
Proc. Estonian Acad. Sci. Eng., 2005,11, 4, 347–357

Towards compiler backend optimization for low
energy consumption at instruction level

Kimmo Surakkaa, Tommi Mikkonena, Hannu-Matti Järvinena,
Timo Vuorelab and Jukka Vanhalab

a Institute of Software Systems, Tampere University of Technology, Korkeakoulunkatu 1,
FIN-33720 Tampere, Finland; {kimmo.surakka, tommi.mikkonen, hannu-matti.jarvinen}
@tut.fi

b Institute of Electronics, Tampere University of Technology, Korkeakoulunkatu 3, FIN-
33720 Tampere, Finland; {timo.vuorela, jukka.vanhala}@tut.fi

Received 3 October 2005, in revised form 3 October 2005

Abstract. Compiler backend is the part of a compiler that is responsible for generating
compiled code. By optimizing the backend, one can easily create a tool chain for a new
environment, where some restrictions are to be taken into account. One such restriction is
energy consumption, which can be affected by code generation. In this paper, we discuss
the different candidate optimizations that we have identified, and whether or not they can be
implemented within the scope of the compiler backend.

Key words: energy consumption, compilers.

1. INTRODUCTION

Code generation for a certain hardware platform has several phases. First, a
compiler reads and analyses the source code, producing an intermediate repre-
sentation of it. The part of a compiler, executing this phase, is commonly called
compiler frontend. The internal representation is then analysed and a number of
optimizations is applied to it. This part of the compiler is sometimes referred to
as the middle end. Then, the compiler generates a low-level code that is specific
to the hardware platform. The part of a compiler that does this is referred toas
backend. Finally, the generated code is linked and loaded to the hardwareusing
different tools.

As a result of the above scheme, once a new programming language is used
or some extensions are included in an already existing language, one has towrite

347



a compiler frontend that reflects the particularities of the language, but after that
already existing backends can be used for code generation. For example, GCC [1]
offers frontends for C, C++, Objective-C, Fortran, Java, and Ada, together with
a remark that further frontends are available. In contrast, when a new piece
of hardware is introduced, one can rely on already existing frontends,but must
implement a backend, specific to this particular hardware platform. In addition,
before a completed program can be run, a linker and a loader are needed to install
the program to the target device. These may be vendor specific, as certain types of
special actions may be needed, or, alternatively, standardized tools. Inany case, as
long as the output of the backend is at the level of assembly instructions, thesame
tool chain can be used.

As backends are always specific to a certain hardware platform, they are
the natural location for hardware-dependent optimizations when instruction level
optimizations are aimed at. The motivation is that, as long as we do not need
to modify compiler frontend or associated tools that are needed for installing
compiled software to a hardware platform, the results of optimization are reusable,
disregarding programming languages and auxiliaries needed for platform-specific
installation.

In this paper, we study the types of optimizations that are applicable in compiler
backend when aiming at low energy consumption at instruction level. The waywe
have carried out the study is the following. First, we measured energy consumption
of some real-life executions in our target platform. Based on the measured values,
we then went on to create candidate optimizations that could be implemented in
order to conserve energy. Provided with the candidates, we then analysed them to
see if they could be handled at compiler backend.

The paper is organized as follows. Section 2 introduces the environment, in
which our case study has been conducted, including the target hardware and the
compiler we used as the reference. Section 3 then goes on to introduce the measure-
ments, we conducted in order to find candidates for energy-aware optimization.
This part of the paper has already been discussed in [2]. Section 4 forms the core of
this paper by introducing the candidates as well as the analysis on their applicability
at the compiler backend level. Section 5 discusses related work, and Section 6
finally concludes the paper.

2. ENVIRONMENT

The measurements were made on an AT90S8515-based custom-built measure-
ment board. The AT90S8515 microcontroller is a 8-bit RISC-type microcontroller,
manufactured by Atmel Corporation [3]. It was selected as the target platform
because of its relative simplicity, the availability of an existing compiler backend,
and because the research team had previous experience with the same micro-
controller.

348



Fig. 1. The AT90S8515 architecture [3].

AT90S8515 is based on the AVR architecture (Fig. 1). It has 32 8-bit general-
purpose registers, 8 KB of in-system programmable FLASH memory, 512 bytes of
EEPROM memory, and 512 bytes of data SRAM. Six of the 32 registers (r26,...,r31)
also serve as three 16-bit registers that can be used as indirect data access pointers
(registers X, Y and Z). The processor follows the Harvard architecture, i.e. it has
separate memories and buses for program and data. Programs are executed with
a two-stage pipeline: while one instruction is being executed, the following oneis
being pre-fetched from the program memory.

The AT90S8515 instruction set consists of 118 instructions [4]. Most of the
instructions have 16-bit opcodes that contain the instruction parameters embedded
within the opcode. The only exceptions are the branch commands “call” and
“jmp”, and the SRAM access commands “lds” and “sts”. The parameters of
these four instructions are too large to fit inside a 16-bit opcode, so the instructions
are encoded with 32-bit opcodes. The execution time of an instruction varies from
one (most arithmetic-logical instructions) to four (reti, return from interrupt)
clock cycles.

An example of the opcode encoding is the instruction “add Rd, Rr” which
calculates the sum of two registers and stores the result in the first register. The
encoding is presented in Fig. 2. The bits marked withd are used to specify the
destination register number while the bits marked withr specify the other register.

349



Fig. 2. The 16-bit opcode for the ADD command.

The test programs were compiled with GNU C compiler of WinAVR develop-
ment environment. This compiler was selected because its sources are freely avail-
able, and therefore the implementation of possible backend optimizations is more
feasible than with a closed-source tool. Furthermore, this would also support the
idea of reuse, discussed above.

3. MEASUREMENTS

Two types of measurements were made. First, energy consumption of various
test programs was measured at the level of instructions. The data from these
measurements was then inspected and used as a basis for a series of hypothesis,
which were then verified by measuring the mean current over the controllerwhile
it was running small test programs.

The instruction-level energy consumption was measured with a high-speed
digital oscilloscope that continuously measured the voltage drop over a setof
resistors, which were connected serially to the microcontroller and the total voltage
over both the microcontroller and the resistors. From these figures it was possible
to calculate the current and the voltage over the microcontroller, and thus thetotal
energy consumption in the controller. To synchronize this calculated data with
the actual instructions that the controller was executing, two more signals were
monitored: the microcontroller clock signal and an I/O pin in the controller. The
test programs were written so that they ran in a loop, whose body consistedof
first signalling the monitored I/O pin, then running the instructions to be measured.
Figure 3 shows the measurement arrangement.

The data, collected by the oscilloscope, was transferred to a desktop PC via
a serial cable. There it was loaded into a spreadsheet program that calculated the
energy consumption at different points of time. To minimize the effect of noise, all
test programs were measured twenty times, and the spreadsheet calculations were
performed on the average values of these measurements.

From the first results it became evident that the energy consumption of
consecutive instructions varied even when the instruction codes were exactly
identical. Therefore it was assumed that the energy consumption of the micro-
controller at a given time is not a simple function of the current instruction code, but
rather a more complicated function, involving multiple variables. These variables
included the data being processed, the instruction address in the memory andeven

350



Fig. 3. The measurement arrangement.

the instruction code of the previously executed instruction, whose results were still
being written back to registers or memory. Thus, instead of trying to create a
simple mapping from instruction codes to their energy consumption, we started
experimenting with the effects of the aforementioned variables. By varying the
memory location of the test programs, the data values that were processed and the
instructions that were executed immediately before the instructions were measured,
we were able to find candidates for energy-aware optimizations.

4. CANDIDATE OPTIMIZATIONS

In the following, we discuss the different alternatives that we considered
applicable for energy conservation.

4.1. Favouring set bits in the code

The instruction-level energy consumption measurements suggested that an
increase in the number of set bits in the instruction code decreases the energy con-
sumption of the instruction. A possible explanation for this is a decrease in the static
energy consumption (i.e. the leakage current) in the processor logic circuitry. This
correlation was preliminarily verified by measuring the overall current of two test
programs; one that used registers with few set bits, and another that wasotherwise
identical to the first one, but used registers with many bits set. The measurements
showed that the latter program had a smaller current consumption. Thus, itwould
seem beneficial to favor instructions with many set bits over those that haveless
bits set. To accomplish this, we examined several different alternatives.

4.1.1.Selecting the right registers

When an instruction accesses a register, the number of the register to access
is encoded into the instruction code. For example, the instruction code for the
“move” instruction “mov rd,rs” in AVR architecture is the binary number

351



001011sdddddssss, where the bits marked withd tell the number of the
destination register, and the bits marked withs tell the source register. This can be
used to increase the number of set bits in program instructions by using primarily
those register numbers that have a high number of bits set, for example, preferring
the register r31 over r16.

However, a compiler backend has a very limited freedom in selecting which
register numbers to use. For example, the hardware we used only supports register
indirect addressing with the 16-bit registers X, Y and Z (i.e., the 8-bit registers
r26,...,r31); no other registers can be used. Also, many instructions can only use
the registers between r16 and r31, and the compiler parameter passing model limits
the available user registers even more.

Still, it is possible to optimize the order in which the GCC backend allocates
the available user registers. After measuring the mean energy consumption with
program snippets that used different registers, we made an initial attempt on
optimizing the register allocation order. We modified the GCC backend so that
it tries to allocate first those registers that consume the least amount of energy.
Next, a test program was compiled with the modified compiler and loaded into the
target processor. When executed, the program consumed 0.5% less energy than the
same program when compiled with the original compiler. Although this difference
in energy consumption was relatively small, it was clearly observable.

Furthermore, it is likely that the allocation order we used was not the optimal
one, so there is a distinct possibility of achieving larger savings. The effects of
different register allocation orders need to be evaluated in further experiments.

4.1.2.Using displacement with tables

Another way to increase the number of set bits in a program involves table
lookups. In the AT90S8515, there are three addressing modes suitable for table
access. If the data to access is at a fixed index in the table (for example, in Ccode
snippet “int t=table[2];”), the compiler can usedata direct addressing,
where the location of the data is embedded into the instruction code. If, however,
the table element to access is not fixed (e.g. “p = table[i];”), the data
location cannot be embedded into the instruction code. In this case, the compiler
needs to usedata indirect addressing. In data indirect addressing, the actual
location of the data is stored in a register, and the instruction code contains only
information about which register to use. The basic form of data indirect addressing
is thus “use the data in the location in registerr”. However, another form is also
available: thedata indirect addressing with displacement. In this addressing mode,
the instruction code contains two constants: the register number to use and a small
displacement to add into the register content. Thus, this form is “use the data inthe
memory location that you get by addingd to the value in the registerr”.

Indirect addressing with displacement can be used to increase the numberof
set bits in executed instructions. If the table to be used starts at locationloc and
the table element to be accessed isnth in the table, the straightforward way to
access the element is to calculateloc + (n − 1) ∗ elem_size, store the result in

352



some register and then use register indirect addressing to access the data. However,
using indirect addressing with displacement makes it possible to store the value of
loc + (n − 1) ∗ elem_size + disp to the register and then use [reg − disp] as the
location of the data. If the displacement value is selected to be 63 (the maximum
possible), the number of set bits in a “load” instruction can be six more than with
no displacement. From a total of 16 bits per instruction, this is more than 35 percent
increase in the number of set bits. In the case of “ld r31, Y” instruction, the
number of set bits increases from six to twelve – a total of 100% increase.

The effect of this technique to the total current was measured by constructing
a program that calculated the sum of two hundred elements in a table. The
first version loaded the base address of the table to theZ register and then
used “ld r29, z+” in a loop to go through the table. This command uses
indirect addressing with post-increment; after accessing the data, it automatically
increments the value of theZ register. The program ran in an endless loop, counting
the sum of the values over and over. The microcontroller took 7.12 mA current.

The program was then modified so that instead of loading the base addressof
the table to theZ register, the valuebase − 63 was loaded. The “ld r29, z+”
instruction was also replaced with the instruction pair “ldd r29, z+63”,
“inc r30”. Since the table to access was entirely within a 256-byte segment,
there was no need to modifyr31 (the high byte of theZ register). This program
was then loaded to the test board and the mean current was measured. Thecurrent
was now 6.98 mA.

Thus, by replacing “ld r29, z+” with “ ldd r29, z+63” and
“inc r30”, the mean current taken by the test board was cut down by two percent.
Unfortunately, this decrease in power consumption was more than compensated by
the increase in clock cycles to go through the table – the “inc r30” instruction
added one clock cycle to the inner loop in the test program, thus increasing the
total execution time by roughly 15 percent. So, even though indirect addressing
with replacement may decrease the current through the controller, it may often
need supplementary instructions that result in a net increase in the total energy
consumption. Still, when such supplementary instructions are not needed (e.g.
when the auto-incrementing form ofld is not used), the compiler backend should
consider using indirect addressing with replacement instead of ordinaryindirect
addressing.

4.1.3.Choosing the right instruction codes

When there are more than one instruction codes that accomplish the same task,
the compiler should select the instruction code with the highest number of set bits.
An example of this is clearing the registerr15: it can be achieved with instructions
“clr r15”, “ and r15,r0”, “ mov r15, r0”, or “sub r15,r15”. The
instruction code that has the largest number of bits set should be used – in this
caseclr (Table 1).

A similar analysis should be done for all the operations that the compiler
backend implements, and the results should then be used in the code generation.

353



Table 1.Clearing the register r15

Instruction Instruction format Instruction code Bits set

clr r15 (eor r15,15) 0010 01sd dddd ssss 0010 0100 1111 1111 10
and r15,r0 0010 00sd dddd ssss 0010 0000 1111 0000 5
mov r15,r0 0010 11sd dddd ssss 0010 1100 1111 0000 7
sub r15,r15 0001 10sd dddd ssss 0001 1000 1111 1111 10

It should be noted that the best instruction to use depends on the instruction
parameters – the cheapest way to clear registerr0 is to use themov instruction.

4.2. Favouring cleared bits in the data

The instruction-level measurements also showed a decrease in the energy
consumption when the instructions were accessing data that consisted mainly
of zeros. Thus, it would be beneficial to prefer small data values over large
ones. This is, however, something that the compiler backend cannot influence.
Instead, suitable data transformations in the middle-end of the compiler should be
researched.

4.3. Aligning loops within page boundaries

The measurements also showed a peak in the energy consumption at regular
intervals. This is probably due to the internal organization of the microcontroller
flash memory. It was observed that every 16th instruction was clearly more
expensive than the average. Thus it was assumed that the flash memory was
divided into pages of 32 bytes each, and that the activation of a new pagelead
to an increase in energy consumption. A small test program was written to testthis
assumption. It consisted of a small endless loop that was located in the memory so
that it fitted completely within a 32-bit page. Another version of the same program
was also constructed that was otherwise similar to the first one, but had the loop
located so that it went over a page boundary. The mean current was then measured
for both programs. The first one had a clearly lower mean current consumption,
which supported the assumption. Thus, it would seem beneficial to align loops in a
program so that they cross as few page boundaries as possible. However, since the
actual memory addresses are assigned by the linker, the compiler backendcannot
do this alignment without some help from the linker.

4.4. Choosing the right optimizations

The previous work on different architectures [5,6] has shown that many existing
performance optimizations are such that applying them to a program also leads to
a reduction in the program energy consumption. This is mainly due to the reduced

354



execution time of the program. It may even be possible that all known optimizations
that reduce the program energy consumption, also reduce the executiontime; in
other words, all energy optimizations may be performance optimizations.

However, it is possible that the reverse does not hold: all performanceoptimiza-
tions are not necessarily good from the energy consumption point of view. On the
contrary, it is likely that some performance optimizations increase the processor
power consumption more than they reduce the execution time, leading to an
increase in the total energy consumption. Therefore, when crafting an energy-aware
compiler, care should be taken to enable only those performance optimizationsthat
also decrease the energy consumption. As the result, the effect of different existing
optimizations on the energy consumption need to be measured.

4.5. Minimizing the switching activity

An important factor in the processor energy consumption is the switching
activity in various parts of the processor. By minimizing the switching activity,
it is possible to reduce the amount of consumed energy.

The compiler backend can reduce switching activity in the processor instruction
bus in two ways: by instruction selection and scheduling. Reduction by instruction
selection is possible when a task, such as clearing a register, can be achieved by
many alternative instructions; the compiler can then choose the instruction thatis
closest to the instructions immediately preceding and following it (measured in the
Hamming distance). The compiler can also schedule the instructions so that the
total switching activity in the code is minimized. An example of such scheduling
is presented in [7].

However, these optimizations are only possible if the compiler backend can
obtain the actual instruction codes for different instructions. In GCC, thisknow-
ledge is contained in the separate assembler that creates the actual machine code.
Thus, in order to implement any kind of switching activity optimizations, the
backend must be augmented with assembler-like capabilities. This is currently
outside the scope of our research. Still, optimization of the switching activity is
a promising target for future work.

5. RELATED WORK

The energy impacts of various compiler optimizations have been studied
in [6,8,9]. These studies have, however, used a simulator-based approach to
calculate energy consumption. Therefore, the correctness of their results depends
on the correctness of the used simulator and its energy model.

In [5], the effects of compiler optimizations on the processor energy consump-
tion are measured using an actual microprocessor. The Pentium 4 processor they
use is significantly more complex that the one in our work, thereby hiding many

355



energy effects. By focusing on a simpler microcontroller, we hope to get abetter
insight into the functioning of the processor.

A similar method for measuring the power, drawn by a microprocessor, was
described by Tiwari et al. [10]. However, their measurements were made only on
the mean current over the processor, while we have developed a method toget
instruction-level measurements.

6. CONCLUSIONS

In this paper, we introduced a case study on using compiler backend
optimization as the means for obtaining instruction-level energy awareness.We
were able to find a number of candidate optimizations that can be used to reduce
energy consumption by studying the behaviour of the associated hardware platform
using different reference loads. However, many of the optimizations have turned
out to be such that they cannot be applied at backend level as such. Instead, they
require a redefinition of the scope of the work so that some parts of the compiler
frontend, linker and loader would be modified as well. This, however, wasnot
considered an option in our work due to possible problems with compatibility with
off-the-shelf tools later on.

In addition to finding candidate optimizations using hardware profiling, we
intend to measure the effect of different performance optimizations, offered by
the used compiler to energy consumption. Intuitively, it seems rational that when
performance is improved, the processor performs less computations, which in turn
results in energy savings. However, validating this assumption remains a topicof
future study.

ACKNOWLEDGEMENT

This work has been supported by the Academy of Finland.

REFERENCES

1. Gnu Compiler Collection. http://gcc.gnu.org/
2. Vuorela, T., Vanhala, J., Surakka, K. and Järvinen, H.-M.Measuring and optimizing

the instruction level power consumption of a simple microcontroller. Manuscript.
Tampere University of Technology, Tampere, 2004.

3. Atmel Corporation. The AT90S8515 datasheet. Rev. 0841G-09/01. September, 2001.
4. Atmel Corporation. 8-bit AVR Instruction Set. Rev. 0856D-AVR-08/02. August, 2002.
5. Seng, J. S. and Tullsen, D. M. The effect of compiler optimizations on Pentium 4 power

consumption. InProc. Seventh Workshop on Interaction between Compilers and
Computer Architectures (INTERACT’03). Anaheim, 2003, 51–56.

6. Chakrapani, L. N., Korkmaz, P., Mooney III, V. J., Palem, K. V., Puttaswamy, K. and
Wong, W. F. The emerging crisis in embedded processors: whatcan a poor compiler
do? InProc. International Conference on Compiler, Architecture, and Synthesis of
Embedded Systems (CASES’01). Atlanta, 2001, 176–181.

356



7. Lee, C., Lee, J. K. and Hwang, T. Compiler optimization on VLIW instruction scheduling
for low power.ACM Trans. Des. Autom. Electron. Syst., 2003,8, 252–268.

8. Valluri, M. and John, L. Is compiling for performance = compiling for power? In5th
Annual Workshop on Interaction between Compilers and Computer Architectures
(INTERACT). Monterrey, Mexico, 2001.

9. Kandemir, M., Vijaykrishnan, N., Irwin, M. J. and Wu Ye. Influence of compiler
optimizations on system power.IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
2001,9, 801–804.

10. Tiwari, V., Malik, S. and Wolfe, A. Power analysis of embedded software: a first
step towards software power minimization. InProc. 1994 IEEE/ACM International
Conference on Computer-aided Design. San Jose, California, 1994, 384–390.

Genereeritava masinakoodi käsutasemel optimeerimisest
energiatarbe suhtes

Kimmo Surakka, Tommi Mikkonen, Hannu-Matti Järvinen, TimoVuorela
ja Jukka Vanhala

On käsitletud kompilaatori poolt genereeritava masinakoodi käsutasemel
optimeerimist käsu energiatarbe kriteeriumi mõttes. Genereeritava koodi energia-
tarbe kriteeriumile vastavaid võimalikke optimeerivaid teisendusi on analüüsitud
nii teisenduste sobivuse kui ka koodigeneraatoris realiseeritavuse seisukohalt.

357


