Proc. Estonian Acad. Sci. Geol., 1992, 41, 3, 93-107 https://doi.org/10.3176/geol.1992.3.01

UDC 552.3(474.2)

Alvar SOESOO* and Mati NIIN**

PETROGRAPHICAL AND PETROCHEMICAL FEATURES OF THE ESTONIAN PRECAMBRIAN PORPHYRACEOUS POTASSIUM GRANITES

Project 275 BALTIC SHIELD and Project 315 RAPAKIVI GRANITES Abstract. Estonian porphyraceous potassium granites of rapakivi age are coarse- to medium-grained, pinkish-grey rocks with microcline porphyroblasts. Five small plutons of these granites — Märjamaa, Neeme, Ereda, Naissaare, and Taebla — sharply transect the surrounding rocks. These granites as well as the veins of aplites cutting them contain microcline, quartz, plagioclase, and biotite as principal minerals and apatite, fluorite, zircon, sphene, orthite, muscovite, and rutile as accessory minerals; hornblende is common in melanocratic granites; the main opaque minerals are magnetite and ilmenite. By their chemical composition, Estonian porphyraceous granites can be assigned to the rapakivi granite formation. Estonian porphyraceous granites have relatively low Niggli *mg*-indices (0.1–0.35) and negative t value; the value of alk is systematically lower than that of the rapakivi granites. On the basis of different Mg/Mg+Fe and Ca/Ca+Na ratios, three separate trends, possibly corresponding to different phases, can be distinguished. The age of these granites varies from 1.62-1.69 Ga (K—Ar, biotite), U—Pb age show 1.66 Ga and Rb—Sr — 1.71 Ga. On the basis of the mineralogical and chemical composition, different subtypes (possible phases) of granites are described.

reaction available finance 2.63 group on Ak deemia

Introduction

are is office desitivation above mentioned racks ranges from 257 to 281

The present paper gives a descriptive review of the general petrographical (M. Niin) and petrochemical (A. Soesoo) features of the Estonian porphyraceous granites, being an introduction to subsequent detailed investigations.

In Estonia, five small plutons of porphyraceous granites — Märjamaa, Neeme, Ereda, Naissaare, and Taebla — are known (Fig. 1). Possibly, the oval-shaped northwestern part of the Märjamaa pluton can be considered as an individual pluton. According to the geophysical data, these plutons occur as intrusions sharply transecting the surrounding rocks. This is also confirmed by two drill cores through the Märjamaa and Taebla plutons. In the regional geophysical fields, the porphyraceous granites can be distinguished by negative gravity and magnetic fields (Побул, 1962).

* Eesti Teaduste Akadeemia Geoloogia Instituut (Institute of Geology, Estonian Academy of Sciences). Estonia pst. 7, EE0105 Tallinn. Estonia.
 ** Eesti Geoloogiakeskus (Geological Survey of Estonia). Pikk 67, EE0101 Tallinn. Estonia.

C Eesti TA Toimetised. Geoloogia, 1992

Raamatukogu

Fig. 1. Location of plutons of the porphyraceous potassium granites and zonation of the Estonian basement. 1 — Taebla, 2 — Märjamaa, 3 — Naissaare, 4 — Neeme, 5 — Ereda, 6 — Riga pluton of rapakivi granites. 1 — Tallinn, II — Alutaguse, III — Jöhvi zones; IV — Tapa, V — West-Estonian, and VI — South-Estonian blocks.

The density of the above-mentioned rocks ranges from 2.57 to 2.81 g/cm³, averaging 2.63 g/cm³ (Побул et al., 1968).

Kuuspalu (Кууспалу, 1975) compared the porphyraceous granites of North Estonia with the granites of South Finland, describing their similarities to the third-group granites by Sederholm (Эскола, 1967) and showing that these granites belong to the rapakivi granite formation.

The age of the Estonian porphyraceous granites ranges from 1.62 to 1.69 Ga (K—Ar, biotite), or 1.66 Ga by U—Pb and 1.71 Ga by Rb—Sr estimations (Пуура, 1974; Пуура et al., 1974; Пуура et al., 1983). Three zircon fractions from the first phase of the Märjamaa pluton provide an upper intercept age of 1.626 Ga (Kirs et al., 1991). By the isotopic age, the Estonian porphyraceous granites are comparable with some Finnish intrusions such as Wiborg, Suomenniemi, Ahvenisto, Onas, Bodom, Obbnäs of 1.62—1.65 Ga age (Rämö, 1991; Vaasjoki, 1977) and Dala granites — 1.67 Ga old (Lundqvist, 1968; Welin and Lundqvist, 1970).

Materials and Methods

Altogether, 61 drill holes of five Estonian small plutons — Neeme (35 cores), Naissaare (7), Märjamaa (15), Taebla (2), and Ereda (2) — have been studied. Petrographical descriptions of the Estonian porphyraceous granites are based on the earlier field works and thin

section studies. Ninety-eight wet chemical analyses of these rocks and their aplites (made in the laboratory of the Geological Survey of Estonia; Table 1) were used for general petrochemical description. K—Na—Ca—Si ratio, Ca/Ca+Na, Mg/Mg+Fe ratios and Niggli main values were used as characteristics reflecting the general petrochemical features of the porphyraceous granites and for their comparison with typical rapakivi granites.

Petrography

The Märjamaa pluton $(40 \times 25 \text{ km})$ is composed of coarse-grained, pinkish-grey porphyraceous granite. According to the geophysical data, the contacts between the granites and the surrounding gneisses are sharp. In drill core No. 314, contact alteration was absent but some apophyses of porphyraceous granites within the surrounding gneisses were observed. The rocks of the central part of the pluton contain gneiss xenoliths with the diameter up to 20 cm.

Data on the mineralogical composition of 25 analysed thin sections of Märjamaa porphyraceous granites are presented in Table 2.

The quartz of the porphyraceous granites of the Estonian small plutons shows often weak undulatory extinction. Two generations of quartz have been distinguished. The first generation occurs partly between the potash feldspar individuals as anhedral crystals and partly as euhedral inclusions within the potash feldspar (microcline). The second generation occurs as anhedral crystals in the groundmass. Potash feldspar (microcline) is present as phenocryst (diameter 2—3 cm) and in the groundmass. The mineral is often perthitic. The phenocryst contains inclusions of quartz, biotite, and rare sphene. The plagioclase forming euhedral tabular or prismatic crystals is represented by oligoclase-andesine. In places, the observed plagioclase shows a zone of andesine in the central part of the crystal and a zone of oligoclase at the margins. Twinning according to the albite law is common. Biotite is pleochroic in light yellow to brown colours. Its anhedral crystals are often clustered together as swarms of small or large flakes.

Among the accessory minerals, apatite, fluorite, zircon, sphene, and orthite are present, with the content of sphene and zircon reaching 5% and 3%, respectively. Hornblende occurs sporadically, being common in drill cores 314 and 302. The content of main opaque minerals, magnetite and ilmenite, may reach 3%.

The central part, the most melanocratic and basic type of porphyraceous granites within the Märjamaa pluton, is interpreted as the first intrusive phase. The second intrusive phase is represented by muscovite-bearing granites containing biotite. The granites of the third phase are of more leucocratic composition and in places of trachytoid texture.

The density groups of Märjamaa granites correspond to the phases distinguished on the basis of petrographical data. The density of the rocks forming the first phase is 2.71 g/cm³, that of the second phase — 2.66 g/cm³ (similar to the Ereda granites), the third phase — 2.63 g/cm³, and the fourth phase — 2.59 g/cm³; the density of aplites is 2.60 g/cm³.

The Neeme pluton with the diameter of about 25 km and with its northern part under the Gulf of Finland, is composed of coarse- and medium-grained, pinkish-gray porphyraceous granites. In places, e.g. drill cores 507, 513, 521, 524, the rocks are very leucocratic with a pegmatitic structure (location of drill holes see Klein et al., in prep.). By the chemical and mineralogical composition, the rocks form two groups,

Table I	uns	11 S 11 S 10 S	101.38 99.44 99.65 97.67	99.80° 99.48 99.90	99.85 99.14 99.49	99.40 99.75 99.43	99.88 99.69 99.51 99.69	99.60 99.24 99.59 99.54 99.49	99.60 99.56 99.63 99.63 99.03 99.03 99.18
le olim dilw	0.0.1	eral co co io io io io io io io io io io io io io	2.07 0.78 0.51 0.67	0.49 0.64 0.54	0.54 0.73 0.52 0.78	0.22	0.36 0.35 0.98 0.55	0.43 0.64 0.38 0.60 0.46	0.79 0.68 0.68 0.46 0.68 0.46 0.68
	-0 ² H		0.52 0.12 0.12 0.13	0.14 0.13	0.24	0.19	0.10 0.15 0.20 0.15	0.13 0.26 0.28 0.38 0.38	0.28 0.12 0.19 0.06 0.07 0.07
ained,	S		0.12 0.09 0.07 0.09	0.08	0.20			0.10 0.10 0.10	0.112
es	b ³ O ²		0.43 0.46 0.32 0.34	0.32 0.39 0.33	0.43 0.43 0.14 0.19	0.03	0.06 0.12 0.31 0.32	0.30 0.03 0.03 0.03 0.03 0.03 0.03 0.03	0.32 0.32 0.05 0.08 0.08 0.09
m granit	K ² O	ton	6.70 4.58 5.65 5.60	5.50 5.05 4.80	0.12 4.88 6.28 5.98	7.42 6.56	7.70 6.28 3.00 4.81	5.18 6.48 6.48 6.48 6.32 6.32	4.32 6.33 6.38 6.38 6.26 6.26 6.26
potassiu	OsbN	Tal e E vo	1.30 2.93 3.30 2.85	3.00 2.88 2.77	3.01 2.75 2.44 9.50	2.58 2.58	2.79 2.58 2.37 2.58	2.89 2.58 2.58 2.58 2.56	2.30 2.30 2.57 2.57 3.26 3.26
yraceous	CaO	NC	2.33 3.78 2.98 3.05	3.04 2.93 2.88 2.88	2.95 3.24 2.07 2.65	1.62	2.08 2.19 4.62 3.12	3.12 1.50 1.01 1.01 1.01	2.31 2.31 2.31 2.13 2.13 2.01 1.71
un porph	OgM	MÄRJAMAA PLUTC	1.31 1.83 1.35 1.40	1.42 1.60 1.24	1.40 1.65 0.67 0.84	0.50	0.50 0.67 1.43 1.38	1.26 0.50 0.42 0.46 0.46	1.55 1.55 1.26 0.63 0.80 0.80 0.80 0.80
e Estonia	OuW		0.18 0.04	0.02	0.11	0.06	0.09 0.19 0.10	0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.03	0.12 0.13 0.07 0.03 0.03
on of the	FeO		5.59 3.66 2.99 0.87	3.48 3.18 3.56	2.81 2.79 3.16 3.09	2.26 2.26	2.80 3.12 8.48 2.66	2.62 2.16 1.29 1.29 7.37 9.73	3.05 3.05 3.09 3.09 1.90 1.36 0.61
Chemical composition	Fe ₂ O ₃		2.64 3.02 2.01 2.07	2.04 2.21 2.24	2.31 2.98 0.96	0.29	0.95 0.84 3.16 1.93	1.89 0.92 0.73 0.73 9.03	2.12 2.12 2.12 0.75 2.45 1.12 1.12 1.78
	\$OsIA		14.77 13.67 14.26 13.83	13.81 13.51 14.29	13.06 13.06 13.30	15.74 13.18 13.61	14.27 13.28 12.06 13.59	13.61 11.48 13.10 12.09 12.94	14.00 13.97 13.97 14.38 12.66 12.12 14.04 12.12
	TiO2		1.08 1.08 0.73 0.78	0.93	0.53	0.17 0.26 0.19	0.25 0.37 1.25 1.11	0.65 0.34 0.17 0.34 0.34 0.22	0.90 0.94 0.60 0.43 0.63 0.37 0.14
	^z O!S		62.86 63.52 65.48 66.12	65.86 66.06 66.21	69.36 67.69	69.54 70.10 70.96	68.04 69.80 61.66 67.54	67.56 72.66 73.72 72.04 73.34 67.94	66.58 66.58 66.12 66.12 70.68 69.74 70.92 72.54
	əlqms2		123295 3023320 3023700 3023700 3024051	3024384 3024784 3024805	3024830 3024874 3032833 3032833	3033338 3042790 3043035	3043288 3052780 3052972 3063064	3063430 3142442 3142558 3142676 3142906 3142906	3152813 3152813 3152813 3192560 3193090 3222408 3222408 3222707 3232892
	core Drill	bis L .a Rior	12 302 302 302	302 302 302	302 303 303	304 304 304	305 305 305 305	306 314 314 315 315 315	315 315 319 322 322 323 322 323
Nequint	Sample	dis tolu	4 3 2 4	0000	10 9 0	13	15 17 18	19 20 23 23 23	25 25 26 26 27 28 28 30 31

uns.	99.61 99.88 99.38 99.38 99.38 100.22 99.84 99.84 99.84 99.84 99.84 101.02	100.35 99.84 99.51 99.54 99.54 99.52 99.52 99.47		98.96 99.69 99.69 99.13 99.13 100.45 100.45 100.47 100.47 100.43 99.76 99.76	99.96
.i.o.l	$\begin{array}{c} 0.54\\ 0.53\\ 0.36\\ 0.36\\ 0.34\\ 0.46\\ 0.46\\ 0.43\\ 1.29\\ 1.29\end{array}$	0.93 0.79 0.91 0.90 1.20 0.82 0.83		1.31 1.02 0.49 0.72 0.97 0.97 0.87 0.87 0.87 0.87 0.87 0.16	0.96
-O ² H.	0.18 0.07 0.02 0.14 0.14 0.05 0.05 0.05 0.03 0.33 0.33	0.19 0.16 0.16 0.16 0.16 0.21 0.18		0.14 0.32 0.32 0.28 0.21 0.21 0.21 0.21 0.21 0.21 0.17 0.14 0.14	0.30
S	0.10 0.17 0.17 0.18	0.10		0.114 0.118 0.118 0.118 0.117 0.117 0.117 0.117	0.11
b ^s O ²	$\begin{array}{c} 0.03\\ 0.03\\ 0.07\\ 0.05\\ 0.05\\ 0.05\\ 0.04\\ 0.44\\ 0.48\\ 0.48\end{array}$	0.15 0.07 0.08 0.08 0.08 0.06		0.00 0.13 0.13 0.13 0.13 0.13 0.13 0.13	0.05
K ² O	$\begin{array}{c} 6.00\\ 6.00\\ 6.00\\ 6.26\\ 5.78\\ 5.78\\ 5.15\\ 0.26\\$	5.93 5.66 6.32 5.74 7.34 6.66		0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	4.50 7.64
O _s aN	2.50 2.51 2.51 2.51 2.50 2.50 2.93 2.93 2.50 2.50	3.02 2.45 2.11 2.35 2.10 2.00 2.20		2220 2220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 22220 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 20000 20	5.00
CaO	1.71 1.71 1.89 3.11 1.10 2.07 2.07 2.07 2.32 3.40 3.40	$\begin{array}{c} 1.32\\ 1.34\\ 1.84\\ 1.69\\ 2.81\\ 1.83\\ 1.83\end{array}$		2.32 2.52 2.55 2.77 2.55 2.77 2.55 2.77 2.55 2.77 2.55 2.77 2.55 2.77 2.55 2.55	1.70
OgM	0.53 0.63 1.11 0.89 0.89 0.89 0.62 0.58 1.07 1.07 1.07 1.78	$\begin{array}{c} 0.28\\ 0.54\\ 0.75\\ 0.48\\ 0.76\\ 0.76\\ 0.94\end{array}$	NOTUL	$\begin{array}{c} 0.79\\ 1.12\\ 0.91\\ 0.84\\ 0.37\\ 0.60\\ 0.61\\ 0.71\\ 0.71\\ 1.13\\ 1.13\\ 1.13\end{array}$	0.40
OuM	0.04 0.07 0.13 0.13 0.13 0.11 0.02 0.05 0.07 0.07 0.24 0.28 0.28	0.04 0.05 0.03 0.03 0.03	IEEME H	0.06 0.03 0.03 0.04 0.04 0.04 0.04 0.04	0.03
FeO	1.19 1.133 1.33 1.11 1.11 1.65 1.165 1.65 1.65 1.62 3.70 3.10 3.10	2.10 1.94 1.72 1.72 1.80 2.73 2.19	Z	2.27 2.75 2.75 2.73 2.73 2.73 2.73 2.73 2.15 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92	0.90
E62O3	0.79 0.79 0.79 0.76 1.15 1.15 1.15 3.19 3.3.19 3.3.19	$\begin{array}{c} 0.43\\ 1.65\\ 1.40\\ 0.92\\ 0.99\\ 1.78\\ 1.78\end{array}$		$\begin{array}{c} 1.36\\ 1.31\\ 1.31\\ 1.51\\ 1.51\\ 1.31\\ 1.31\\ 1.33\\$	0.84 1.42
⁸ O ² IA	13.27 13.27 13.17 12.76 9.82 13.38 13.36 13.36 13.36 12.62 14.90 14.00	$\begin{array}{c} 13.42\\ 14.10\\ 12.87\\ 12.87\\ 12.14\\ 15.09\\ 14.26\end{array}$		$\begin{array}{c} 12.45\\ 13.26\\ 13$	13.95
TiO2	$\begin{array}{c} 0.25\\ 0.25\\ 0.56\\ 0.16\\ 0.44\\ 0.42\\ 0.92\\ 0.89\\ 0.89\end{array}$	0.22 0.32 0.32 0.32 0.35 0.35 0.35		$\begin{array}{c} 0.46\\ 0.64\\ 0.43\\ 0.30\\ 0.37\\ 0.37\\ 0.37\\ 0.23\\$	0.10
^z O!S	$\begin{array}{c} 72.46\\ 71.72\\ 66.36\\ 68.36\\ 78.18\\ 70.84\\ 70.00\\ 70.00\\ 70.62\\ 64.16\\ 64.16\\ 64.16\end{array}$	72.41 69.42 71.88 71.92 71.82 66.26 68.40		$\begin{array}{c} 70.24\\ 68.92\\ 68.92\\ 68.78\\ 71.04\\ 68.98\\ 71.04\\ 71.04\\ 71.03\\ 71.38\\ 71.38\\ 71.38\\ 71.54\\ 71.54\\ 70.54\\ 70.54\end{array}$	72.28
9lqms2.	3233042 32333042 3243760 3243712 3243510 3282580 3282580 3283100 3283100 3283100 52497 52497	1151955 1201382 2962280 2962725 2962815 3272342 3272518		1061400 1061535 1061535 1061630 1161332 1151332 11515420 1151559 1151754 1151754 1151754	1191855 5011165
core Drill	323 324 324 324 324 328 328 328 328 328 328 328 328 328 328	115 120 296 296 327 327		106 106 115 115 115 115 115 115 115	501
Sample Sample	32 33 33 33 33 33 33 33 33 33 33 33 33 3	42 44 45 44 47 47 48		50 50 50 50 50 50 50 50 50 50 50 50 50 5	62

umS	99.59.33 99.57 99.57 99.57 99.57 99.57 99.57 99.57 99.57 99.48 99.48 99.48 99.41 99.41 99.41 99.41 99.47 99.47 99.47 99.47 99.47 99.47 99.47 99.47 99.47 99.47 99.47 99.47 99.47	99.57 99.87
.i.o.l	1.08 1.25 0.51 0.51 0.51 0.51 0.53 0.54 0.53 0.54 0.53 0.54 0.53 0.54 0.53 0.54 0.53 0.54 0.54 0.53 0.54 0.55 0.54 0.55 0.55 0.55 0.56 0.73 0.70	0.87 0.92
-0 ² H	$\begin{array}{c} 0.18\\ 0.10\\ 0.10\\ 0.10\\ 0.13\\$	0.15
S	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.02 0.12
b ³ O ²	$\begin{array}{c} 0.09\\ 0.08\\ 0.08\\ 0.08\\ 0.06\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.04\\ 0.03\\ 0.02\\$	0.08
K ² O	6.00 6.00 6.00 6.00 6.00 6.00 6.10 6.00	5.70 2.22
OsaN	2.500 2.50	2.18 1.68
CaO	$\begin{array}{c} 1.47\\ 1.29\\ 1.29\\ 1.29\\ 1.29\\ 1.29\\ 1.29\\ 1.28\\ 1.28\\ 1.28\\ 1.28\\ 1.28\\ 1.28\\ 2.28\\ 2.28\\ 2.28\\ 2.28\\ 2.28\\ 1.26\\ 1.26\\ 1.26\\ 1.28\\$	1.32 0.84
OgM	0.54 0.54 0.41 0.41 0.65 0.66 0.46 0.46 0.46 0.46 0.46 0.46 0.46	0.63
OuM	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	
FeO	$\begin{array}{c} 1.65\\ 1.29\\ 1.29\\ 1.51\\ 1.51\\ 1.51\\ 1.52\\ 1.52\\ 1.52\\ 2.16\\ 1.32\\ 2.16\\ 1.32\\ 2.16\\ 0.36\\ 0.36\\ 0.36\\ 0.38\\ 0.93\\ 2.16\\ 1.42\\$	2.44 4.60
E ₆₂ O3	$\begin{array}{c} 1.51\\ 1.25\\ 1.16\\ 1.16\\ 1.16\\ 1.18\\ 1.40\\ 1.22\\ 1.22\\ 1.22\\ 0.65\\ 0.65\\ 0.65\\ 0.65\\ 0.65\\ 0.61\\ 1.12\\ 0.66\\ 0.69\\ 0.69\\ 0.69\\ 0.66\\ 0.69\\ 0.66\\$	0.24 0.19
sOslA	$\begin{array}{c} 12.81\\ 12.27\\ 13.23\\ 13.73\\ 13.73\\ 13.75\\ 13.74\\ 12.00\\ 12.01\\ 12.61\\ 12.61\\ 12.74\\ 12.87\\ 13.39\\ 15.61\\ 13.39\\ 13.39\\ 12.74\\ 12.72\\ 13.39\\ 12.72\\ 12.71\\ 12.72\\ 12$	11.92
TiOa	$\begin{array}{c} 0.32\\ 0.24\\ 0.28\\ 0.28\\ 0.28\\ 0.24\\ 0.22\\ 0.22\\ 0.22\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.22\\ 0.23\\ 0.28\\ 0.28\\ 0.28\\ 0.28\\ 0.12\\ 0.28\\ 0.28\\ 0.28\\ 0.28\\ 0.12\\ 0.28\\$	0.25 0.40
⁸ OiS	$\begin{array}{c} 72.07\\ 72.98\\ 72.98\\ 72.46\\ 72.46\\ 73.16\\ 73.40\\ 75.70\\ 73.34\\ 73.34\\ 73.34\\ 73.34\\ 72.28\\ 66.24\\ 71.48\\ 77.32\\ 66.24\\ 71.48\\ 77.28\\ 66.24\\ 71.48\\ 77.28\\ 66.24\\ 71.48\\ 77.28\\ 66.24\\ 77.28\\ 75.70\\ 71.48\\ 77.28\\ 77.28\\ 75.70\\ 77.28\\ 77$	73.92 70.78
əlqms2	5011950 5011950 5012065 5022027 5032560 5032560 5041600 5041600 5041600 5032250 5082220 5131638 5131788 5131788 5131789 5221997 52219973 52219973 52219973 52219973 52219973 5301787 5301787 5301787 5301787 5301787 5301787 5301787 5301787 5301770 5311770 532120 5321700 532177000 53217000 532170000 53217000000000000000000000000000000000000	3193425 3192768
Drill	501 501 502 503 503 503 503 503 503 503 503 503 503	319
Sample number	63 65 65 65 65 65 65 65 65 65 65 65 65 65	92 93

uns	104 18 197	99.74 99.51 99.44 100.32 99.52					
.i.o.l	es sec	0.97 1.10 0.84 0.65 0.79					
-02H		0.14 0.13 0.12 0.15 0.19					
S	1976 1976 18171	0.10 0.15 0.12 0.13 0.13	2		in ba		Class aniesine cono The planfoclase is Plas additioned act
b ³ Q ²	5 1	0.03 0.07 0.05 0.08 0.06	Table	Estonia.	id op Noi	Ereda	20-45 35-45 5-10 5-10
K ³ O		6.24 6.00 5.54 6.00 6.40		ites of H	6.40		ine Valescare o
O2BN		2.77 2.20 2.44 2.47 2.47		um grani inerals		Vaissaare	040 050 035 33-10
CaO	7	1.64 2.39 2.32 2.51 2.51		potassiu ncipal m	itons		A V = 3.8
OgM	PLUTO	0.12 0.51 0.57 0.55 0.40		yraceous f the pri	Plu	Veeme	
OuM	FAEBLA	0.07 0.05 0.05 0.08 0.08 0.04		ie porph vol. %, o			212 210 232 212 232 212
FeO		1.62 1.98 1.72 1.66 1.44		on of th limits, v		rjamaa	
E62O3		0.83 1.99 1.84 2.05 1.13		ompositi Range	of II	Mär	V 10 10 10 10 10 10 10 10 10 10 10 10 10
¢O _s IA	boa	13.49 12.68 12.18 12.70 12.93		logical c	al		tires and second pho
TiO2		0.10 0.45 0.33 0.38 0.16		Minera	Miner		lartz icrocline agioclase ofite ornblende uscovite
⁸ OiS		71.76 69.94 71.44 71.06 71.06		interi interi a brie		engine engine siene	MH BI
Sample		3483550 3492942 3493013 3493516 3493516 3493610					
COTE Drill		349 349 349 349 349 349					sumnivit of Transie sumnivit of Transie
Sample	Jihar	94 95 97 98					anoi ibba aiti baabie.

possibly two phases. Two small bodies in the central and northeastern parts of the pluton studied with drill cores 503, 527, 530, 531, 532, 533, 538 and 512, 106, 115, respectively, are more melanocratic, being chemically similar to granodiorite. Also, in some drill-cores (106, 512, 537, 538), partly assimilated xenoliths of surrounding gneisses with the diameter of about 20—30 cm have been observed. In thin sections, the granites display granitic texture, in places trachytoidic. The structure of these rocks is massive. The inclusions of quartz are rare. Quartz is euhedral (diameter of crystals up to 5 mm) and anhedral (diameter smaller). Plagioclase occurs generally as euhedral crystals, of oligoclase-andesine composition. Sericitization and pelitization are common. The plagioclase is twinned according to the albite and Carlsbad laws. The additional and accessory minerals are muscovite, apatite, fluorite, sphene, orthite, zircon, and opaques.

The first phase of the Neeme granites has a density of 2.64 g/cm³, the second phase -2.62 g/cm³.

The Naissaare pluton, ca 35×25 km, with its northern part under the Gulf of Finland, is composed of porphyraceous granites cut by aplites. By its chemical and mineralogical composition this pluton can be divided into two phases. The central part of the pluton is composed of leucocratic granites (second phase), having some similarities with the second and third phases of the Märjamaa pluton. Muscovite and fluorite are common additional minerals for this granite type. In places trachytoidic texture has been observed. The more melanocratic granites (first phase) form the periphery of the pluton.

Two generations of quartz have been observed: euhedral crystals within potash feldspar phenocryst and anhedral crystals in the groundmass. Microcline is present as tabular crystals, sometimes containing the inclusions of plagioclase; the twinning is usually according to the Carlsbad law. Plagioclase appears as euhedral to subhedral zoned crystals, partly altered to sericite. Biotite forms small flakes containing euhedral crystals of zircon and apatite as inclusions. The mineral is partly altered into chlorite. Muscovite and fluorite of postmagmatic origin replace plagioclase.

The additional and accessory minerals are epidote, fluorite, apatite, sphene, zircon, and opaques represented by magnetite and ilmenite.

The average density of the Naissaare granites is the same for the first and second phases -2.64 g/cm³.

The Ereda pluton, ca 5×15 km, oval in form, is composed of homogeneous, pinkish-grey, coarse-grained porphyraceous granites. With only two drill cores available, it is difficult to correlate the rocks of the Ereda pluton and the others. Some similarities have been observed in the mineralogical composition and structure of the Ereda granites and the Märjamaa and Neeme leucocratic type of granites.

Quartz is present as euhedral bipyramidal crystals (first generation) and as anhedral crystals (second generation). In places, the zonation of bipyramidal quartz caused by zonal division of fine-grained needle-like crystals of rutile can be observed (Kyycnany, 1971). Microcline is twinned according to the Carlsbad law; great phenocrysts are zoned. In places, the inclusions of bipyramidal quartz have been traced. Plagioclase is observed as euhedral, tabular, and prismatic crystals of various size. The twinning is according to the albite or Carlsbad law. Fresh plagioclase is represented by andesine (An: 30-42%). Biotite has partly altered into chlorite.

The additional and accessory minerals are fluorite, apatite, zircon, orthite, rutile, and opaques.

Mineralogical composition of aplites of the porphyraceous potassium granites of Estonia. Range limits, vol%, of the principal minerals are provided

Pluton	Q	Mi	Pl	Bt	Others
Märjamaa Naissaare Neeme	25—35 20—30 30—35	20-40 30-40 35-40	25-50 30-40 25-30	$1-10 \\ 5-15 \\ 3-10$	Hbl, Ms, Ap, Fl, Sph, Zr, opaque Ap, Sph, Zr, opaque Ms<1, Ap, Fl, Zr, Sph, Orth, opaque
Ap — apatit zircon, Hbl -	e, Fl — fl — hornblen	uorite, Spl de	ı — sphe	ne, Ms –	– muscovite, Orth — orthite, Zr —

t singum ividages

The Taebla pluton, which is the smallest with the diameter of about 6-7 km, is composed of homogeneous leucocratic porphyraceous granites. The petrographic description of the Taebla granites is based on the material of two drill cores. By their mineralogical and partly by their chemical composition, Taebla granites are similar to the rocks of the third phase of the Märjamaa pluton and to the second phase of the Neeme and Naissaare plutons.

The aplites related to porphyraceous granites are pink or reddishpink, fine-grained, homogeneous rocks. They have predominantly a massive texture. Sometimes the homogeneous groundmass contains phenocryst of feldspar. The aplites cutting porphyraceous granites form veins with various width and shape. The mineral composition of aplites is given in Table 3.

A different type of aplites — aplite-like unakitic microsyenite — is observed in drill core 120, the Naissaare pluton. By their chemical composition, they are close to syenite. The mineralogical composition is: albite — 40-50 vol%, potash feldspar — 30-40 vol%, epidote — 10-15 vol%, quartz — 2-3 vol%, and chlorite — 2-3 vol%. The additional minerals are apatite, sphene, zircon, and opaque minerals.

General Petrochemistry

Estonian porphyraceous potassium granites differ from other granitic rocks in several compositional features, such as peraluminous chemistry, high SiO₂, TiO₂, K₂O, and total iron content, high K/Na ratio, and relatively low CaO and MgO contents. On the AFM diagram, the plot corresponding to the samples of Estonian porphyraceous granites occupies the field along the transition boundary from tholeitic rock to subalkaline and calcalkaline types (Кирс et al., 1990). Also, the silica content of the Estonian porphyraceous granites is close to the Si-range of rocks of the rapakivi formation (Великославинский et al., 1978), but they have a slightly higher content of Ti and somewhat lower content of Al and Fe.

Petrographically distinguishable subdivisions of the two best studied plutons, displaying differences in the silica content, are here interpreted as different intrusive phases. Thus, Märjamaa samples form two equally represented SiO₂-groups: one with the SiO₂ content below 68%, the other with that ranging from 70% to 73%. Similarly, the samples of Neeme granites form three SiO₂-groups with SiO₂ content below 67%, 69–73%, and above 75%, respectively.

The average of the Niggli mean values of Estonian porphyraceous potassium granites and the Niggli average rapakivi magma (Vorma, 1976)

Pluton	al	fm	С	alk	si	and the
Taebla	38.7	16.7	12.5	32.1	364	
Neeme	40.2	17.0	11.1	31.7	376	
Naissaare	39.7	18.9	10.2	31.2	350	
Märiamaa	36.6	22.1	12.0	29.4	322	
Ereda	41.7	20.5	8.5	29.3	415	
Average of						
plutons	39.4	19.0	10.9	30.7	366	REDRIC
	R	apakivi mag	gma type	Mak. 8 - 441		
	40	18	9	33	380 After Nig	gli, 1923
	41	18	9	32	350 After Nig (cited in V	gli, 1936 Jorma,

(cited in voin 1976)

Fig. 2. Relationship between the atomic amount of Ca and K (A), Na and K (B), K and Si (C), and K and Rb (D) of the porphyraceous granites of Estonia. Solid line surrounds Märjamaa, broken line Neeme, and dotted line Taebla granites; dots and inclined crosses correspond to the Ereda and Naissaare granites, respectively.

Fig. 3. Plots of the atomic ratios Mg/Mg+Fe versus wt% SiO₂ (A) and Ca/Ca+Na versus SiO₂ (B) of the porphyraceous granites of Märjamaa (crosses) and Neeme (dots) plutons. Broken and solid lines display the main trends of Märjamaa and Neeme granites, respectively. S₁-S₃, V₁-V₄, and K₁-K₃ correspond to the averages of the different phases of the Salmi, Wiborg, and Korosten rapakivi granite plutons, respectively.

The mean Na_2O/K_2O ratio is different: Naissaare granites have the lowest ratio — 0.37, while the highest Na_2O/K_2O ratio, 0.7, characterizes the granites of the Neeme pluton. Na_2O content varies from 2.5% to 3%, being close to the rapakivi granites.

For all the five plutons studied, the correlation between Si and Ti is weakly negative both for the silica-poor varieties $(SiO_2 < 69 - 70\%)$ and the silica-rich granites. With a strong negative correlation between Si and Ti, two separate trends have been observed in the Si range 71.0-72.5%. Silica-poor (up to 70%) Neeme granites have ca 0.6% TiO₂, whereas the Märjamaa granites contain 0.7-0.9% TiO₂; the mean TiO₂ content of the silica-rich subtypes of both plutons is 0.2-0.3%.

The Estonian porphyraceous granites are characterized by relatively low Niggli mg indices varying from 0.1 to 0.35, and negative value t(t=al-(c+alk)) ranging from -1 to -8. The Niggli main values suggest that the composition of the Estonian granites is close to typical rapakivi granites (Table 4), but value alk of the Estonian granites is systematically lower. Significant positive correlation between si and al (r=0.76) and negative correlation between al and fm (r=-0.79) and fm and alk(r=-0.88) can been observed, weak correlation of value c versus si, al, fm, and alk, and si versus alk was noticed. Significant correlation between Si and K was observed for silica-poor varieties with discriminating point si=320-350. For silica-rich subtypes this correlation is not significant (see Fig. 2).

It can be noted that the silica-poor varieties of the Märjamaa pluton are richer in potassium than their analogues of the Neeme pluton (with the close silica content). There is no correlation between Na and K; some differences can be observed between the plutons (Fig. 2). The average Na/K atomic ratios for the granites of the Taebla, Märjamaa, and Neeme plutons are 0.62, 0.75, and 1, respectively. The average Ca/Na atomic ratios of the two largest plutons, Märjamaa and Neeme, are quite similar: 0.4 and 0.35, respectively, ranging for other plutons from 0.26 to 0.32. Fig. 2 shows also the K/Rb ratio of Märjamaa and Neeme plutons.

In Figs. 3a and 3b, the atomic ratios Ca/Ca+Na and Mg/Mg+Fe of the Märjamaa and Neeme samples plotted versus the silica content display 2—3 separate trends corresponding possibly to different phases. The atomic ratio K/K+Na cannot be directly used for the discrimination of porphyraceous granites.

Discussion

Many aspects concerning tectonomagmatic affinities (type of magma, mechanism of magma generation) and emplacement, the crystallization mechanism, etc. of the Estonian porphyraceous granites are still unknown.

Contacts between the porphyraceous granites and the surrounding gneisses are sharp without noticeable contact reactions (on the basis of two contact drill cores). However, in drill core 348 (Taebla pluton), a fresh K-feldspar generation in the surrounding gneisses can be traced.

On the basis of several petrogenetic components and their ratios (Mg, Ca, Fe, Ti, Mg/Mg+Fe, Ca/Ca+Na), the differences between the two best studied plutons, Neeme and Märjamaa, can be observed (see Figs. 3A and 3B). The present data suggest that Neeme granites are richer in silica and their Mg/Ma+Fe ratio is mostly lower than that of Märjamaa granites.

The Estonian porphyraceous granites show similarities to typical rapakivi granites of the Salmi, Wiborg, and Korosten plutons. The acid rocks of the Salmi pluton, Karelia, form four intrusive phases (see also Figs. 3A and 3B; Великославинский et al., 1978). The first and the second phase are represented by olivine-pyroxene-hornblende adamellites and ovoidal hornblende-biotite granites, respectively. Even-grained biotite granites as the third phase and porphyraceous biotite as the fourth phase are known. The Wiborg pluton consists of four main intrusive phases (Великославинский et al., 1978; Vorma, 1976). The rocks of the first intrusive phase are represented by pyroxene-hornblende granites (Lappee-granite) corresponding to adamellites. Ovoidal granites containing biotite and hornblende are interpreted as the second phase and trachytoidic varieties as the third phase. The fourth phase is represented by porphyraceous granites with fine-grained groundmass. Granitic rocks of the Korosten rapakivi granite pluton in the Ukrainian Shield form three intrusive phases (Великославинский et al., 1978). The earliest

granitic phase is composed of fine-ovoidal hornblende-biotite granites. The coarse-ovoidal hornblende-biotite granites have been distinguished as the second phase and even-grained biotite granites as the third phase.

On the diagram depicting Mg/Mg+Fe versus SiO₂, the melanocratic granites of the Märjamaa and Neeme plutons show petrochemical similarities to the first phases of Salmi and Wiborg granites (Fig. 3A, left trend), but they have a lower iron content and they contain also less Fe and Mg, as expressed by the lower Mg/Fe ratio (cf. Великославинский et al., 1978), leucocratic rocks of the Märjamaa and Neeme plutons are closer to the rocks of the second, the third, and the fourth phases of the Wiborg pluton (Fig. 3A, central trend).

Somewhat more obvious similarities of the Märjamaa and Neeme plutons and the three above-mentioned rapakivi granitic plutons are displayed in the diagram of Ca/Ca+Na versus SiO_2 (Fig. 3B). Two well differentiated trends with the discriminating point $SiO_2 = 68 - 69$ wt% corresponding to the Märjamaa rocks and three corresponding to the Neeme rocks can be distinguished. However, the rocks corresponding to the first phases of the Wiborg and Salmi plutons show petrochemical characteristics between the Märjamaa (upper trend) and Neeme (lower trend) granites (first trend in Fig. 3B). Having lower Ca/Ca+Na values, Märjamaa porphyraceous potassium granites cor-responding to the central trend are comparable with the second and the third phases of Wiborg granites (the first and the second phase of Korosten granites and the second phase of Salmi granites have somewhat lower Ca/Ca+Na values). Rock samples containing more than 74 wt% SiO₂, typical of Neeme granites, display positive correlation between SiO_2 and Ca/Ca+Na (somewhat similar to the first phase, Fig. 3B). This is different from the main trend of rapakivi granites, characterized mostly by negative correlation. Possibly, this reflects a decrease in the Na content during the metasomatic alteration or the processes

Relying upon the diagrams discussed above and the petrographical studies, we have good ground to suppose that the Märjamaa granite pluton consists of at least two phases, possibly originating from two different primary magmas or one which has evolved in different ways. Analogous acidic-basic differentiation of Neeme granites is not as clearly expressed. In comparison with their Märjamaa analogues, the Neeme granites exhibit smaller chemical fluctuation of petrogenic components and display three variation trends of the interrelations of Ca, Fe, Mg, and Na, possibly corresponding to their three phases.

Асценала З 1962. О строении кристалического фундамента Эстонии. - Уч Мобра З 1962. О строении кристалического фундамента Эстонии. - Уч Мобра З 1962. О строении крист Conclusions 19. - Сонски по данным госфинами. - In Геология вал сонства валемии крист 20. - Сонска и сон

The porphyraceous potassium granites of the Estonian small plutons differ from typical rapakivi granites in their smaller size that reaches only a few dozens of kilometres and the lack of the bodies of gabbroic and anorthositic rocks inside the plutons. Mineralogically, these granites are biotite granites with porphyraceous texture, whereas the melanocratic varieties contain hornblende. The typical rapakivi texture (plagioclasemantled K-feldspar) is very rare. Bipyramidal quartz in groundmass is grey or blueish-grey, not black as is common for the rapakivi granites. The close chemical composition, expressed especially by Niggli main values, geological settings, and similar crystallization age of the Estonian porphyraceous granites and those of the rapakivi formation allow us to consider them as belonging to this formation.

Within the plutons, two to three petrographically and chemically distinguishable phases have been characterized. Similar behaviour of some petrogenic components, such as Mg, Fe, and especially Ca and Na of the Estonian porphyraceous granites and the rapakivi granites of Wiborg, Salmi, and Korosteni, CIS, rapakivi granite plutons can be observed.

Acknowledgements. We are indebted to several geologists of the Geo-logical Survey of Estonia, especially to K. Suuroja, for giving us permission to use some geological material and chemical analyses made in their laboratory. We thank our colleague Dr. Vello Klein for his construc-tive remarks on the manuscript and also Mr. Ivar Puura who made useful comments and improved our English.

REFERENCES

Kirs, J., Huhma, H. and Haapala, I. 1991. Petrological-chemical features and age of Estonian postorogenic potassium granites. - In: Symposium on Rapakivi

Estonian postorogenic potassium granites. — In: Symposium on Rapakivi granites and related rocks. Abstract. 28—29.
Klein, V., Konsa, M. and Niin, M. (in prep.). On the mineralogy of porphyraceous potassium granitoids of Estonia.
Lundqvist, T. 1968. Precambrian geology of the Loos-Hamra region, Central Sweden. — S.G.U. Ser. Ba, 23.
Rämö, T. 1991. Petrogenesis of the Proterozoic rapakivi granites and related basic rocks of southeastern Fennoscandia: Nb and Pb isotopic and general geochemical constraints. — Geol. Surv. of Finland, Bull. 355, 161.
Vaasjoki, M. 1977. Rapakivi granites and other postorogenic rocks in Finland: their age and the lead isotopic composition of certain associated mineralizations. — Geol. Surv. of Finland, Bull. 294.
Vorma, A. 1976. On the petrochemistry of rapakivi granites with special reference to the Laitila pluton, southwestern Finland. — Geol. Surv. of Finland, Bull. 285.
Welin, E., Lundqvist, T. 1970. New Rb—Sr age data for the Sub-Jotnian volcanics (Dala porphyries) in the Loos-Hamra region, Central Sweden. — G. F. F. 1970

(Dala porphyries) in the Loos-Hamra region, Central Sweden. - G. F. F. 1970

Сол. 92, 540, 35—39. Великославинский Д. А., Биркис А. П., Богатиков О. А., Бухарев В. П., Велико-славинский С. Д., Гордиенко П. И., Зинченко О. В., Кивисилла Я. Я., Кирс Ю. Э., Кононов Ю. В., Певицкий Ю. Ф., Нийн М. И., Пуура В. А., Хворов М. В., Шустова П. Е. 1978. Анортозит-рапакивигранитная формация,

Аворов М. В., Шустова П. Е. 1978. Анортозит-рапакивигранитная формация, Восточно-Европейская платформа. Ленинград, Наука. Кирс Ю., Пуура В., Биркис А., Кивисилла Я., Клейн В., Мотуза Г., Нийн М., Суур-оя К. 1990. Новые данные о магматических комплексах фундамента При-балтики. — Іп: Геология и геохронология докембрия Восточно-Европейской платформы. Ленинград, Наука, 155—166. Кууспалу Т. 1971. Зональный кварц из гранитов рапакиви Эстонии. — Изв. АН ЭССР. Хим. Геол., 20, 1, 43—47.

Кууспалу Т. 1975. Граниты рапакиви кристаллического фундамента Эстонии. — Уч. зап. ТГУ, вып. 359. Тр. по геологии, 76—142.

Побул Э. 1962. О строении кристаллического фундамента Эстонии по данным гео-физики. — Іл: Геология палеозоя. Таллинн, 309—318. Побул Э., Вахер Р., Арвисто Э. 1968. Физические свойства пород кристаллического фундамента Эстонии. — Изв. АН ЭССР. Хим. Геол., 17, 4, 393—408.

фундамента Эстонии. — Изв. АН ЭССР. Хим. Геол., 17, 4, 393—408.
Пуура В. 1974. К—Аг изотопный возраст пород кристалличсского фундамента Северной Прибалтики. — Изв. АН ЭССР. Хим. Геол., 23, 1, 40—49.
Пуура В., Мурина Г., Миркина С. 1974. Возраст порфоровидных гранитов рапакиви Северной Эстонии по данным стронциевого и свинцового методов. — Изв. АН ЭССР. Хим. Геол., 23, 2, 169—171.
Пуура В., Вахер Р. М., Клейн В. М., Коппельмаа Х. Я., Нийн М. И., Ванамб В. В., Кирс Ю. Э. 1983. Кристаллический фундамент Эстонии. Москва, Наука.
Эскола П. 1967. Покембрий Финдандии. — In: Локембрий Сканциявие.

Эскола П. 1967. Докембрий Финляндии. — Іп: Докембрий Скандинавии. Москва, Мир, 154—261.

Presented by V. Puura

Received. Jan. 21, 1992

Alvar SOESOO, Mati NIIN

EESTI EELKAMBRIUMI PORFÜÜRILAADSETE KAALIUMGRANIITIDE PETROGRAAFIAST JA PETROKEEMIAST

Eesti aluskorras on teada viis intrusiivse iseloomuga varaplatvormset porfüürilaadset kaaliumgraniidi (PKG) massiivi: Märjamaa, Neeme, Naissaare, Ereda ja Taebla. Peamised kivimit moodustavad mineraalid on mikrokliin, kvarts, plagioklass ja biotiit, melanokraatsetel erimitel ka küünekivi. Lisandmineraalidena on teada apatiit, fluoriit, tsirkoon, sfeen, muskoviit jt. Eesti PKG keemiline koostis on üsna lähedane tüüpilisele rapakivi graniidile, erinedes viimasest mõneti suurema titaani ja väiksema summaarse raua ja alumiiniumi sisalduse poolest. Ka mitmed geoloogilis-struktuursed iseärasused (kuju, varaplatvormsed tingimused jt.) lubavad nimetatud massiivide kivimeid võrrelda rapakivi graniitidega. Petrograafiliselt, samuti keemilise koostise põhjal on eristatavad 2–3 intrusiivset faasi. Mg/Mg+Fe–SiO₂ ja Ca/Ca+Na–SiO₂ diagrammidel moodustavad Märjamaa ja Neeme massiivide PKG-d kolm eraldi trendi, mis on võrreldavad mitmete rapakivi graniitide vastavate suurustega eraldi faaside kaupa.

Алвар СОЕСОО, Мати НИЙН

ПЕТРОГРАФИЧЕСКИЕ И ПЕТРОХИМИЧЕСКИЕ ЧЕРТЫ ДОКЕМБРИЙСКИХ ПОРФИРОВИДНЫХ КАЛИЕВЫХ ГРАНИТОВ ЭСТОНИИ

Описаны пять раннеплатформенных интрузивных массивов порфировидных калиевых гранитов фундамента Эстонии: Мярьямааский, Неэмеский, Таэблаский, Найссаареский и Эредаский. Основные минералы названных гранитов: микроклин, кварц, плагиоклаз, биотит, для меланократовых разновидностей характерна и роговая обманка. Второстепенные минералы представлены апатитом, флюоритом, цирконом, сфеном, мусковитом и др. По химическому составу порфировидные калиевые граниты Эстонии довольно близки к типичным гранитам рапакиви, хотя отличаются от них повышенным содержанием титана и пониженным содержанием железа и глинозема. Состав, а также некоторые геолого-структурные черты позволяют сравнивать описанные граниты с типичными гранитами рапакиви. Петрографически и петрохимически выделяются 2—3 фазь. На диаграммах Mg/Mg+Fe—SiO₂ и Ca/Ca+Na—SiO₂ образуются 2—3 отдельных тренда, которые, вероятно, отвечают разным фазам интрузии некоторых гранитов рапакиви.

o increase the labour productivity and the number of studies samal

107