LÜHITEATEID * КРАТКИЕ СООБЩЕНИЯ

EESTI NSV TEADUȘTE AKADEEMIA TOIMETISED. 28. KÖIDE GEOLOOGIA. 1979, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 28 ГЕОЛОГИЯ. 1979, № 1

УДК 550.422+551.7(474.2)

Л. БИТЮКОВА, Э. ПИРРУС

О СОДЕРЖАНИИ БОРА В ГЛИНИСТЫХ ПОРОДАХ ВЕНДА И КЕМБРИЯ ЭСТОНИИ

L. BITJUKOVA, E. PIRRUS. EESTI VENDI JA KAMBRIUMI SAVIKIVIMITE BOORISISALDUSEST L. BITYUKOVA, E. PIRRUS. BORON CONTENT IN ESTONIAN VENDO-CAMBRIAN CLAYSTONES

Возможность использования бора как индикатора палеосолености неоднократно рассматривалась в литературе (Валиев, 1974; Curtis, 1964 и др.). Однако содержание его в осадочных образованиях вендо-кембрийского разреза Прибалтики до сих пор не изучалось, несмотря на то чименно здесь широко распространены глинистые отложения, сформировавшиеся в различных обстановках осадконакопления и сложившиеся преимущественно гидрослюдистыми минералами — основными фиксаторами бора из вод бассейна. Поскольку колебания солености среды осадкообразования в данном разрезе выявляются и некоторыми литолого-минералогическими критериями, изучение бора в глинах венда и кембрия данного региона, кроме определения провинциального уровня этого элемента, имеет также методологическое значение.

Нами изучалось содержание бора в 40 пробах глин Северной Эстонии. Определения проводились методом количественного спектрального анализа в лаборатории кафедры геохимии Московского государственного университета на спектрографе ДСФ-13 с решеткой 600 штрихов/мм.

Навеска исходной пробы весом 30 мг смешивалась с 30 мг буфера, состоящего из фторопласта и NaCl, и помещалась в кратер угольного электрода марки ОСЧ-7 глубиной 6 мм и диаметром 3,8 мм. Сжигание проводилось в дуге переменного тока 20 A в течение 1,5 мин. Спектры фотографировались на пластинки типа II (16 ед. по ГОСТу). Чувствительность анализа — 1 z/τ . Содержание элемента определялось в двух параллельных навесках каждой пробы, и коэффициент вариации не превышал при этом 22%. Эталоны готовились путем добавления $Na_2B_2O_7 \cdot 10H_2O$ к искусственной основе.

Полученные усредненные данные, как и результаты индивидуальных определений, показывают закономерное изменение содержания бора по вертикальному разрезу изучаемых осадочных пород (таблица). Вендские отложения всех трех свит характеризуются пониженным содержанием этого элемента как по сравнению с кларком (100 г/т), так и с содержанием его в вышележащих кембрийских глинах, в которых, как известно, присутствует характерный индикатор нормально-морского литогенеза — глауконит. Особенно низко содержание бора в пестроокрашенных породах явно пресноводного происхождения, т. е. в гдовской и

Среднее содержание бора в глинистых породах венда и кембрия Эстонии, ε/τ

Свита	Глинистые породы	Разновидности глинистых поро		
		красно- бурые	серые	охристо- желтые
Кембрий				
Тискреская Люкатиская Лонтоваская	181 228 97	95	103	78
Венд Воронковская Котлинская	56 73	49	62 80	65
Гдовская	42	43	44	31

воронковской свитах. Для кембрийского разреза намечается тенденция увеличения содержания бора вверх по разрезу, которая выявляется уже в лонтоваской свите, где нижняя часть ее содержит в среднем 84, а верхняя — 112 г/т бора. Максимальное содержание бора установлено в люкатиской свите, где формирование глин, по-видимому, происходило в основном путем переотложения глинистых частиц, вымытых из подстилающей лонтоваской свиты. В мелководном бассейне люкатиского моря эти частицы неоднократно перебрасывались с одного места на другое, о чем свидетельствуют многие текстурные признаки люкатиских отложений (Pirrus, 1973a). В результате этого контакт глинистых частиц с водой бассейна был весьма длительным, что, несомненно, способствовало сорбции бора. Нижележащие лонтоваские глины, образовавшиеся, по всей вероятности, за счет размыва вендских, в частности котлинских глин (Pirrus, 1973б), имеют, наоборот, более глубоководный характер. Глинистый материал осаждался при их формировании, вероятно, в ходе одного акта седиментации. Следовательно, контакт глинистого материала с водой бассейна был сравнительно кратковременным и связывание бора происходило менее интенсивно. Во всяком случае, имеющийся литолого-минералогический материал не дает основания предполагать повышение солености бассейна в люкатиское время.

При анализе распределения бора необходимо учитывать и состав глинистых минералов, так как вендские отложения содержат в данном регионе много каолинита, не способного связывать заметные количества бора. Этим, кстати, объясняется и минимальное содержание бора в каолинитоносных гдовской и воронковской свитах. Исходя из опубликованных данных (Пиррус, 1970), можно провести пересчет содержания бора в породе на содержание его в гидрослюдистом компоненте породы. Получены следующие результаты: гдовская свита — 82, котлинская — 85, воронковская — 168, лонтоваская — 113, люкатиская — 253, тискреская — 258 г/т. Хотя разница между вендскими и кембрийскими отложениями по содержанию бора в результате такого пересчета несколько сглаживается, эти цифры все же хорошо согласуются с общелитологическими представлениями о формировании вендских отложений региона преимущественно в опресненных водоемах. Необъяснимым остается лишь высокое содержание бора в воронковской свите, что не может быть следствием повышения солености водоема. Перемещение максимума содержания бора в тискрескую свиту при пересчете на содержание гидрослюдистого компонента еще раз свидетельствует о значении для сорбции бора фактора неоднократного размыва и переотложения в цикле нормально-морского осадконакопления.

Интерес представляет и распределение бора в глинах различной окраски: глины красного цвета беднее бором, чем глины серого цвета, а вторично-обохренные еще беднее (см. таблицу). Это легко объясняется тем, что у глинистых частиц, внесенных в бассейн седиментации вместе с гидроокисными соединениями железа, способность к связыванию бора понижена, ибо часть их поверхности блокирована тонкодисперсными гидроокислами железа. В ходе восстановления последних при диагенезе сорбционные возможности частиц увеличиваются. При выветривании и разрушении глинистых частиц слюдистого типа часть бора, очевидно, освобождается и выносится, а тонкодисперсный новообразующийся гетит снижает обратную сорбцию элемента на глинистых частицах.

Представленные данные являются предварительными и требуют дальнейшей проверки. Однако они уже сейчас показывают, что бор в данном терригенном разрезе гумидной зоны весьма подвижный элемент и что ему должно быть уделено соответствующее внимание. При этом необходимо учитывать и наследственность глинистого материала в древних водоемах, а также гидродинамические особенности среды осадконакопления, что значительно повышает точность использования этого элемента в качестве геохимического индикатора палеосолености.

ЛИТЕРАТУРА

Валиев Ю. Я. Закономерности распределения бора в юрских отложениях Гиссарского хребта. — Литология и полезные ископаемые, 1974, № 4, с. 112—116. Пиррус Э. Закономерности распределения глинистых минералов в вендских и кемб-

рийских отложениях Восточной Эстонии. — Изв. АН ЭССР, Хим. Геол., 1970, т. 19, № 4, с. 322—333.

Curtis, C. D. Studies of the use of boron as a paleo-environmental indicator. — Geochim. Cosmochim. Acta, 1964, v. 28, p. 1125—1137.

Pirrus, E. Aleuroliidimugulatest kihid. — Eesti Loodus, 1973a, Nr. 4, lk. 233—234.

Pirrus, E. Mida teame sinisavist. — Eesti Loodus, 1973b, Nr. 11, lk. 646—653.

Институт геологии Академии наук Эстонской ССР Поступила в редакцию 16/XII 1977