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Abstract. The use of nonlinear and chaotic dynamics and fractal approaches in the studies of the 
Earth has increased in the last decade. A large number of geological objects show a power-law or 
fractal distribution, which suggests that these objects do not require any characteristic length-scale 
or time in their definition. Fractals can be used in studies of magma mixing and mingling, mantle 
convection, lava flows, percolation properties of veins and ore mineralization, and to separate 
geochemical anomalies. It is shown that the width of migmatitic leucosomes in the Estonian 
basement rock follows power-law distributions and shows fractal properties. Despite the differences in 
size and number of measured leucosomes and veins, differences in host rock types and formation 
conditions, the studied leucosome and vein data set shows good power-law distributions with 
exponents, m, usually between 1.0 and 1.9. The spacing of leucosomes and veins in rock section 
is not a random feature, but fractal (fractal dimension D = 0.77–0.79). Using the power-law size 
distribution for the melt batches, the total volume of the melt phase, as well as the relative 
contributions of the largest batch (dominant for m < 1) and of the smallest batches (dominant for 
m > 1), are estimated. The relationship between the magmatic leucosome width-distribution exponent, 
and the melt batch size-distribution is derived.  
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INTRODUCTION 

The last years have witnessed the increasing activities in the use of nonlinear 
and chaotic dynamics, fractals, and approach of complex systems in different 
Earth and social sciences. Geology is not an exception. This development points 
to the emergence of a new paradigm.  
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Soon after Mandelbrot (1967) introduced the concept of fractals, it came into 
use in different sciences including Earth sciences. The mathematical theory of 
fractals is described in Mandelbrot (1982).  

The question “How long is a coastline, for instance the Norwegian fiord 
coast?”, has no exact answer. The length measure depends on the resolution  
of the ruler that is used. One can use boxes of a certain size to measure the 
coastline. Obviously, the smaller the box, the more boxes are needed to cover the 
coast. Decreasing the size of the box will result in a more “exact” length of the 
coastline. However, there are physical limits in re-sizing the measuring box. One 
way of representing these measuring results is to plot the number of boxes 
against the size of the measuring box on a log–log plot, for a large range of box 
sizes. The results fall on a trend with a negative slope, which gives the “fractal 
dimension” of the coast. Had the coast been a straight line, the number of boxes 
would be inversely proportional to box size and the fractal dimension would be 1. 
For the Norwegian coastline the fractal dimension is 1.52 (Feder 1988), the 
dimension which lies between a straight line (with dimension 1) and a surface 
(with dimension 2).  

Fractal geometry is well suited to the description of geological objects that 
exhibit scaling behaviour. The most important feature of fractal geometry is the 
lack of any homogenization scale. The main argument for potential fractal scaling 
in geology is the absence of characteristic length-scales in a number of geological 
observations. For example, in the hydrocarbon industry, such scaling laws provide 
a key to predicting the nature of fracturing (also below the limit of seismic 
resolution), which can significantly influence reservoir parameters. In the ground-
water, contaminant transport is particularly sensitive to the properties and scaling 
of fracture systems. In earthquake hazard assessment, the main issue is the validity 
of the Gutenberg–Richter law for predicting the probability of the occurrence of 
large earthquakes.  

By now a number of fractal studies in geomorphology, petrology, oil and gas 
geology, ore geology, sedimentology, geophysics, geochemistry, and other 
geological disciplines have been published and this approach has proven to be 
successful in geological research. The aim of this paper is to give an overview of 
the use of fractals in geology and show an example of how it can be applied to  
studies of partial melting and melt accumulation within the crust.   

 
 

AN  EXAMPLE  OF  A  FRACTAL 
 
Let us construct a fractal and find its dimension. Consider the Sierpinski 

Triangle – a simple example of a fractal (Peitgen et al. 1992). We start with a 
triangle (Fig. 1A). Next, let us draw the lines connecting the midpoints of the 
sides and cut out the centre triangle. We have reached the stage of the triangle 
which consists of three new triangles, with each side half the length of a side of 
the original triangle (Fig. 1B). Each “new” triangle looks exactly like the original 
triangle when magnified by a factor of 2 (magnification or scaling factor). Now 
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we simply repeat the dividing as many times as we wish. It is easy to see that 
each smaller triangle is exactly the same as the triangle one step before when 
magnified by a factor of two. Thus, the Sierpinski Triangle is self-similar.  

Now we can compute the fractal dimension (D) of the Sierpinski Triangle. 
Notice that the second triangle is composed of three miniature triangles exactly 
like the original. The length of any side of one of the miniature triangles could be 
multiplied by 2 to produce the entire triangle (S = 2). The resulting figures 
consist of three separate identical miniature pieces (N = 3). We find D by 
considering 3 = 2D, giving log 2D = log3, and finally D = log3/log2, which in the 
present case is 1.58. The dimension of the Sierpinski Triangle is 1.58, and is not 
an integer: it is fractal.  

This method of finding fractal dimensions can be used only for strictly self-
similar fractals. Other ways of computing fractal dimensions include, for example, 
mass or box counting. The fractal dimension indicates the degree of detail or 
crinkliness in a shape. So, in the Euclidean space dimensions, the Sierpinski 
Triangle lies between the line (dimension 1) and surface (dimension 2).  

In theory, a fractal dimension is a non-integer topological dimension of the 
space that embeds an object with a complex geometry. A common brief definition 
of a fractal set is one with no characteristic length-scale. However, Mandelbrot 
(1982) stressed that such a definition cannot directly apply to natural fractal sets, 

Fig. 1. The Sierpinski Triangle – a simple 
example of a fractal. We start with a triangle 
(A) and draw the lines connecting the mid-
points of the sides. Each “new” triangle
looks exactly like the original triangle when 
magnified by a factor of 2 (B–E). Repeating 
the division many times, we see that smaller 
triangles are exactly the same as the triangle 
one step before when magnified by a factor 
of two.  
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which have their natural upper and lower limits. Thus, for fractals in nature, the 
above definition applies only within a limited scale range. Nevertheless, fractal 
dimension has turned out to be a powerful tool to measure complex forms which 
were previously immeasurable, such as mountains, the Earth’s surface, clouds, 
rock texture, deformed crustal sections, trees, etc. Some very convoluted surfaces, 
such as a tree’s foliage or the internal surfaces of lungs, but also rock texture or 
surface, may effectively approach three-dimensional structures. We can therefore 
think of roughness as an increase in dimension: a rough curve has a dimension 
between 1 and 2, and a rough surface has a dimension somewhere between 2  
and 3. The dimension of a fractal curve is a number that characterizes the way in 
which the measured length between given points increases as the scale decreases. 

Brownian motion is a classical example of a process that has a fractal 
dimension of 2 (Mandelbrot 1967). It occurs in microscopic particles and is the 
result of random movement by molecules (air, water, fluid, etc.). The path of 
such a particle is a “random walk” in which both direction and distance are 
uniformly distributed random variables. So, in moving from a starting location in 
space to a certain final location, the movement path taken by the particle is 
almost certain to fill the whole space before it reaches the exact point that is 
taken as a destination.  

Summarizing, the fractal dimension indicates the degree of detail or crinkliness 
in the object. For a large number of geological objects it is a valuable measure, 
especially in understanding the processes responsible for such objects (rock 
structures, crustal complexes, ore bodies, fractures, composition of minerals and 
rocks, etc.) and for predictive purposes.  

Finally, it should be emphasized that here we use the word “fractal” in its 
widest possible sense, as a synonym to the word “scale-invariant”. The strict 
definition covers only (statistically) self-similar structures. However, the lack of 
internal characteristic scales (“scale-invariance”) can take a wide variety of 
forms: self-similarity (a coastline), self-affinity (Earth’s surface), multifractality 
(patterns arising from turbulent mixing), power-law distributions (leucosomes in 
migmatites, see below), etc.  

 
 

FRACTALITY  IN  GEOLOGY 
 
A power-law distribution (fractal in the loose sense) is the simplest statistical 

distribution that is scale-invariant, while other common distributions, such as the 
normal (Gaussian) and log-normal, have a characteristic length-scale or time in 
their definition. At present we know many examples of such scale-invariant, 
power-law distributions in nature, including geology and geophysics. For example, 
topography on the Earth, Moon, and Venus is well approximated by a Brownian 
motion (fractal number D = 2). Hurst et al. (1965) showed that time series of 
river discharges, lake levels, but also thickness of tree rings and varves give 
Hurst exponents of around H ≈ 0.75 and fractal dimensions of D ≈ 0.5. The Hurst 
exponent (H) is the measure of the smoothness of fractal time series and can  
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be related to fractal dimension by H = E + 1 – D, where E is the Euclidean 
dimension (E = 0 for a point, 1 for a line, 2 for a surface, etc.). If H = 0.5, the 
behaviour of the time-series is similar to a random walk.  

One of the fundamental problems in geology is the statistical distribution of 
chemical elements in the Earth’s crust and mantle. Extreme concentrations of 
elements lead to ore deposits within the crust. Cargill et al. (1981) and Turcotte 
(2002) showed that ore deposits satisfy fractal statistics. Cheng et al. (1994) used 
fractal techniques to separate geochemical anomalies from background noise and 
Zheru et al. (2001) quantified the fractal features of element distributions on 
mineral surfaces.  

A number of authors have shown that mineral textures and distributions are 
fractal (e.g. Fowler 1995). Armienti & Tarquini (2002) studied olivine crystal 
size distributions in xenoliths using fractal methods. Fractal analysis is also used 
in studies of magma mixing and mingling in different geological environments – 
volcanic eruptions in Italy (De Rosa et al. 2002), in a plutonic complex in Greece 
(Diego & Giampiero 2000), and in lava flows in Greece and Italy (Perugini et al. 
2002; Poli & Perugini 2002), or in mantle convection (Ten et al. 1997). A 
hierarchical fractal model of magma transport beneath Hawaii is proposed by 
Saw & Chouet (1991).  

It has long been observed that earthquakes have so-called Gutenberg–Richter 
scaling (magnitude–frequency), that is, the distribution of events according to 
size follows a simple power-law. In other words, if the number of events of a 
given size or larger is plotted versus that size, the result will be a straight line on 
a log–log plot. In observational data, the exponent-value (the slope of the line) 
varies from region to region.  

Although some fracture systems are best described by scale-limited laws (log-
normal, exponential), it is now recognized that power-laws and fractal geometry 
provide widely applicable descriptive tools for fracture system characterization 
(Bonnet et al. 2001). Vein thickness and the mechanism of vein growth can also 
be successfully studied by employing fractal analysis (Brooks et al. 1995) as well 
as percolation properties of veins and ore mineralization (Roberts et al. 1999).  

Power-law distribution is also characteristic of turbidite sections (Rothman et 
al. 1994) and fractal analysis may help to qualify the dynamics of turbidite 
sedimentation. The pore structure in sedimentary rocks is also fractal (Dutta 
2003) and porosity variations in sedimentary basins are self-affine fractals to a 
good approximation both horizontally and vertically (Pelletier & Turcotte 1996). 
Malamud & Turcotte (1999) used power-law (fractal) correlation to estimate the 
number of plumes and hotspots that are not accounted for in present geological 
observations. Finally, the observed fractal shape of sutured quartz grain boundary 
has its implications for geothermometry (Kruhl & Nega 1996).  

These examples cover many fields in geology and associated geosciences. 
However, the main message of a large number of these papers is that we are able 
to recognize the fractal properties of geological observations, but not always explain 
the phenomenon. This stage may point towards the emergence of a new paradigm.  
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MELT  ACCUMULATION  AND  MIGRATION:   
AN  EXAMPLE  OF  A  FRACTAL  APPROACH 

 
Melt is generated by partial melting on the micro- to millimetre-scale in its 

source region and may accumulate and ascend to form several kilometre-scale 
volumes in the form of intrusions, batholiths, and volcanic formations. The whole 
range of magmatic processes may involve over 15–20 orders of magnitude in 
scale and deals with a variety of physical-chemical processes on different scales 
and different levels within the crust and mantle. Timescales also vary over  
many orders of magnitude, from seconds to hours for hydrofracture propagation 
involved in ascent of dykes (Lister & Kerr 1991; Clemens & Mawer 1992; Bons 
et al. 2001) to many millions of years for a thermal event that causes partial 
melting and crustal restructuring (Brown et al. 1995; Petford et al. 2000).  

One of the manifestations of partial melting, melt segregation and accumulation 
are migmatites – composite rocks, which display both metamorphic and magmatic 
components. Several hypotheses have been put forward for the formation of 
migmatites, such as partial melting (Winkler 1961), injection of foreign magmas 
(Sederholm 1907), metamorphic differentiation (Ashworth & McLellan 1985), 
and metasomatism (Olsen 1984). The combination of partial melting and meta-
somatism is also believed to cause migmatite formation (Olsen 1984). In recent 
years, partial melting has been considered to be the only dominant migmatite-
forming process.  

Migmatites are abundant in the Estonian crystalline basement, which is covered 
by Phanerozoic sediments and only found in drill core (Puura et al. 1997).  
We examined the leucosome and magmatic vein statistics in two drill cores. 
Magmatic veins and leucosomes are not homogeneous within the Estonian 
basement. They vary from large (up to over 1 m wide) granitic sills and lenses  
to millimetre-scale thin lenses, veins, and patches. The latter are probably the  
result of local melting and limited melt segregation, while larger veins may be 
manifestations of larger-scale melt transport, segregation, and accumulation. Melt 
may have entered the system and/or may have left the system.  

Drill core F-156 penetrates volcanic-sedimentary biotite gneisses of amphibolite 
facies origin in Eastern Estonia. About 450 leucosomes (see Fig. 2) and granitic 
veins were measured in a section of 40 m. Only veins wider than 3 mm were 
recorded. The percentage of igneous material (leucosomes and granitic veins) is 
24 (9.7 m from 40 m). The average leucosome and granitic vein size is 9.7 and 
28 mm, respectively. The results are presented in a log–log plot (Fig. 3).  

Drill core F-265 consists of biotite–plagioclase and pyroxene amphibolites of 
amphibolite facies, likely of igneous origin. This drill core represents a different 
situation where a large number of granitic veins dominate in the mafic gneiss and 
proper leucosomes are small (less than 2 mm) or absent and thus cannot be 
precisely measured. About 545 granitic veins were measured in a section of 94 m 
(Fig. 3). These veins form 26% of the whole rock section. This percentage is 
close to that of drill core F-156.  
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The width of leucosomes was measured in a 
number of drill cores consisting of rock types 
formed in different pressure–temperature conditions 
(amphibolite to granulite facies metamorphism). 
The results were statistically analysed in order  
to find the best statistical description. In Fig. 2 
the spectrum of leucosome thicknesses along drill 
core F-156 is shown as an example. Is this leuco-
some distribution random in space and is the 
leucosome size (width) random? These are important 
questions related to segregation and accumulation 
of melts (or fluids) within the crust and else-
where. We found that the number of small leuco-
somes and veins was correlated to the number of 
large leucosomes and veins by a simple power-
law:  

 
,m

S kSN −

>
=  

 
where N>S is the number of leucosomes larger 
than size S, k is the number of leucosomes larger 
than unit size, and m is the distribution exponent 
(Fig. 3). Both drill cores show a power-law 
distribution from about 5 to 1000 mm, about two 
orders of magnitude. In both cases the exponent 
m ≈ 1.15. Drill core F-265 has only granitic veins 
wider than a few millimetres. Two types of veins 
could, however, be distinguished in drill core  
F-156: yellow to pink granitic–pegmatitic veins 
and pale white veins. When these two populations 
are plotted separately (Fig. 3A, B), we obtain the 
exponents m ≈ 1.1 and m ≈ 1.9, respectively. Such 
distributions are abundant in nature, as mentioned 
above. We found similar distributions in leuco-
some measurements at outcrops (for example  
in the Masku area, Finland, and in the Labrador 
Peninsula, Canada). Relying upon that, we may 
provisionally conclude that leucosome sizes, as 
well as leucosome spacing in the rock section, are 
not random values, but obey certain more complex 
rules. The box-counting method has been used  
to study leucosome distribution along these rock 
sections (Fig. 4). The results suggest that leuco-
some and granitic vein distribution in drill cores 

 

 

Fig. 2. Thicknesses of leucosomes
in drill core F-156. The values
are plotted in order of occurrence 
along the drill core from top to
bottom.  
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Fig. 3. (A) Thickness distribution of veins and leucosomes along a one-dimensional section of drill 
core F-156. (B) Both in situ leucosomes (filled squares) and granitic veins (open circles) show a 
power-law thickness distribution. (C) Thickness distribution of leucosomes along a one-dimensional 
section of drill core F-265.   

 
 
F-156 and F-265 is not random but obeys certain rules, which are exemplified by 
good trends on similar log–log plots. In both cases the slopes (exponent) are 
similar: 0.77 for drill core F-256 and 0.79 for F-156 when studying the range 
between 13 and 650 mm. Squeezing the range to 20–600 mm lowers the exponent 
slightly (0.74 and 0.76, respectively).  

Despite the differences in the size of measured leucosomes and veins, 
differences in host rock types and formation conditions, there are similarities 
between the cumulative thickness distributions in drill cores F-156 and F-265 
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Fig. 4. Spatial distribution of leucosomes and granitic veins obtained by the box-counting method 
in drill cores F-156 and F-265.   

 

 
(Fig. 3). Both give an exponent of m ≈ 1.15. Both, especially F-156, show a 
bend-off at the largest and smallest widths of the range. A flattening off at the 
small end of the range is a common censoring effect: not all of the smallest veins 
are counted, because they are difficult to recognize. Small (2–3 mm and less) 
veins are therefore underrepresented in the count. The bend-off at the large end 
of the spectrum is less straightforward. This may be caused by the poor statistics 
at that end of the range: there are very few metre-size veins, and they may lie 
outside the section analysed. Another possibility is that there is a certain length-
scale (~ 1 m), where the distribution actually breaks down, or changes. It could, 
for example, be that large veins have a higher chance to leave the system, and 
ascend through the crust.  

The key aspect of the power-law distributions is the absence of a characteristic 
length-scale in leucosome thickness, and as a consequence, in the magma 
formation process(es). All power-law and fractal distributions in nature must, 
however, have upper and lower bounds. This topic has usually not always been 
emphasized in previous studies. In the case of migmatization and granite melt 
formation the lower bound is about the micrometre-scale. This lower bound has, 
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however, no importance here, since micrometre-scale melt pockets or lenses 
could not be adequately measured anyway. In practice, 2 mm is the minimum 
size of the leucosome which can be measured. The upper bound is unknown. In 
our measurements we find power-law distributions up to about the metre-scale, 
i.e. over up to 2–3 orders of magnitude. As mentioned above, there may be a 
change in behaviour at about the metre-scale, but this is also the end of the range 
of our measurements. 

The presented data set of leucosomes and veins as well as other measurements 
in Finland and Canada (not presented here) shows good power-law distributions 
with exponents usually between 1.0 and 1.9 (see Fig. 3). We should, however, 
stress that the thickness-distribution exponent along a linear section cannot be 
simply equated with the actual volume-distribution exponent (fractal dimension) 
of veins in a partial melt.  

Migmatites record a “frozen” situation of granitic melt formation, from the 
time of solidification of the system. There is little direct evidence on how much 
of melt has left the system under observation (outcrop) or how much melt has 
been imported from outside. Chemical analyses indicate that at least many 
granulite facies rocks experienced melt loss (Guernina & Sawyer 2003), but 
physical traces of this melt or its pathways are very rare. Similarly, we encounter 
difficulties when we need to calculate the depletion percentage of the country 
rock that produced the melt.  

There have been attempts to model melt and fluid accumulation and migration 
numerically and using the analogue modelling approach (e.g. Bons & van Milligen 
2001; Bons et al. in press). These results also indicate that the melt system may 
quickly develop into a self-organized critical state (Bak et al. 1987). In this state, 
the distribution of melt volumes in the host rock can be described by a power-
law, similar to leucosome thickness-distribution in the studied rocks. The exponent 
value for melt batches with different size in the source commonly lies between 
2/3 and 1 and is irrespective of details such as shape of single batches (Bons & 
Arnold 2003). It is also important to note that modelling results suggest that in 
the self-organized critical state, the system is capable of discharging any additional 
melt without any further change to system itself, which also shows that full 
connectivity of melt batches (melt network) needs not to be reached in the system. 
The latter was usually assumed as a prerequisite for successful melt segregation 
and accumulation (Weinberg 1999). Deformation may enhance melt extraction 
efficiency, as it increases the mobility of melt-filled hydrofractures and increases 
accumulation. The modelling results show that it is possible to efficiently drain 
melt from a source, when the melt volume distribution exponent is close to 2/3, 
where the maximum accumulation is achieved and  as much as 50% of all mass 
resides in the single largest batch in the system. In this case very little evidence 
would remain in the form of leucosomes in the host rock.  

In case of the data from Estonian basement rocks, we are dealing with  
(a) a power-law distribution of leucosome thickness (total set of data: 

m (exponent) = 1.15; Fig. 3) and 
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(b) a fractal distribution of leucosomes along a rock section (D = 0.77–0.79; 
Fig. 4). 

Let us study in more detail the implications of the power-law relationship 
between the sizes and numbers of leucosomes and melt batches: 
 

,m
S kSN −

>
=  

 

where ,max
mSk =  and maxS  is the expected largest batch size. First we note that 

the above law is statistical, and hence, the real largest batch size can be some-
what (e.g. 30%) smaller or larger than maxS ; the value of k is to be found by 
least-square fitting of the real data to this scaling law. 

The basic characteristic here is the scaling exponent m; small values of the 
exponent m imply relatively few small batches. It is easy to see that for m ≥ 1, the 
mass of the melt is dominated by small batches. Indeed, the total volume of 
batches is expressed via the distribution function: SSfA Sdtot ∫=  with 
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Notice that the integrand ,m
S SSf −

∝  and that therefore the integral (the total 
volume of batches) is dominated by small batches if m > 1. In the opposite case 
(m < 1), a straightforward calculation leads us to ).1/(d maxtot mmSSSfV S −== ∫  
Hence, the ratio of the volume of the largest batch to the total volume is given 
by: 

 
./)1(/ totmax mmVS −=  

At m = 2/3, 50% or more of all melt is in the single largest melt batch, while 
this percentage goes down to 0% at m = 1 (when all the melt resides in small 
batches). Therefore we expect that the real values lie between m = 2/3 and m = 1 
(which forms the boundary between accumulation and dispersion), as predicted 
theoretically (Bons & Arnold 2003). This conclusion is independent of the shape 
of the melt batches and is not only valid for spheres, but also for lenticular 
hydrofractures or any other shape. 

Finally, it should be emphasized that the exponent m  in the above formulae is 
not equal to the scaling exponent γ  of the magmatic vein width, γ−

>
≈ kdN d . In 

order to show this (and derive the expression for γ ), suppose a random point in 
the net volume is coined. Let us estimate the probability of getting inside a batch, 
the diameter of which exceeds d:  

 

.333
3

m

d
dNdp −

>

∝≈  

 
Similar calculations can be done for the width distribution function,  
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.1 γ−

>
∝≈ ddNp d  

Comparing these two estimates leads us to the conclusion that ,133 γ−=− m  
and therefore .23 −= mγ  Thus, the expected range of exponents 2/3 ≤ m ≤ 1 
translates into 10 ≤≤ γ  (0 corresponding to half of the total melt residing in the 
largest batch, and 1 to almost all the melt residing in the smallest batches). The 
fact that exponents γ  close to unity, observed in the drill cores, suggests that the 
melt volume distribution in the migmatites has an exponent m ≈ 1, suggesting 
poor accumulation. 

Knowing the power-law of the size-number distribution for the melt batches, 
we can estimate the total volume of the melt phase, as well as the relative 
contributions of the largest batch (dominant for m < 1) and of the smallest 
batches (dominant for m > 1). Based upon these relationships of melt batch 
distribution, we are able to quantify the total melt volume produced. Taking an 
arbitrary crustal section of 100 × 100 km with a thickness of 10 km, which can be 
regarded as a magmatic system during regional metamorphism, we are able to 
calculate melt volume in any part of the system under consideration. A total 
melting of a 1 km3

 per 1 km2
 crustal column seems a reasonable value for total 

melt volume (Zen 1992), which gives totV = 104
 km3. Now, considering the above 

relationships we can calculate that 1 m3 may contain up to 900 leucosomes with 
volumes between 1 cm3 and 1 dm3 at m = 0.97. Close to an end member case 
(m = 2/3), the number of melt veins with this volume is nil, since most of melt  
is accumulated into larger veins. This also applies to extracted melt volumes 
(dykes, formation of granitic intrusions, etc.). If in the above example the 
extraction threshold volume is set at 1 km3, about 94% of melt is extracted if 
m = 0.67 and the extraction efficiency reduces to zero at  m = 1. 

 
 

CONCLUSIONS 
 
The main conclusions can be summarized as follows: 
1. A large number of geological objects show a power-law or fractal 

distribution, which suggests that these objects do not require any characteristic 
length-scale or time in their definition. Fractals can be effectively used in studies 
of magma mixing and mingling, mantle convection, lava flows, percolation 
properties of veins, ore mineralization, etc.  

2. The width of migmatitic leucosomes in the Estonian basement rocks  
also follows power-law distribution and shows fractal properties. Despite the 
differences in size and number of measured leucosomes and veins, differences in 
host rock types and formation conditions, the studied leucosome thickness shows 
good power-law distributions with exponents usually between 1.0 and 1.9. The 
same exponents have been obtained from studies of leucosomes in different 
outcrops (e.g. southern Finland). The spacing of leucosomes in rock section is 
not a random feature, but shows fractal distribution (D = 0.77–0.79). 
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3. On the basis of the power-law of the size-number distribution for the melt 
batches we estimated the total volume of the melt phase, as well as the relative 
contributions of the largest batch (dominant for m < 1) and of the smallest 
batches (dominant for m > 1). The relationship between the magmatic leucosome 
width-distribution exponent, and the melt batch size-distribution was derived.  
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Fraktalid  geoloogias:  fraktalite  kasutusvõimalusi  osalise 
ülessulamise  protsesside  uurimisel 

 
Alvar Soesoo, Jaan Kalda, Paul Bons, Kristjan Urtson ja Volli Kalm 
 
Viimasel aastakümnel on hoogustunud fraktaalmeetodite kasutamine geoloo-

gilistes teadustes, eeskätt selliste geoloogiliste objektide puhul, mida on võimalik 
kirjeldada pikkuse, laiuse või aja mõõtmisega. Fraktaalset lähenemist on kasuta-
tud magma segunemisprotsesside, vahevöö konvektsiooni, mineraalsete soonte 
kasvu ja mineralisatsiooni ning teiste protsesside uurimisel. Artiklis on näidatud, 
et Eesti aluskorrakivimites paiknevate migmatiitsete leukosoomide paksused  
on kirjeldatavad fraktaaljaotuse abil. Erinevates kivimitüüpides mõõdetud leuko-
soomide ja graniitsete soonte paksused vs mõõdetud objektide arv logaritmilisel 
graafikul (astmefunktsioon) jääb eksponendivahemikku 1,0 ja 1,9. Mõõdetud 
ühedimensionaalse leukosoomi laiuse jaotuse eksponendi ja magmakeha suuruse 
vaheline matemaatiline seos on tuletatud.  

 
 


