHJr[( 77)2 ]mi_nz

mi+1, 1= 1, e — 1.

This leads to a system of equations with respect to the unknown parameters

(L=n)Phica (A =m)hia+[1 =1 =n)?hi n*hi 4
2(hi—1 + h;) i1t 2(hi—1 + hy) it 2(hi—1 + hi)mlJrl
Yi+1 — Yi
= = 1 .o - 1. 11
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(The continuity of the first derivative of the functidf,y on the intervala, b] comes
automatically from the representation (10)). Thus we have 1 equations to
determinen + 1 unknownsm;, ¢ = 0, ...,n. The two additional equations we get
from the conditiong P,,y)(zo) = y(xo) and(Pny)(zn+1) = y(Tp+1):

1—(1—n)? 2 -
(1—n) mo + iml _n y07
2 2 ho
9 9 (12)
-n° el M %~ et 71
9 n—1 2 n hnfl )

whereyy = y(zo0), y1 = y(71), yn = y(v,), andyn 1 = y(zn11). The elements
a;j, 1,5 = 0, ...,n, of the coefficient matrix of the linear system {(11),(12)} clearly
satisfy

n
02?& lai| — ]z_; laij| | =n(1—mn) >0, (13)
JF#i

so the matrix{a;; } is diagonally dominant and the system {(11),(12)} is uniquely
solvable (see, for examplé,'[, p. 333). Therefore the operatéy, is well defined.

Remark 1. For the parametens,;, i = 0, ..., n, it follows from (13) that

)< — : 14
qmax [mi| < O Jnax |, 14)
where
qozyl—yo q‘:y¢+1—yz‘ -1 n—1 g _ Ynt1 —Yn
ho " hi_1+ Ry T ’ " Pn—1

The next lemma states the main properties of the opefator

Lemma 1. The interpolation operator?, : Cfla,b] — C|a,b] given by the
conditions(8) is a linear and bounded operator with the propertié$ = P, and

2r

n(1—mn)’ (13)

HPnHL(c[a,b},C[a,b]) <1+

wherer € [1,00) andn € (0, 1) are given by the inequalit{7) and the formulas
(9), respectively.
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Proof. Using the representation (10) and the inequality (14), we have fer
[ti,ti+1], 1= O, e, — 1:

[(Pay) ()]
(1—=n)hi  (tiya — 1) (t—t)?  n2h;
< |y _ ‘ B }
—’%+ﬂ'*‘ 5 h; | + o, 5 Mg
L —n)2h;  (tig =) (t—t)>  n°hy
< .
< |1llcfos + [ 2P0 G 207 OB T e o
< . .
_HMb@m+£ﬁ§hm%§g§J%
< - . )
= HyHC[%b} + n(1—n) Org%xn i OSIZ'nSa;(—l h;
Since Sl
YliCla,b]
| < 11900
Orgzaéxn il < min h;’
0<i<n-—1
we get, using the property (7), for everng [t;, ti11], i =0,...,n — 1:
2r o
(PO < ollotan + 5 Wlcras = (1 n ) ollcron
! ot n(l—mn) [a.2] n(l—n) [a,b]

Therefore, as the interv@l;, t; 1] was arbitrary, we obtain

2r
Pn a < 1+> a,b|»
1Palletn < (14 -2 ) Inllowy

which gives the boundedness of the operdtgand implies the estimate (15).

Due to the linearity of the interpolation conditions (8), the oper&tgois linear.
Since the functionP,y € S21(A,) C Cla,b] is uniquely determined by the
conditions (8) for any € Cla, b], the propertyP? = P, holds.

Remark 2. Interpolation by quadratic splines is also studied, for example, in
[12—14]'

Before formulating another lemma we introduce the B-splines of the second
degreeBy; : R — R, i=0,...,n+1:

( (t —ti—2)?
, te lti—o, ti-1);
(ti —ti—o)(ti—1 — ti—2) iz i)
t—ti—2)(t; —1 biyr =)L = tie
(= tio)ti—t) | (=8 —tia) g
Boi(t) =< (ti—tic2)(ti—tic1)  (Lig1 — tim)(ti — tic1)
(tiy1 —1)?
, T E |t t; ;
(tivr — tic1)(tiv1 — ti) i ti)
0, otherwise,
(16)
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ifi=0,..,n;
t—tp1)?
(71)27 te [tnflatn};
BQ,n—H (t) = (tn - tn—l) (17)

0, otherwise.
Heret_o = t_1 = tg, thes = tny1 = tn, t; € Ay, @ = 0,...,n. Notice that
Bg,i S SQJ(An), 1=0,....,n+ 1.
Lemma 2. ['%] Let@,, : C[a,b] — Cla, b] be the operator defined by

n+1

Quy =Y _ {;y(tm) + 2y <t“2+tl> - ;y(ti)} Bai,

=0

wheret_; = to, tht1 = tn, t; € Ay, © = 0,...,n, and By; denotes theth
B-spline of the second degree defined by the expressi(t®),(17)}. Then on
every intervalt;, ti11], i =0,...,n — 1,

Hy - Qny’ ‘C[ti7ti+1] S 4 diSt[ti,17t1+2} (y7 7T2), (18)

wheredisty, ,(y, m2) = infpem, ||y — pllop,,) @and w2 denotes the set of poly-
nomials of the second order.

With the help of Lemma 1 and Lemma 2 we can now prove the main result of
this section.

Theorem 2. Let P,,, n € N, be the interpolation operator given by the conditions
(8). Then for every € C3P[a,b] (0 < B < 3)

&
Iy = Payllclap < 35 (19)

Here

4-0
c:r3_’8(b—a)3_’8 (2—!— 7](12i 7))) (;_ﬁdg + 136(27")’8d3>,

wherer € [1,00) andn € (0, 1) are given by the propert{7) and the formulag9),
respectivelyandds is the positive constant from the inequaliti@3.

Proof. Lety € C35[a, b] be given. To estimate the noriiy — Poyllcap), We use
Lemma 1 and the operat@},, given by Lemma 2:
Ny = Payllcian < |1y — Qnyllcpn + 1Q@ny — Payllcpa
= ly — Quyllory + 1P (Qny — Y)lloay
]

<|ly = Quylleas + 1Pallzctas),clamly — Quyllclap

2r
= (2452 ) I Qualcan )
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Let nowt € [ti_l,tz’+2], 1 = 0,...,n — 1 (t_l = to, th+1 = tn,
t; € A,, i = 0,...,n). Consider the Taylor expansion of the functigrat the
pointw; = (t;—1 + t;12)/2 with the integral form of the remainder:

() = Taslt) + 5 [[(¢ = 92" (s)ds,
where ,
Toat) =yl + /)t — ) + 00 (0 =

SinceTy ; is a polynomial of the second order, we clearly have

diSt[ti71:t7L+2](y’ﬂ-2) < HZ/ - T27iHC[ti717ti+2]7

so by the inequalities (18)

|y — Quyllcit i) < 4y — Toillop, 1 tise), ©=0,on =1 (21)
Therefore, in order to estimate the noffm — Quyllcy, 4., ), We study the error
1y — Tollopt,_y tigo)- LELE € [tim1,wi], i = 0,...,n — 1. Using the property (7)
and the inclusiony € C3P[a, b] (see the inequalities (3)), we get:
ly(t)—To: ()]

w;
=2y las

t

<

N |

t
1
= 2’ /(t —5)2y"(s)ds

%dg /(s —1)? [(s —a) P+ (b- s)*ﬁ] ds

<
t
< ng/(s—t)wdH ng/(s—t)2(b—s)ﬁds
t t
1 28 -8
< 3-8 2 ; 4 43
=3G9 d3(w; —t)°77 + 5 d3<0§%17?71 hl> (w; —t)

23—ﬁ 3-8 4 3 -8
< _Z ) 9B . : )
~2(3-0) d3<0§1}1§a75<_1 hz) + 32 d3<0§?§a5—1 h’) (()g?gzlq hz)

237ﬂ 4 3—0
<= = B ) )
- <2(3 - B) ds + 3(%) d3> (ogglgai{q hl)

By symmetry this estimate also holds fore [w;,tit2], i@ = 0,....,n — 1.
Consequently,
23—,6’ 4 3—p3
Ny = T2illct s i) < (2(3_[3)6[3 + 3(2T)ﬂd3> <0§rg1§a;<_1 hi)
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and by the inequalities (21) we get fo= 0, ...,n — 1:

240 16 3-
ly — QnyHC[ti,tiH] < <3 — ﬁds + 3(27")6d3> <0S1%0§a£<71 hi) .

Hence, we have shown that

24-h 16 3-8
— = b B .
Iy Qny|rqa,b]<(3_ s+ 5 (20) d3><0§rg1§a§_lhz) . @

Now, using the inequalities (20) and (22), we obtain

2r

—— — Quyllcra
. n)> Iy Yllclab)

2r 24-0 16 3-8
< e B , )
< <2+77(1—77)> (3—ﬂd3+ 3 (2r) dg)(ogr%afAhZ)

r(b—a)

19— Pullcras < (2 i

Since max h; <

0<i<n-—1

, we get the estimate (19), which concludes the proof.
Lemma 3. Let P, be the interpolation operator given by the conditid8% Then
for everyy € C|a, b

[Py = yllcpapy — 0,  n— oo, (23)

Proof. SinceC3[a, b] € C3#[a, b], we have according to Theorem 2

const
|| Pry — yHC[a,b] < o Vy € C?’[a,b],

which implies
1Poy = yllcap — 0, 1 — oo,

for all y € C3[a,b]. By Lemma 1 we havél Py || £(clab),Clap)) < const for every
n € N. Since the spacé€?[a,b] is dense in the spad€|a,b], we have by the
Banach—-Steinhaus theorem the convergence (23).

4. COLLOCATION METHOD

We seek the approximatigy, of the solutiory of Eq. (1) in the spacss 1 (A,,)
and demand that Eq. (1) is satisfied at the interpolation peints =0, ...,n + 1,
given by the formulas (9):

b
() = [ glaisn(a = un(s)ds + fle). i=0n bl @4)
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The collocation conditions (24) determine a system of linear equations whose exact
form depends on the choice of a basis in the spgcgA,,). For example, with

the B-spline basid3,;, i = 0,...,n + 1, defined by the expressions {(16),(17)},

we can seek the approximatign € Sz 1(A,;,) in the form

n+1
yn(t) =Y biBau(t), t€ a,b],
=0

whereb;, i = 0,...,n + 1, are constants to be determined. Equations (24)
assume the form of afn + 2) x (n + 2) linear system with respect to unknowns
bi, i=0,...,n+1:

n+1 tjt1

S |Baste) = [ gl ono =) Bas(s)ds | by = f(w), i =0on+ 1,

j=0 tj_o

(25)
wheret_o = t_1 = to, thyo = thy1 = tn, & € Ay, 1= 0,...,n.
To obtain the final form of the system (25), one needs to compute the integrals
fé?f; 9(z4, 8)k(x; — s) B j(s)ds, 1,7 =0,...,n+ 1.
The convergence of the method (24) can be stated as follows.

Theorem 3. Let the assumption@) be fulfilled and letf € C|[a,b]. Assume also
that the homogeneous equation

b

y(t) = / o(t, )it — s)y(s)ds,  t € [a,b],

a

has only the trivial solutioy = 0 and the interpolation point®) with the partition
{(6), (7)} of the intervalla, b] are used.

Then Eq(1) has a unique solutiop € C|[a, b] and there exista, € N such
that forn > ng Eqs.(24) define a unique approximatiap, € Sa,1(A,,) toy with

Hyn - y||C[a,b] — 0, n — o0. (26)

Proof. We write Eq. (1) in the form
y=Ky+f, (27)

whereK : C|a,b] — Cla,b] is the integral operator defined by the formula

b
)0 = [ ot o)t = )yl
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It follows from the assumptions (i) thdt € £(C|[a,b],C|a, b]) is compact. Since
the equationy = Ky has only the solutioy = 0, Eq. (27) has a unigue solution
y € Cla,bl.

Further, we write Egs. (24) in the form

whereP,, : Cla,b] — CJa,b] is the interpolation operator given by the conditions
) (P, € L(Cla,b],Cla,b]), P? = P, see Lemma 1). Sincél ¢

L(Cla,b], Cla,b]) is compact and P,z — z||c(ap) — 0, n — o0, Vz € Cla,b]
(see Lemma 3), we have

|K — PuK||zclap,clay) — 0, 1 — oo
Using this convergence and the invertibility of the operator K : Cla,b] —

Cla, b], we get forn > ny the invertibility of the operatof — P, K : Cla,b] —
C'a, b] and the estimate

NI = PoK) M zclaplclap) < ¢ n > no,
where ¢’ is a positive constant not depending an Therefore, forn > ny,

Eq. (28) has a unique solutiap, € S31(A,) C Cla,b] and, sincey, —y =
(I = PuK) " (Pay — ),

1yn = vllcas < NPy = Yllcpap, 7 = 0. (29)
Applying Lemma 3, we obtain the convergence (26).

The next result formulates the rate of convergence of the method (24).

Theorem 4. Let the conditions of Theorebe fulfilled and letf € C3#[a, b).
Then there existsy € N such that fom > nq the following estimate holds

c
| yn — y||C’[a,b] < 3B’ (30)

wherey is the solution of Eq(1), y,, is the approximation tg defined by Eqg24),
andc is a positive constant not dependingeon

Proof. It follows from Theorem 1 that the solutiom of Eq. (1) belongs to the
spaceC34[a,b]. By Theorem 3 the conditions (24) define for> ny a unique
approximationy,, to y and the inequality (29) holds with a constant that does not
depend om. Applying Theorem 2, we obtain the estimate (30).
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5. NUMERICAL EXAMPLES

We consider the weakly singular integral equation

1
)= [ Slt = s y(s)ds

-1

+ (1 —2)3/4 - \fw(2 — %) — %(\/1 Ti+VI—1)+1,
te[-1,1],
with the exact solutiony(t) = (1 — t?)3/* + 1. If we choosey(t, s) = 2, k(7) =
[r[12, and (1) = (1— 2)%4 — (V2/0)r(2 — 12) — A(VTHE+ VI D)+ 1,

the conditions (i) and (i) are fulfilled with = —1, b =1, andg = g

Letn > 1 be aninteger and letl =ty < t; < ... < t,, = 1 be a partition of
the interval[—1, 1] satisfying the condition (7). We choose the interpolation points
as follows:

ro=-—1, x;= #, 1=1,...,n, Tpy =1

In the role of the basis functions we take the B-splines of the second dBgfee
i =0,....,n+ 1, defined by the expressions {(16),(17)}.

Under these assumptions we solved the system (25) using standard Gauss
techniques (the integra}%g'_g1 g(z;, s)k(x; — s)Ba j(s)ds were computed exactly).
In order to estimate the errgyy — . ||(—1,1), We introduce another partition of the
interval [—1, 1] with the grid pointsr;;, ¢ =0,...,n—1, j =0, ..., 10, defined by

(i —ti
Tz'j:tz‘—i-](ZHlO Z)-

. OgIz'ng%L}(_l ‘y<7-ij) - yn(Tij”
0<5<10

and the ratiop,, = ¢,,2/¢, characterizing the rate of convergence of the method
(25) are presented for two values of parametgee the property (7)) = 1 and

r = 3. Notice also that in case = 3 we have constructed the quasi-uniform grid
in two ways. Namely, in the first case fer= 4 we have chosen the grid points
to = —1, t1 = —0.25, to = 0.5, t3 = 0.75, t4 = 1, in the second case we have
chosen the grid pointy = —1, t; = —0.75, to = 0, t3 = 0.75, t4 = 1, and in
both cases for every other= 8, 16, ... the new grid points were obtained by taking
the old grid points for. /2 and the centrepoints of the subintervals corresponding to
the partition of the interval-1, 1] for n/2. From Theorem 4 witl = 2 it follows

that the ratigp,, must be approximately’2 ~ 1.414. From Table 1 we can see that
the numerical results are a little better than the theoretical estimations.

In Table 1 the errors
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Table 1. Convergence results

r=1 r=3
l

n En P en | P | en | pn

4  0.0348492 0.0505532 0.0197816

8 0.0186200 1.872 0.0264146 1.914 0.0105822 1.869
16 0.0105037 1.773 0.0145838 1.811 0.0060581 1.747
32 0.0060531 1.735 0.0083204 1.753 0.0035266 1.718
64 0.0035265 1.716 0.0048236 1.725 0.0020681 1.705
128 0.0020681 1.705 0.0028208 1.710 0.0012181 1.698
256 0.0012182 1.698 0.0016585 1.701 0.0007196 1.693
512 0.0007196 1.693 0.0009785 1.695 0.0004260 1.689
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~ Ruutsplain-kollokatsioonimeetod nérgalt
singulaarsete integraalvorrandite lahendamiseks

Raul Kangro, Rene Pallav ja Arvet Pedas
On vaadeldud ruutsplain-kollokatsioonimeetodit teist liiki ndrgalt singulaarsete

Fredholmi integraalvérrandite numbriliseks lahendamiseks. Kvaasitihtlase vdrgu
korral on tuletatud meetodi koonduvuskiiruse hinnang maksimumnormis.
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