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Fractality in geology: a possible use of fractals
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Abstract. The use of nonlinear and chaotic dynamics and fractal approaches in the studies of the
Earth has increased in the last decade. A large number of geological objects show a power-law or
fractal distribution, which suggests that these objects do not require any characteristic length-scale
or time in their definition. Fractals can be used in studies of magma mixing and mingling, mantle
convection, lava flows, percolation properties of veins and ore mineralization, and to separate
geochemical anomalies. It is shown that the width of migmatitic leucosomes in the Estonian
basement rock follows power-law distributions and shows fractal properties. Despite the differencesin
size and number of measured leucosomes and veins, differences in host rock types and formation
conditions, the studied leucosome and vein data set shows good power-law distributions with
exponents, m, usually between 1.0 and 1.9. The spacing of leucosomes and veins in rock section
is not a random feature, but fractal (fractal dimension D = 0.77-0.79). Using the power-law size
distribution for the melt batches, the total volume of the melt phase, as well as the relative
contributions of the largest batch (dominant for m< 1) and of the smallest batches (dominant for
m> 1), are estimated. The relationship between the magmatic leucosome width-distribution exponent,
and the melt batch size-distribution is derived.
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INTRODUCTION

The last years have witnessed the increasing activities in the use of nonlinear
and chaotic dynamics, fractals, and approach of complex systems in different
Earth and social sciences. Geology is not an exception. This development points
to the emergence of anew paradigm.
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Soon after Mandelbrot (1967) introduced the concept of fractals, it came into
use in different sciences including Earth sciences. The mathematical theory of
fractals is described in Mandelbrot (1982).

The question “How long is a coastline, for instance the Norwegian fiord
coast?’, has no exact answer. The length measure depends on the resolution
of the ruler that is used. One can use boxes of a certain size to measure the
coastline. Obviously, the smaller the box, the more boxes are needed to cover the
coast. Decreasing the size of the box will result in a more “exact” length of the
coastline. However, there are physical limits in re-sizing the measuring box. One
way of representing these measuring results is to plot the number of boxes
against the size of the measuring box on alog-og plot, for alarge range of box
sizes. The results fal on a trend with a negative slope, which gives the “fracta
dimension” of the coast. Had the coast been a straight line, the number of boxes
would be inversely proportional to box size and the fractal dimension would be 1.
For the Norwegian coastline the fractal dimension is 1.52 (Feder 1988), the
dimension which lies between a straight line (with dimension 1) and a surface
(with dimension 2).

Fractal geometry is well suited to the description of geological objects that
exhibit scaling behaviour. The most important feature of fractal geometry is the
lack of any homogenization scale. The main argument for potentia fractal scaling
in geology is the absence of characteristic length-scalesin a number of geological
observations. For example, in the hydrocarbon industry, such scaling laws provide
a key to predicting the nature of fracturing (also below the limit of seismic
resolution), which can significantly influence reservoir parameters. In the ground-
water, contaminant transport is particularly sensitive to the properties and scaling
of fracture systems. In earthquake hazard assessment, the main issue is the vdidity
of the Gutenberg—Richter law for predicting the probahility of the occurrence of
large earthquakes.

By now a number of fractal studies in geomorphology, petrology, oil and gas
geology, ore geology, sedimentology, geophysics, geochemistry, and other
geological disciplines have been published and this approach has proven to be
successful in geological research. The aim of this paper is to give an overview of
the use of fractals in geology and show an example of how it can be applied to
studies of partial melting and melt accumulation within the crust.

AN EXAMPLE OF A FRACTAL

Let us construct a fractal and find its dimension. Consider the Sierpinski
Triangle — a simple example of a fractal (Peitgen et al. 1992). We start with a
triangle (Fig. 1A). Next, let us draw the lines connecting the midpoints of the
sides and cut out the centre triangle. We have reached the stage of the triangle
which consists of three new triangles, with each side half the length of a side of
the original triangle (Fig. 1B). Each “new” triangle looks exactly like the original
triangle when magnified by afactor of 2 (magnification or scaling factor). Now

14



Fig. 1. The Sierpinski Triangle — a simple
example of afractal. We start with atriangle
(A) and draw the lines connecting the mid-
points of the sides. Each “new” triangle
looks exactly like the original triangle when
magnified by a factor of 2 (B—E). Repeating
the division many times, we see that smaller
triangles are exactly the same as the triangle
one step before when magnified by a factor
of two.

we simply repeat the dividing as many times as we wish. It is easy to see that
each smaller triangle is exactly the same as the triangle one step before when
magnified by afactor of two. Thus, the Sierpinski Triangleis self-similar.

Now we can compute the fractal dimension (D) of the Sierpinski Triangle.
Notice that the second triangle is composed of three miniature triangles exactly
like the original. The length of any side of one of the miniature triangles could be
multiplied by 2 to produce the entire triangle (S = 2). The resulting figures
consist of three separate identical miniature pieces (N = 3). We find D by
considering 3 = 2°, giving log 2° = log3, and finally D = log3/log2, which in the
present case is 1.58. The dimension of the Sierpinski Triangle is 1.58, and is not
an integer: it isfractal.

This method of finding fractal dimensions can be used only for strictly self-
similar fractals. Other ways of computing fractal dimensions include, for example,
mass or box counting. The fractal dimension indicates the degree of detail or
crinkliness in a shape. So, in the Euclidean space dimensions, the Sierpinski
Triangle lies between the line (dimension 1) and surface (dimension 2).

In theory, a fractal dimension is a non-integer topological dimension of the
space that embeds an object with a complex geometry. A common brief definition
of afracta set is one with no characteristic length-scale. However, Mandelbrot
(1982) stressed that such a definition cannot directly apply to natura fractal sets,
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which have their natural upper and lower limits. Thus, for fractals in nature, the
above definition applies only within a limited scale range. Nevertheless, fractal
dimension has turned out to be a powerful tool to measure complex forms which
were previously immeasurable, such as mountains, the Earth’s surface, clouds,
rock texture, deformed crustal sections, trees, etc. Some very convoluted surfaces,
such as a tree's foliage or the internal surfaces of lungs, but also rock texture or
surface, may effectively approach three-dimensional structures. We can therefore
think of roughness as an increase in dimension: a rough curve has a dimension
between 1 and 2, and a rough surface has a dimension somewhere between 2
and 3. The dimension of afractal curve is anumber that characterizes the way in
which the measured length between given pointsincreases as the scale decreases.

Brownian motion is a classical example of a process that has a fractal
dimension of 2 (Mandelbrot 1967). It occurs in microscopic particles and is the
result of random movement by molecules (air, water, fluid, etc.). The path of
such a particle is a “random walk” in which both direction and distance are
uniformly distributed random variables. So, in moving from a starting location in
space to a certain final location, the movement path taken by the particle is
almost certain to fill the whole space before it reaches the exact point that is
taken as a destination.

Summarizing, the fractal dimension indicates the degree of detail or crinkliness
in the object. For alarge number of geological objects it is a valuable measure,
especially in understanding the processes responsible for such objects (rock
structures, crustal complexes, ore bodies, fractures, composition of minerals and
rocks, etc.) and for predictive purposes.

Finally, it should be emphasized that here we use the word “fractal” in its
widest possible sense, as a synonym to the word “scale-invariant”. The strict
definition covers only (statistically) self-similar structures. However, the lack of
internal characteristic scales (“scale-invariance”) can take a wide variety of
forms. self-similarity (a coastline), self-affinity (Earth’'s surface), multifractality
(patterns arising from turbulent mixing), power-law distributions (leucosomesin
migmatites, see below), etc.

FRACTALITY IN GEOLOGY

A power-law distribution (fractal in the loose sense) is the simplest statistical
distribution that is scale-invariant, while other common distributions, such as the
normal (Gaussian) and log-normal, have a characteristic length-scale or time in
their definition. At present we know many examples of such scale-invariant,
power-law distributions in nature, including geology and geophysics. For example,
topography on the Earth, Moon, and Venus is well approximated by a Brownian
motion (fractal number D = 2). Hurst et al. (1965) showed that time series of
river discharges, lake levels, but also thickness of tree rings and varves give
Hurst exponents of around H = 0.75 and fractal dimensions of D ~ 0.5. The Hurst
exponent (H) is the measure of the smoothness of fractal time series and can
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be related to fractal dimension by H=E + 1-D, where E is the Euclidean
dimension (E = O for a point, 1 for aline, 2 for a surface, etc.). If H = 0.5, the
behaviour of the time-seriesis similar to arandom walk.

One of the fundamental problems in geology is the statistical distribution of
chemical elements in the Earth’s crust and mantle. Extreme concentrations of
elements lead to ore deposits within the crust. Cargill et al. (1981) and Turcotte
(2002) showed that ore deposits satisfy fractal statistics. Cheng et al. (1994) used
fractal techniques to separate geochemical anomalies from background noise and
Zheru et al. (2001) quantified the fractal features of element distributions on
mineral surfaces.

A number of authors have shown that mineral textures and distributions are
fracta (e.g. Fowler 1995). Armienti & Tarquini (2002) studied olivine crystal
size digtributions in xenoliths using fractal methods. Fractal analysis is also used
in studies of magma mixing and mingling in different geological environments —
volcanic eruptionsin Italy (De Rosa et a. 2002), in a plutonic complex in Greece
(Diego & Giampiero 2000), and in lava flows in Greece and Italy (Perugini et a.
2002; Poli & Perugini 2002), or in mantle convection (Ten et a. 1997). A
hierarchical fractal model of magma transport beneath Hawaii is proposed by
Saw & Chouet (1991).

It has long been observed that earthquakes have so-called Gutenberg—Richter
scaling (magnitude-frequency), that is, the distribution of events according to
size follows a simple power-law. In other words, if the number of events of a
given size or larger is plotted versus that size, the result will be a straight line on
a log-og plot. In observationa data, the exponent-value (the slope of the ling)
varies from region to region.

Although some fracture systems are best described by scale-limited laws (log-
normal, exponential), it is now recognized that power-laws and fractal geometry
provide widely applicable descriptive tools for fracture system characterization
(Bonnet et al. 2001). Vein thickness and the mechanism of vein growth can aso
be successfully studied by employing fractal analysis (Brooks et a. 1995) as well
as percolation properties of veins and ore mineralization (Roberts et al. 1999).

Power-law distribution is aso characteristic of turbidite sections (Rothman et
al. 1994) and fractal analysis may help to qualify the dynamics of turbidite
sedimentation. The pore structure in sedimentary rocks is also fractal (Dutta
2003) and porosity variations in sedimentary basins are self-affine fractals to a
good approximation both horizontally and vertically (Pelletier & Turcotte 1996).
Malamud & Turcotte (1999) used power-law (fractal) correlation to estimate the
number of plumes and hotspots that are not accounted for in present geological
observations. Finaly, the observed fractal shape of sutured quartz grain boundary
has itsimplications for geothermometry (Kruhl & Nega 1996).

These examples cover many fields in geology and associated geosciences.
However, the main message of alarge number of these papersis that we are able
to recognize the fractal properties of geologica observations, but not aways explain
the phenomenon. This stage may point towards the emergence of anew paradigm.
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MELT ACCUMULATION AND MIGRATION:
AN EXAMPLE OF A FRACTAL APPROACH

Melt is generated by partial melting on the micro- to millimetre-scale in its
source region and may accumulate and ascend to form several kilometre-scale
volumes in the form of intrusions, batholiths, and volcanic formations. The whole
range of magmatic processes may involve over 15-20 orders of magnitude in
scale and deals with a variety of physical-chemical processes on different scales
and different levels within the crust and mantle. Timescales also vary over
many orders of magnitude, from seconds to hours for hydrofracture propagation
involved in ascent of dykes (Lister & Kerr 1991; Clemens & Mawer 1992; Bons
et a. 2001) to many millions of years for a thermal event that causes partia
melting and crustal restructuring (Brown et al. 1995; Petford et al. 2000).

One of the manifestations of partial melting, melt segregation and accumulation
are migmatites — composite rocks, which display both metamorphic and magmatic
components. Several hypotheses have been put forward for the formation of
migmatites, such as partia melting (Winkler 1961), injection of foreign magmas
(Sederholm 1907), metamorphic differentiation (Ashworth & McLelan 1985),
and metasomatism (Olsen 1984). The combination of partial melting and meta-
somatism is also believed to cause migmatite formation (Olsen 1984). In recent
years, partial melting has been considered to be the only dominant migmatite-
forming process.

Migmatites are abundant in the Estonian crystalline basement, which is covered
by Phanerozoic sediments and only found in drill core (Puura et al. 1997).
We examined the leucosome and magmatic vein statistics in two drill cores.
Magmatic veins and leucosomes are not homogeneous within the Estonian
basement. They vary from large (up to over 1 m wide) granitic sills and lenses
to millimetre-scale thin lenses, veins, and patches. The latter are probably the
result of local melting and limited melt segregation, while larger veins may be
manifestations of larger-scale met transport, segregation, and accumulation. Melt
may have entered the system and/or may have | eft the system.

Drill core F-156 penetrates vol canic-sedimentary biotite gneisses of amphibolite
facies origin in Eastern Estonia. About 450 leucosomes (see Fig. 2) and granitic
veins were measured in a section of 40 m. Only veins wider than 3 mm were
recorded. The percentage of igneous material (leucosomes and granitic veins) is
24 (9.7 m from 40 m). The average leucosome and granitic vein size is 9.7 and
28 mm, respectively. The results are presented in alog-og plot (Fig. 3).

Drill core F-265 consists of biotite—plagioclase and pyroxene amphibolites of
amphibalite facies, likely of igneous origin. This drill core represents a different
situation where alarge number of granitic veins dominate in the mafic gneiss and
proper leucosomes are small (less than 2 mm) or absent and thus cannot be
precisely measured. About 545 granitic veins were measured in a section of 94 m
(Fig. 3). These veins form 26% of the whole rock section. This percentage is
close to that of drill core F-156.
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The width of leucosomes was measured in a
number of drill cores consisting of rock types
formed in different pressure-temperature conditions
(amphibolite to granulite facies metamorphism).
The results were statistically analysed in order
to find the best statistical description. In Fig. 2
the spectrum of leucosome thicknesses a ong drill
core F-156 is shown as an example. Is this leuco-
some distribution random in space and is the
leucosome size (width) random? These are important
guestions related to segregation and accumul ation
of melts (or fluids) within the crust and else-
where. We found that the number of small leuco-
somes and veins was correlated to the number of
large leucosomes and veins by a simple power-
law:

N.g=ks™,

where N.s is the number of leucosomes larger
than size S k is the number of leucosomes larger
than unit size, and mis the distribution exponent
(Fig. 3). Both drill cores show a power-law
distribution from about 5 to 1000 mm, about two
orders of magnitude. In both cases the exponent
m~= 1.15. Drill core F-265 has only granitic veins
wider than a few millimetres. Two types of veins
could, however, be distinguished in drill core
F-156: yellow to pink graniticpegmetitic veins
and pale white veins. When these two populations
are plotted separately (Fig. 3A, B), we obtain the
exponents m~ 1.1 and m~ 1.9, respectively. Such
distributions are abundant in nature, as mentioned
above. We found similar distributions in leuco-
some measurements at outcrops (for example
in the Masku area, Finland, and in the Labrador
Peninsula, Canada). Relying upon that, we may
provisionaly conclude that leucosome sizes, as
well as leucosome spacing in the rock section, are
not random values, but obey certain more complex
rules. The box-counting method has been used
to study leucosome distribution along these rock
sections (Fig. 4). The results suggest that leuco-
some and granitic vein distribution in drill cores
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Fig. 2. Thicknesses of leucosomes
in drill core F-156. The values
are plotted in order of occurrence
along the drill core from top to
bottom.
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Fig. 3. (A) Thickness distribution of veins and leucosomes along a one-dimensional section of drill
core F-156. (B) Both in situ leucosomes (filled squares) and granitic veins (open circles) show a
power-law thickness distribution. (C) Thickness distribution of leucosomes along a one-dimensional
section of drill core F-265.

F-156 and F-265 is not random but obeys certain rules, which are exemplified by
good trends on similar log-og plots. In both cases the slopes (exponent) are
similar: 0.77 for drill core F-256 and 0.79 for F-156 when studying the range
between 13 and 650 mm. Squeezing the range to 20600 mm lowers the exponent
dightly (0.74 and 0.76, respectively).

Despite the differences in the size of measured leucosomes and veins,
differences in host rock types and formation conditions, there are similarities
between the cumulative thickness distributions in drill cores F-156 and F-265
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Fig. 4. Spatia distribution of leucosomes and granitic veins obtained by the box-counting method
indrill cores F-156 and F-265.

(Fig. 3). Both give an exponent of m= 1.15. Both, especially F-156, show a
bend-off at the largest and smallest widths of the range. A flattening off at the
small end of the range is a common censoring effect: not al of the smallest veins
are counted, because they are difficult to recognize. Small (2-3 mm and less)
veins are therefore underrepresented in the count. The bend-off at the large end
of the spectrum is less straightforward. This may be caused by the poor statistics
at that end of the range: there are very few metre-size veins, and they may lie
outside the section analysed. Another possibility is that there is a certain length-
scale (~ 1 m), where the distribution actually breaks down, or changes. It could,
for example, be that large veins have a higher chance to leave the system, and
ascend through the crust.

The key aspect of the power-law distributions is the absence of a characteristic
length-scale in leucosome thickness, and as a consequence, in the magma
formation process(es). All power-law and fractal distributions in nature must,
however, have upper and lower bounds. This topic has usually not always been
emphasized in previous studies. In the case of migmatization and granite melt
formation the lower bound is about the micrometre-scale. This lower bound has,
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however, no importance here, since micrometre-scale melt pockets or lenses
could not be adequately measured anyway. In practice, 2 mm is the minimum
size of the leucosome which can be measured. The upper bound is unknown. In
our measurements we find power-law distributions up to about the metre-scale,
i.e. over up to 2-3 orders of magnitude. As mentioned above, there may be a
change in behaviour at about the metre-scale, but thisis also the end of the range
of our measurements.

The presented data set of leucosomes and veins as well as other measurements
in Finland and Canada (not presented here) shows good power-law distributions
with exponents usually between 1.0 and 1.9 (see Fig. 3). We should, however,
stress that the thickness-distribution exponent along a linear section cannot be
simply equated with the actua volume-distribution exponent (fractal dimension)
of veinsin apartial melt.

Migmatites record a “frozen” situation of granitic melt formation, from the
time of solidification of the system. There is little direct evidence on how much
of melt has left the system under observation (outcrop) or how much melt has
been imported from outside. Chemical analyses indicate that at least many
granulite facies rocks experienced melt loss (Guernina & Sawyer 2003), but
physical traces of this melt or its pathways are very rare. Similarly, we encounter
difficulties when we need to calculate the depletion percentage of the country
rock that produced the melt.

There have been attempts to model melt and fluid accumulation and migration
numerically and using the analogue modelling approach (e.g. Bons & van Milligen
2001; Bons et a. in press). These results also indicate that the melt system may
quickly develop into a self-organized critical state (Bak et a. 1987). In this state,
the distribution of melt volumes in the host rock can be described by a power-
law, similar to leucosome thickness-distribution in the studied rocks. The exponent
value for melt batches with different size in the source commonly lies between
2/3 and 1 and is irrespective of details such as shape of single batches (Bons &
Arnold 2003). It is also important to note that modelling results suggest that in
the self-organized critical state, the system is capable of discharging any additional
melt without any further change to system itself, which also shows that full
connectivity of melt batches (melt network) needs not to be reached in the system.
The latter was usually assumed as a prerequisite for successful melt segregation
and accumulation (Weinberg 1999). Deformation may enhance melt extraction
efficiency, as it increases the mobility of melt-filled hydrofractures and increases
accumulation. The modelling results show that it is possible to efficiently drain
melt from a source, when the melt volume distribution exponent is close to 2/3,
where the maximum accumulation is achieved and as much as 50% of al mass
resides in the single largest batch in the system. In this case very little evidence
would remain in the form of leucosomesin the host rock.

In case of the data from Estonian basement rocks, we are dealing with

(@) a power-law distribution of leucosome thickness (total set of data
m (exponent) = 1.15; Fig. 3) and
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(b) afractal distribution of leucosomes along a rock section (D = 0.77-0.79;
Fig. 4).

Let us study in more detail the implications of the power-law relationship
between the sizes and numbers of leucosomes and melt batches:

N_¢=kS™,
where k=57 , and S, is the expected largest batch size. First we note that
the above law is statistical, and hence, the real largest batch size can be some-
what (e.g. 30%) smaller or larger than S, ; the value of k is to be found by
least-sguare fitting of the real datato this scaling law.

The basic characteristic here is the scaling exponent m; small values of the
exponent mimply relatively few small batches. It is easy to seethat for m> 1, the

mass of the melt is dominated by small batches. Indeed, the total volume of
batchesis expressed via the distribution function: A, = jS‘SdS with

__ONs_mS,

v S  sm™l’

Notice that the integrand S oc S™, and that therefore the integral (the total
volume of batches) is dominated by small batches if m> 1. In the opposite case
(m< 1), a gtraightforward calculation leads us to V,, = jS‘SdS: mS, ., /(1-m).
Hence, the ratio of the volume of the largest batch to the total volume is given

by:
Siax Vi =(@—m)/m

At m=2/3, 50% or more of al melt isin the single largest melt batch, while
this percentage goes down to 0% at m=1 (when al the melt resides in small
batches). Therefore we expect that the real values lie between m=2/3and m=1
(which forms the boundary between accumulation and dispersion), as predicted
theoretically (Bons & Arnold 2003). This conclusion is independent of the shape
of the melt batches and is not only valid for spheres, but also for lenticular
hydrofractures or any other shape.

Finally, it should be emphasized that the exponent m in the above formulaeis
not equal to the scaling exponent y of the magmatic vein width, N_, ~kd™”. In
order to show this (and derive the expression for y ), suppose a random point in
the net volume is coined. Let us estimate the probability of getting inside a batch,
the diameter of which exceeds d:

o d®3m,

p~d°N

>d*®

Similar calculations can be done for the width distribution function,
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p~dN_, ocdh7.

Comparing these two estimates leads us to the conclusion that 3—3m=1-y,
and therefore y =3m-2. Thus, the expected range of exponents 2/3<m<1
trandatesinto 0< ¥ <1 (0 corresponding to half of the total melt residing in the
largest batch, and 1 to ailmost al the melt residing in the smallest batches). The
fact that exponents » close to unity, observed in the drill cores, suggests that the
melt volume distribution in the migmatites has an exponent m= 1, suggesting
poor accumulation.

Knowing the power-law of the size-number distribution for the melt batches,
we can estimate the total volume of the melt phase, as well as the relative
contributions of the largest batch (dominant for m< 1) and of the smallest
batches (dominant for m> 1). Based upon these relationships of melt batch
distribution, we are able to quantify the total melt volume produced. Taking an
arbitrary crustal section of 100 x 100 km with athickness of 10 km, which can be
regarded as a magmatic system during regional metamorphism, we are able to
calculate melt volume in any part of the system under consideration. A total
melting of a 1 km® per 1 kn? crustal column seems a reasonable value for total
melt volume (Zen 1992), which gives V, = 10" km®. Now, considering the above
relationships we can caculate that 1 m® may contain up to 900 |leucosomes with
volumes between 1 cm® and 1 dm?® at m= 0.97. Close to an end member case
(m=2/3), the number of melt veins with this volume is nil, since most of melt
is accumulated into larger veins. This also applies to extracted melt volumes
(dykes, formation of granitic intrusions, etc.). If in the above example the
extraction threshold volume is set at 1 km?®, about 94% of melt is extracted if
m = 0.67 and the extraction efficiency reducesto zeroat m=1.

CONCLUSIONS

The main conclusions can be summarized as follows:

1. A large number of geological objects show a power-law or fracta
distribution, which suggests that these objects do not require any characteristic
length-scale or time in their definition. Fractals can be effectively used in studies
of magma mixing and mingling, mantle convection, lava flows, percolation
properties of veins, ore mineralization, etc.

2. The width of migmatitic leucosomes in the Estonian basement rocks
also follows power-law distribution and shows fractal properties. Despite the
differences in size and number of measured leucosomes and veins, differencesin
host rock types and formation conditions, the studied leucosome thickness shows
good power-law distributions with exponents usually between 1.0 and 1.9. The
same exponents have been obtained from studies of leucosomes in different
outcrops (e.g. southern Finland). The spacing of leucosomes in rock section is
not arandom feature, but shows fractal distribution (D = 0.77-0.79).
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3. On the basis of the power-law of the size-number distribution for the melt
batches we estimated the total volume of the melt phase, as well as the relative
contributions of the largest batch (dominant for m< 1) and of the smallest
batches (dominant for m> 1). The relationship between the magmatic leucosome
width-distribution exponent, and the melt batch size-distribution was derived.
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Fraktalid geoloogias. fraktalite kasutusvéimalus osalise
tlessulamise protsesside uurimisel

Alvar Soesoo, Jaan Kalda, Paul Bons, Kristjan Urtson jaVolli Kam

Viimasel aastakimnel on hoogustunud fraktaal meetodite kasutamine geoloo-
gilistes teadustes, eeskatt selliste geoloogiliste objektide puhul, mida on vaimalik
kirjeldada pikkuse, laiuse vOi gja mddtmisega. Fraktaal set 1&henemist on kasuta-
tud magma segunemisprotsesside, vahevod konvektsiooni, mineraalsete soonte
kasvu ja mineralisatsiooni ning teiste protsesside uurimisel. Artiklis on néidatud,
et Eesti aluskorrakivimites paiknevate migmatiitsete leukosoomide paksused
on kirjeldatavad fraktaaljaotuse abil. Erinevates kivimitulpides moddetud |euko-
soomide ja graniitsete soonte paksused vs m&ddetud objektide arv logaritmilisel
graafikul (astmefunktsioon) jagdb eksponendivahemikku 1,0 ja 1,9. Mddetud
Uhedimensionaal se leukosoomi laiuse jaotuse eksponendi ja magmakeha suuruse
vaheline matemaatiline seos on tuletatud.
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