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Abstract. We consider the group structure of the Hecke grodfis\), A > 2, which is
isomorphic to the free product of two cyclic groups of orders 2 and infinity and compute all
parabolic points ofd (\).
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1. INTRODUCTION

Hecke groupdi (\) are the subgroups d?SL(2,R) (the group of orientation
preserving isometries of the upper half pldhggenerated by two linear fractional
transformations

R(z):—é and T(z) = 2+ \,

where\ is a fixed positive real number. They were introduced by HeékeHe
showed that when > 2 or when\ = A\, = 2cos(m/q), ¢ € N, ¢ > 3, the set

A
FA:{zEU:|Rez|<2,|z\>1}

is a fundamental region for the grodp(\), and alsaF), fails to be a fundamental
region for all otherA > 0. It follows that H(\) is discrete only for these values
of X [']. We are particularly interested in the case> 2. If the two generators of
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H()\) have integer coefficients, then so has every elemeiif (9f), and therefore
H () will be contained in the modular groupSL(2, Z) (and hence in the Picard
groupPSL(2,7Z(7))).

The most interesting and investigated Hecke group is the modular gfoAyp).
In this case\s = 2 cos(m/3) = 1 and all coefficients of the elements Bf( \3) are
integers. Thereforéf (\3) = PSL(2,Z). It is isomorphic to the free product of
two cyclic groupsCy andCs. In [?], Cangill gave a new and elementary proof of
the fact that/f (\,) is isomorphic to the free product of two finite cyclic groups of
orders2 andg, using the notion of fundamental region and a result of Macbéhth [
In this paper we will show that/ (\), A > 2, is isomorphic to the free product of
two cyclic groups of order8 and infinity using Macbeath’s method and determine
parabolic points off (\), A > 2. Note that Lyndon and Ullmart] showed that

1 m 1 0
A—<O 1) andB-(m 1>

freely generate a free group i € C and|m| > 2. To do this, they used
Macbeath’s theorem in the form of a lemma that enables us to confine attention
to the action of a group on the extended real axis. In the proof of this fact they
showed that the group generated by

c=(1 )

and A is the free product of the two cyclic subgroups with the generadaadC.

In this paper we obtain our result by applying Macbeath’s theorem directly to the
action of H () as linear fractional transformations acting on the open upper half of
the complex plane and by using the notion of a fundamental region.

2. FUNDAMENTAL REGIONS

By identifying the transformatiofuz + b)/(cz + d) with the matrix

a b

c d )’
H()\) may be regarded as a multiplicative group2ofx 2 matrices in which a
matrix is identified with its negative. A presentation/@f\) is

H(\) = (R,S; R* = 5% = (RS)™® =1),
whereS = RT. R andsS have matrix representations
0 —1 0 —1
(V0) = (T3),

respectively.
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When\ > 2, the standard fundamental region Bf\) has an infinite area,
with two real intervals on its boundary. The quotient space is obtained by using the
translationI’(z) = z + A to identify the two vertical sides, and the elliptic element
R(z) = —1/z to identify the two halves of the semicircular sides; the result is a
sphere with a point (infinity) and a disc removed, and with a cone-point of order 2
at the elliptic fixed point. When\ = 2, the area is finite, the two real intervals
shrink to single pointsi(and —1), and the removed disc shrinks to a point. It is
well known that the fundamental region of a group is not unique.

For convenience, we shall take

/ A
F/\:{zEU:—2<Rez<(),

I
X T
as a fundamental region for the Hecke groips\), A > 2.

Now we can determine the group structure/df\), A > 2, using some result
of Macbeath{]. First we have

Definition. Let[G, X] be a topological transformation group and 1Bt C X. If
g1(P) N ga(P) = ¢ forall g1,92 € G, g1 # g2, thenP is called aG-packing.

Note that if P is aG-packing, then it contains at most one element from each
orbit.

Lemma 1[3]. Let H and K be two subgroups of a transformation groj(, X].
If Pis anH-packing @Q is a K-packing A = (H, K) (the group generated by the
generators off and K) andPU @ = X, PN Q # ¢, then

A2 H=x K.

Also P N @ is an A-packing.
Lemma 2. (i) Let A = 2. Then thenth power ofS'is

n_ [ —(n—=1) —n
S = < n n+1 /-
(i) Let A > 2. Then thenth power ofS'is
n __ _dn—l _dn
5= < dn dn+1 ) ’
Wheredo =0, dp =1, anddnH = A, — dp,—1 forn > 2.

Proof. (i) The proof is obtained easily by induction. Indeed, whegs 2, we have

=(V 505 )=( )
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for n = 2. Assume that

Then we get

gn _ 0 -1 —-n—-2) —(n—-1)\_ ([ —-(n—-1) -—n
L1l 2 n—1 n - n n+1 )°
(i) 1t is known that powers of & x 2 matrix S of determinant 1 can be
computed by the formula

S" =dp(X)S — dp—1(X) 12,
wheredy =0, dy = 1, andd,,+1 = Xd,, — d,,_1. Then we have

5% = dy(X)S — di(X) s

(3 e )= (Y 50)-(01)

and hence we get1 + A\? = \dy(X) — 1, i.e. do(X) = \. From the recurrence
dpy1 = Xd,, — dy_1, we getX = \. Therefore we find

So

S" = d,S — dy_ 1Ty — ( _Cclf—l d‘if; ) ,

wheredy =0, d; = 1, andd,, 11 = Ad, — d,,_1 forn > 2. O

Theorem 3. The Hecke group? (\), A > 2, is isomorphic to the free product of a
cyclic group of order2 and a free group of rank, i.e. we have

H(\) = Cy+ Z.
Proof. First we consider the case= 2. We have already seen that
z+ E > E
2 2
is a fundamental region fa (2). Recall thatR(z) = —1/z andT'(z) = z + 2.
Let H = (R) = Cy andK = (S) = Z. Let us now find packing® and() for H

and K, respectively, such that the conditions of Lemma 1 are satisfied.
As

FZI—{zEU:—1<Rez<O,

1 z -+ 1y
e === 2

38



it is clear that
sign(Re R(z)) = —sign(Re z)

and the set
P={zeU:Rez <0}

is an H-packing. Now consider the set

Q:{ZEU:

1 1
z—|—2‘ > §,Rez> —1}.

Q@ has the vertices-1, 0, andoo. Applying the parabolic generatdf to @
gives S(Q) with the vertices—%, —1, and0. Applying S to S(Q), we obtain
S?(Q) with the vertices-2, —1, and—3; applyingS to 5%(Q), we obtainS(Q)
with the vertices—%, -1, and—%. Repeating this process, we obtain the regions
S4Q),S5%(Q), ..., S™(Q), ... which do not overlap. Indeed, note that being the
fixed point of S, —1 is a vertex of everys™ (@), n > 1. Let us find the other two
vertices ofS™(Q). Using Lemma 2(i), it is easy to show that

n _ qn+l _ n
S™(0) = S""(o0) = e
S0 S™(Q), n > 1, has the vertices-1, S"*1(c0), and S™ (o). Notice that the
sequenc&™(co) = —(n — 1)/n is decreasing and has the limitl. Therefore the

imagesS™(Q) do not overlap, and) is a K-packing.

As we now have ai#/ -packing and @ -packing, we can apply Lemma 1. Then
the groupH (2) = (H, K) is isomorphic to the free product of its subgroupsnd
K,ie. H(2) = Cy % Z. Also

PﬂQ:{zEU:

1 1 /
z+2‘>2,—1<Rez<0}:FQ

is anH (2)-packing.
Let us now consider the case> 2. Similarly to the case. = 2, we take

z+ . > :
A A
as a fundamental region féf (\). Again, letH = (R) = Cy andK = (S) = Z. It

is clear thatf and K are subgroups aff (A\) and the seP = {z € U : Rez < 0}
is an H-packing. Now consider the set

/ A
F)\:{ZEU:—2<R,QZ<O,

Q:{ZEU: 3 3 5

1 1 A
z—i—’ > ,Rez>—}.

Applying the hyperbolic generatsf(z) = —1/(z + \) to Q, we obtainS(Q)

with vertices
2 A

1
N 2o Ty awd 0
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(notice that® has the vertices-\/2, —2/, 0, andoo). Applying S to S(Q), we
obtainS?(Q) with the vertices

e S SN o
22" BA— A3 _14a2 M Ty

applyingS to S%(Q), we obtainS?(Q) with the vertices

—2 4+ )2 3\ + )3 1— )2 and -\
A= A3 A 440227 A3 —2)’ —14 )2

Repeating this process, we obtain the regish&?), S°(Q), ..., S™(Q), ... which
do not overlap. Indeed, from Lemma 2(ii), it follows easily that

dy,
dn+1

a2\ anst (A Ada— 2dn
5 ( )\>_S ( 2>_ i1 — 2dy,
S0S™(Q),n > 1, has the vertice$s™ (—A\/2), St (-\/2), S""!(x), and

S™(00).
Therefore we get

Sn(o) — Sn—l—l(oo) — _

and

dn—l()\) A bn—l()\)
n — _ d n(_7" —
Sl =40y a8 ( 2) b))
where, for alln > 1, d,,’s are the polynomials given by the reduction formulae
do(N) 0
di(N) 1 (2.1)
da(N) = A
dpn(N) = Mp—1(A) —dp—2(N\); n>2

bo(A) = 2
A (2.2)
ba(A) = Abp_1(A) = bu_o(N); n > 2.

(=
=
—

>
N

I

Also the sequence
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is decreasing and the sequence

af A\ ba1(N)
o ( 2) =0
is increasing. Both of them have the same lifaitA + /A2 — 4)/2 which is one
of the fixed points of5. The other fixed point of is lying outside theF;.
Therefore the imageS™(Q) do not overlap, and) is a K-packing. Applying

Lemma 1, we have that the grodf \) = (H, K) is isomorphic to the free product
of its subgroupd? andK, i.e. H(\) = Cy x Z. Also

PﬂQ:{zeU:—;<Rez<O,

1 1 /
- —L_F
Z+)\‘>>\} A

is anH (\)-packing. O

Now we try to determine the parabolic point set (cuspsety k). Parabolic
points are basically the images of infinity under group elements exceptfop.
H(2) has two cusp-classes, containingndco. We omit the case = 2 from our
discussion. Let us consider the Hecke groff{s\), A > 2. Since infinity is one of
the vertices of thé;, its transforms under the subgro(f) which is generated by
S of infinite order form a class of parabolic points@Ef \). We want to determine
all parabolic points off (1)), i.e. to determine the cuspset Bf(\) given by

A
(2:(4 5)cmon)
which is the orbit oo onR U {0} .

To find the parabolic points of any particular Hecke grdidip\), one needs to
know the form of the elements of this Hecke group. This is because all parabolic
points, being images of infinity under group elements, are quotients of the first and
third coefficients of the elements &f()\). In [°], Rosen showed that all elements
of H(\) have one of the following two forms:

(i)(fA b;‘);ad—)\ch = 1,
(n)<acA dl’A);AQad—bc = 1,

wherea, b, ¢, andd are polynomials im?2. But the converse is not true. That is,
all elements of type (i) or (ii) need not belong #()). Those of type (i) are
called even while those of type (ii) are called odd. It follows easily that the set of
all even elements forms a subgroup of indesalled the even subgroup using the
Reidemeister—Schreier method. Rosen proved that a transformation

B Az + B
- Cz+D

V(z) € H(\)
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if and only if A/C is a finite \-fraction. Recall that a finita-fraction has the form

(roX, =1/, —=1/ro X\, .oy =1/ \) = 1o A — T , (2.3)
A — T
ro —m
wherer; (i > 0) are positive or negative integers andmay be zero.
In the proof of Theorem 3, we have found that
n _ dnfl()‘)
S™(00) = ) (2.4)

By (2.4) we have an infinite class of parabolic points in general for any Hecke group
H()), A > 2.Infact, applyingR to this class gives another class of parabolic points
given by

dn ()
dp_1(N)’

The other parabolic points are the transforms of those already found, under the
elements off (\). Therefore the polynomialg,(\) play a very important role in
determining the parabolic points &f(\).

For H(\), A > 2, the set of limit points (i.e. the closure of the set of parabolic
points) is a perfect nowhere dense subset of the real axis. Our aim now is to
determine the parabolic points &f(\), A > 2. If V € H()) is of type (i), then
V(o0) = a/(cX), and if V' is of type (ii), thenV (co) = (a/c)A. Then our problem
is reduced to the following question: When caf(c)) and (a/c)\ be written
as finite A-fractions? Note that we are unable to give conditions that determine
whether or not:/(c\) or (a/c) is a finite \-fraction. We have

RS™(o0) =

Lemma 4. A/C'is a finite \-fraction if and only if there is a sequenag such that

A g1 o Gn (2.5)

C an an

for somen. The sequence, is defined by

apg = 1,
al = Slk, (2.6)
(nt1 = Spy1Ndp — Ap_1, N > 2,

wheres,,’s are nonzero integers.

Proof. Assume thatd/C is a finite \-fraction. By (2.3) we can write

A \ 1
— =7 J— .
C 0 PN — Ty — —

Tn—1A— A

42



Let us defineig = 1, a1 = r, A\. We get

A N 1
o —
C 7"1)\ — ...Tn_g)\ — 71”71—1;\1;1—&0
If we write as = 7,1 a1 — ag, we have
A 1
= o\ —
C "o 7"1)\ - ...Tnfg)\ — &2

rp—2Aa2—a1
Then we writeas = r,_sAas — a1. Proceeding from this, we obtain

A

Gn+41
C Gy

wherea,, is the sequence definedas= 1, a1 = r, A\, as = rp_1Aa; —ag, and
Gni1 = ToAay — an—1. If rg =0, we have

A Gp—1
C Gn
Conversely, if
A _ Gn+1
C Gy
from (2.6) we get
A _ Qn41 Sp41Aap — A1 . ap—1
= = = = Spp1\ —
C an an an
1 1
== 5?’L+1)\ - a == Sn+1)\ - ﬁ == Sn+1)\ — TN  an_3-°
—n n n— n— Sn)\ . n-=z
an—1 An—1 an—1
Proceeding from this, we obtain a finitefraction. Similarly, if
A _ Qn—1
cC  oay’
we have
A ap 1 1 B 1
C an, P Wanaf% S — Zz:i .
Proceeding from this, we have a finitefraction (0, —1/r1, ..., —1/ry,), putting
Sp =T1y...,81 = TI'p.

O
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Notice that given a sequeneg, defined by (2.6), all the terms, 1 /a,, and
—an—1/ay, are parabolic points of the Hecke groffg\), A > 2. We can compute
these terms depending on the sequencéet a,, = r™. This quickly reduces (2.6)
to

M= M =" 2 2 g A+ 1 =0

Sp A+ /$2A2 —4
5 :

The general solution to the equatiap = " will be all possible combinations of
rootsr; andrs. Let us write

w = A (sn)\—i— /82 A2 —4>n+B (sn)\— /82 A2 —4>n
" 2 2 '

with the roots

1,2 =

The constantsi and B can be found from the boundary conditioms = 1 and
a1 = s1 . We have

ay = A—I—le,

1A+ /5202 — 4 $1A — /8202 — 4
A 5 + B 5 =351\

ay =

and so

/N2 v
51)\:A<51>\+ 281)\ 4>+(1—A) <Sl>\ 281)\ 4).

From this we compute

SIA+/s7A2 —4 B $2A2 — 4 — 51\

22N —4 2v/$2\2 — 4

So we get the formula af,, as follows:

<31)\+ V/sIAZ — 4> (sn)\ +\/s2A2 — 4)n
an =
2

2¢/sIN2 — 4

(VAR A s (A - /N "
2¢/s1A2 — 4 2

= gm0+ V) (s V)
2)2 —
— <31/\ — /8202 — 4) (sn/\ — W)n} .
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Now we can compute all parabolic points of the Hecke grélp), A > 2, as
follows:

1 (510 /5I02=1) (snahy /57, 22 —1) "+17(51Aﬂ/s';’)\274) (snrir—y/s22=a)""
5 <51/\+\/s%)\2—4) (sn)\+\/5%)\2—4> n—<51>\—\/s%)\2—4) (sn)\— s%)\z—4) "

and

) (s12ty/5TR22) (51t /5237 0) " — (1A /5EA24) (s aA—y /522 1) "
B (s1A+V/5TAZ=4) (502 /5207 =) "= (510—/5T02 1) (s0A—y/5207—4) ’

So we have the following proposition.

Proposition 5. All parabolic points of the Hecke groufi (\), A > 2, are of the
form

1 (5104 /5I02=1) (snpahy /57, 22 —1) "+17<51Aﬂ/s§)\274) (snrir—y/sZ2=a)""
5 <51/\+\/s%)\2—4) (sn)\+\/s%)\2—4> n—<51>\—\/s%)\2—4) (sn)\— 8%)\2—4> "

or

) (312 /5T (51t /5237 0) " — (1A /5EA24) (31 Ay /522 1) "
N (51/\—&-\ / s%)\z—4) (sn)\—h / s%/\2—4)n— (51)\—\ / s%/\2—4) (sn)\—\ / s%)\z—él)n

wheres,,'s are nonzero integers.

For example, if we take. = /5 ands,, = 1 for all n, we get the following
parabolic points off (1/5)

1(1+\/5)n+2_(\/5_1)n+2 and 9 (1+\/5)n_(\/5_1)n
2(1+VB) T — (VB — 1) (14 VB = (V5 -1yt

If n is even, we get

A+VE (-1, (VB = (=B

(L+ VB — (VB -1l T4 V) 4+ (1 - V)t
st [(L+VE)" — (1= V5)"]
gt [(1+VB)" (1 - v/B)m ]
1 G M G A Y
+

(1 1 1
(CORRCOR IS
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and similarlyy/5 F,,,2/L,1, whereF}, is thenth Fibonacci number anf,, is the
nth Lucas number. If: is odd, we find

1 Lyto 1 Ly
— and — — .
NGP I V5 Frti
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Hecke rihma H () struktuurist ja paraboolsetest punktidest

Nihal Yilmaz Ozgirr jd. Naci Cangil
On tBestatud, et Hecke rihfi(\), A > 2, on isomorfne teist jarku tsiklilise

rihma ja astakuga 1 vaba riihma vaba korrutisega. On maaratud selle rihma ko&ik
paraboolsed punktid.
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