EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 28. KÖIDE GEOLOOGIA. 1979, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 28 ГЕОЛОГИЯ. 1979, № 2

https://doi.org/10.3176/geol.1979.2.01

УДК 553.242.3:550.42(474.2)

П. ВИНГИСААР, Х. ГУЛОВА, Т. КИЙПЛИ, В. ТААЛМАНН

ВЕЩЕСТВЕННЫЙ СОСТАВ ПАЛЕОЗОЙСКИХ КАРБОНАТНЫХ ПОРОД ЭСТОНИИ

Проведена систематизация материалов по вещественному составу палеозойских карбонатных пород Эстонии, представленных главным образом в виде сокращенных химических и полуколичественных спектральных анализов. Дополнительно были изучены и проанализированы некоторые разрезы из тех мест и по тем стратиграфическим интервалам, которые в имеющемся материале освещены слабо. Для этого отбирались штуфные пробы из кернов скважин через 1—1,5 м, в мощных однородных пластах — несколько реже. Спектрально были изучены дубликаты ранее исследованных химически или же спектрально, но без применения лабораторных стандартных образцов проб. Последние позволяют повысить воспроизводимость данных и привести их к единому уровню. Методика определения и обработки данных опубликована ранее (Кивисилла, 1975; Орлова и др., 1976; Таалманн и др., 1977).

В результате получена картотека, состоящая из 15 300 сокращенных

Рис. 1. Расположение скважин, данные которых использованы в настоящей статье.

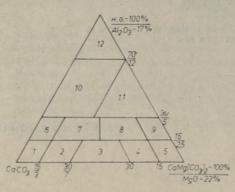


Рис. 2. Классификация карбонатных пород Эстонии по вещественному составу. I — известняк, 2 — известняк доломитовый, 3 — доломито-известняк, 4 — доломит известковый, 5 — доломит, 6 — известняк глинистый, 7 — известняк доломитовый глинистый, 8 — доломит известковый глинистый, 9 — доломит глинистый, 10 — мергель, 11 — домерит, 12 — глина карбонатная.

химических и 10 400 спектральных анализов, выполненных в основном за последние 20 лет в центральной лаборатории Управления геологии ЭССР. Распределение проб, взятых из кернов скважин как по площади, так и по разрезу, можно считать более или менее равномерным (рис. 1). Слабо изученными остались верхнесилурийские и верхнедевонские отложения.

На основе химических и спектральных анализов с помощью ЭВМ составлены частные литологические и стратиграфические выборки по скважине или месторождению, а иногда и группе скважин, по которым определены средневзвешенные содержания макрокомпонентов и малых элементов по горизонтам, и макрокомпонентов по литологическим типам, выделенным согласно упрощенной классификации (рис. 2). В эти расчеты не включались данные по секущим телам доломитов, развитым вдоль зон тектонических нарушений, а также по месторождениям, ибо своим количеством и разной встречаемостью по горизонтам, а также крайними составами пород месторождений они сильно исказили бы средние содержания элементов и сделали бы результаты несопоставимыми.

Установлен убывающий ряд встречаемости литологических разностей пород в карбонатной толще Эстонии (%): известняки — 40, известняки глинистые — 14, доломиты — 12, известняки доломитовые — 8, мергели — 7, известняки доломитовые глинистые — 6, доломиты глинистые — 4, доломиты известковые — 3, домериты — 3, доломито-известняки — 1,5, доломиты известковые глинистые — 1, глины карбонатные — 0,5. Отсюда видно, что в наибольшем количестве встречаются конечные разности пород: на долю известняков и доломитов с их глинистыми аналогами приходится 70%, переходные разности в ряду известняк—доломит (включая глинистые) составляют 19,5% всех карбонатных пород, некарбонатные или граничные по глинистости карбонатные породы — мергели, домериты и глины — 10,5%.

Приведенные в табл. 1 данные о среднем составе пород по горизонтам представляют собой результат первой попытки систематизировать большой фактический материал по всему карбонатному разрезу. Поэтому в этом материале неизбежна доля относительности, обусловленная неодинаковыми количеством и представительностью исходных данных, а также разными методическими подходами геологов, опробовавших те или другие разрезы в разных целях. Спорной можно считать и большую глинистость пород яагарахуского горизонта по сравнению с глинистостью пород яаниского горизонта. Объясняется это тем, что по последним стратиграфическим схемам в яагарахуский горизонт включена часть мергелей (до кровли ниназеской пачки), ранее считавшихся яанискими. Опробованные разрезы находятся главным образом на ма-

Таблица 1

Средний состав карбонатных пород Эстонии по горизонтам, %

	по горі	изонтам,	0	
Горизонт	Кол-во проб	CaO	MgO	Нераст- воримый остаток (н. о.)
O ₁ vl O ₁ kn O ₂ as O ₂ ls-uhV O ₂ uh O ₂ kk ∑ O ₂ as-kk O ₂ id O ₂ jh O ₂ kl O ₂ on O ₂ rk O ₃ nb O ₃ vr O ₃ prg O ₃ pr S ₁ jur S ₁ rk S ₁ ad S ₁ jn S ₁ jg S ₂ rtVs D ₂ nr D ₃ sr	124 282 446 438 214 359 1457 243 203 365 72 363 456 342 732 174 570 428 249 117 179 136 378 138	31,8 41,1 43,4 45,2 43,3 45,2 44,5 40,0 40,5 40,8 33,1 44,6 44,7 40,0 39,1 36,9 41,0 35,9 30,9 22,0 27,6 15,8 23,1	10,5 4,6 2,1 3,3 1,8 1,2 1,7 1,9 1,4 1,7 2,7 0,9 2,8 3,1 3,9 8,0 3,5 9,2 8,9 8,1 15,8 16,9 11,2 12,9	11,0 12,5 11,1 6,3 12,7 10,2 9,7 15,6 17,5 16,5 27,4 4,3 7,0 14,6 16,6 10,2 12,0 13,5 17,5 34,5 38,3 12,3 41,4 21,1
Всего Среднее	7008	39	2,9	11

глинистые по сравнению с породами яагарахуского горизонта. Для всего района распространения горизонтов это, по-видимому, не характерно. Перечисленное относится и к данным по малым элементам, приведенным в табл. 2 и 3. Средний состав карбонатных пород уточняется по мере накопления новых данных, достижения более равномерного исследования по площади и разрезу и применения методически единой системы опробования.

терике, где более кар-

бонатные верхи яагара-

хуского горизонта сде-

нудированы. Таким образом, на материке породы яаниского горизонта немного менее

Такие малые элементы, как титан, марганец, стронций и барий, в изученных карбонатных породах всег-

да обнаруживались в количестве, значительно превышающем чувствительность метода. В большинстве проб наряду с перечисленными элементами найдены хром, медь, никель, галлий, цирконий и реже фтор, свинец, бериллий. Редко и преимущественно в мергелях (домеритах) встречаются ванадий, кобальт, бор. Перечисленные элементы, за небольшим исключением, брались в выборки. Помимо названных элементов в некоторых разрезах обнаружены цинк, олово, молибден, иттрий, иттербий, лантан, церий, серебро, мышьяк, скандий, литий, фосфор, германий, которые для статистической обработки и характеристики комплексов пород не использовались. Можно отметить, что молибден, иттербий и литий встречались преимущественно в мергелях и карбонатных глинах, цинк — в известняках и иттрий — в известняках и доломитах; германий распространен в нижнем ордовике главным образом в волковском горизонте.

С помощью табл. 2 выделены средние содержания элементов в литологических типах карбонатных пород Эстонии, которые сравниваются с общими средними содержаниями по К. Турекяну и К. Ведеполю (Войткевич, 1970), называемыми в дальнейшем для краткости кларками.

Количество проб домеритов и глинистых доломитов небольшое (соответственно 29 и 66 проб). Остальные типы пород представлены более удовлетворительно. В выборки известняков не были включены пробы из раквереского горизонта и в выборки доломитовых известняков — пробы из таммикуской пачки юуруского горизонта. Породы этих

Среднее содержание элементов в литологических типах

	Кол-во					Co	держан	ие, г/т
Порода	проб	Ti	V	Cr	Mn	Co	Ni	Cu
Известняк	2425	430		17	1100		Part of the second	2,4
Известняк (только O2rk)	604	230		25	510		0.0	0.0
Известняк глинистый Известняк доломитовый Известняк доломитовый (толь-	2047 296	1100 540		35 17	1400 1400		6,3 7,4	6,9
ко SıjurT) Известняк доломитовый гли-	179	140			250			
нистый	183	1100		38	750		14	8,3
Доломит глинистый	866 66	520 950		19 40	2300 930		18	9,8
Мергель	199	2800	52	73	1100	17	26 46	8,2 25
Домерит	29	800	55	64	710	23	56	24
Среднее содержание элементов Предел чувствительности ана-	9122	720		. 17	830		9,0	5,5
лиза		10	10	10	10	3	3	1
Среднее содержание элементов карбонатных отложений по К. Турекяну и К. Ведеполю (Войткевич и др., 1970)		400	20	11	1100	0,1	20	4,0

Примечание. Незаполненные ячейки в табл. 2 и 3 означают, что в трети и большем количестве проб данной выборки элемент определен ниже предела чувствительности и поэтому средние значения не высчитывались.

стратиграфических единиц настолько бедны малыми элементами, что включение их в суммарные выборки исключило бы оттуда еще несколько малых элементов. Поэтому содержание малых элементов в пробах этих двух горизонтов дано отдельно.

На основе всех имеющихся результатов анализов выведено среднее содержание элементов карбонатных пород Эстонии. По сравнению с кларками карбонатные породы Эстонии немного беднее ванадием, марганцем, никелем, свинцом, фтором; вдвое беднее стронцием, но на порядок богаче барием и немного богаче титаном и хромом. Эти особенности, вероятно, связаны с несколько большей глинистостью карбонатных пород Эстонии по сравнению с глинистостью пород по обобщенным К. Турекяном и К. Ведеполем данным (Войткевич, 1970). Содержания кобальта, свинца, цинка, олова, циркония и фосфора не могут быть прямо сравнимы с кларками, ибо предел чувствительности нашего анализа не достаточен для их определения.

Среднее содержание малых элементов в пробах карбонатных пород, рассчитанное на стратиграфические единицы от волховского до роотсикюлаского горизонтов (табл. 3), показывает большое колебание содержаний малых элементов по горизонтам. Таким образом, формирование состава малых элементов можно считать обусловленным преимущественно фациальными и палеогеографическими условиями, имеющими место во время осадконакопления.

Из особенностей, подчиненных стратиграфическому контролю, следует в первую очередь отметить высокие содержания марганца в отложениях от волховского до ласнамяэского горизонтов, относительно малое содержание фтора — от йыхвиского до пиргуского горизонтов, обо-

карбонатных пород Эстонии

Таблица 2

										Coz	цержан	ие, %
Pb	Zn	Ga	Sn	Zr	Be	Sr	Ba	Р	F	Al ₂ O ₃	Fe ₂ O ₃	MgO
		1,8				370 380	83 50		220	1,9 1,5	1,2 0,7	1,4
		3,3				390 340	170 92		270 260	3,4 1,8	1,5 1,3	1,4 1,2 1,5 5,7
						300	39		260	2,2	0,6	4,4
		4,0		23		330 260	120 90		300	3,2 1,7	1,6 2,3	5,4 ≫10
21 21		3,8 8,5 8,4		270 230	4,8 4,3	250 360 210	140 340 410		310 330	3,1 7,9 7,3	3,2	≫10 2,8 >10
		2,6				330	110		220	2,5	1,5	3,4
3 .	100	3	3	10	1	100	30	1000	100	0,1	0,1	0,1
9,0	20	4,0	1			610	10	400	330			

гащенность отложений горизонтов от адавереского до роотсикюлаского никелем, свинцом и медью.

Полученные сведения о составе карбонатных пород Эстонии позволяют уточнить перспективную оценку их как сырья и помогут более целеустремленно вести поисковые работы. Это касается особенно новых для нашей республики областей применения карбонатных пород, например, изготовления минеральной подкормки для сельскохозяйственных животных, в которой строго лимитируется содержание малых элементов. Наличие седиментационного контроля над геохимическими особенностями карбонатных пород может быть использовано при литологофациальных исследованиях.

	ı	
	ı	
	ı	
	ı	
	ĺ	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
		-
-		
-		
5		
a		
. 2		
=		
=		
=		
47		
•		
-		
2		
2		
×		
U		
0		
7		
Z		
4		
2		
0		
T		
=		
Z		
5		
a		
D		
H		
0		
0		
10		
-		
-		
=		
=		
0		
5		
2		
ന		
×		
a		
H		
0		
0		
5		
=		
34		
-		
-		
-		
a		
I		
0		
10		
0		
त्त		
- 14		
1		
8		
1		
m		
0		
-		
H		
9		
Σ		
0		
5		
0		
200		
fe		
=		
-		
0		
¥		
6		
63		
H		
7		
0		
9		
0		
0		
H		
H		ø
0		
D		
()		
-		
-		
		1

	'ada	Was asserted	- Landaw	-		ndnu a		wadan .	-		mindia am	had		-	(
1							9	Содержание,	ание, г	z/r						Co	Содержание,	ие, %
Горизонт	Кол	Ti	Λ	Cr	Mn	Co	Ni	Cu	Pb	Ga	Zr	Be	Sr	Ba	T	Al ₂ O ₃ Fe ₂ O ₃	Fe ₂ O ₃	MgO
S2rtVs	187	098	5,6	30	630		31	30	24	3,1			270	120	540	2,3	1,6	≥ 10
Sijg	242	1200	00	41	440	-	22	9,5	17	6 7	100		320	160	270	3,1	2,8	>10
Sign	127	2000	707	21	1300	11	13	10	20	2,0	130		280	74	350	-2.0	1,7	N ≥ 10
Sirk	210	730		19	190								460	73	100	2,4	1,1	4,2
SijurT	262	140			240								300	38		2,1	0,55	3,7
Sıjur (6e3 SıjurT)	216	1100		32	240		-	6,4		3,3			440	130		3,7	1,3	1,9
Ospr	901	390		23	019		6,7	2,5		1,8			290	89	560	1,9	5,6	9,7
Oaprg	186	200		25	650								340	06		2,6	1,4	2,4
Osvr	194	1000		43	066		23	10		3,6			260	120		2,9	1,5	2,3
Oanb	293	350			740								360	08		1,6	6,0	2,9
O2rk	61/	250		-	200								370	54		1,5	8,0	2,2
Ozon	127	710		22	098			7,8	13		39		310	160		2,8	1,4	2,3
O ₂ kl	388	01/		25	280					2,6			380	140		2,7	1,2	2,0
,	777	940		40	0011		1	1,0		3,7			400	001	000	4,5	4,1	D,1
Огоп-кі-јп (нерасчл.)	210	2000	0 11	141	1000		5,0	7,0		4,3	t.	2,1	970	230	780	2,0	1,1	0,1
O210	407	080	6,0	36	1400		7,0	0,0		0,1	11		200	140	1/0	0,0	1,4	2,7
Ozna	406	1000		22	1700		1,0	7,3		2,7	00	1.0	250	150	050	0,0	2,1	0,0
O 1º	200	440		10	2200		7.1	0,1		1,0	777	0,1	210	000	000	0,7	1,0	2,47
Cars	200	011	6.4	00	0000		0,0			000			010	00	2007	1,7	1,0	0,0
	5004	010	6,4	97	0019		8,0	3,1		2,3			330	35	340	2,1	7,4	1,1
О2as-кк (нерасчл.)	355	920		26	1500		6,8	4,6		2,5	22		350	110	130	2,5	1,5	1,2
O ₁ kn	131	089		52	3000			0,9		3,1			570	120	450	2,8	2,3	2,5
Oıvl	304	069		20	3700		8,8	5,0		3,2	14		300	120	250	2,4	2,9	>10
O ₁ vIS+P	99	610		15	4100		9.9	5.6		3.4			340	93	330	2,2	3,3	8,6

ЛИТЕРАТУРА

Войткевич Г. В. Краткий справочник по геохимии. М., 1970.

Кивисилла Я. Я. Система программ «Базальт» для математической обработки массовой геохимической информации на ЭВМ. — В кн.: Опыт и методика геохимических исследований и поисков месторождений полезных ископаемых в кристаллическом фундаменте Белоруссии и Прибалтики. Минск, 1975.

Орлова К. Б., Варес В. И., Вингисаар П. А. Спектральное определение элементов в карбонатных породах. — Разведка и охрана недр, 1976, № 11,

c. 21-26.

Таалманн В. А., Вингисаар П. А., Кийпли Т. К. Геохимические особенности доломитизированных карбонатных пород Эстонии. — В кн.: Опыт изучения вторичных изменений в карбонатных породах Прибалтики и Белоруссии. Таллин, 1977, с. 8—9.

Управление геологии Совета Министров ЭССР

Поступила в редакцию 13/III 1978

P. VINGISAAR, H. GULOVA, T. KIIPLI, V. TAALMANN

EESTI PALEOSOIKUMI KARBONAATKIVIMITE KOOSTIS

Varasemate analüüside ja autorite endi uurimistulemuste üldistusena on esitatud keskmisi andmeid Eesti aluspõhja karbonaatkivimite koostise kohta. 7000 keemilise analüüsi alusel on arvutatud MgO, CaO ja lahustumatu jäägi keskmised sisaldused lademete kaupa ja Eesti karbonaatkivimites tervikuna. Mikroelementide sisaldused on saadud 9000 poolkvantitatiivse spektraalanalüüsi tulemusena. Keskmised on arvutatud nii põhiliste kivimitüüpide kui ka stratigraafiliste ühikute kaupa.

P. VINGISAAR, H. GULOVA, T. KIIPLI, V. TAALMANN

THE COMPOSITION OF ESTONIAN PALAEOZOIC CARBONATE ROCKS

A generalization of available analytical data and supplementary studies by the authors allows to present mean indices on the composition of the carbonate rocks. As a result of seven thousand abbreviated (definition of MgO, CaO, and the insoluble residue) chemical analyses, the mean contents of the three above-mentioned components were calculated according to stages and in the overall bulk of Estonian carbonate rocks. The contents of microelements were determined on the basis of nine thousand semiquantitative spectral analyses. The mean amounts have been calculated both according to principal types of rock as well as according to stratigraphical units. In both tables, the contents are given in p.p.m., except Mg, Fe, Al, which are presented in per cent and in the form of oxides so as to facilitate the comparison of chemical analyses.