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Abstract. Compiler backend is the part of a compiler that is respoasfbt generating
compiled code. By optimizing the backend, one can easilptera tool chain for a new
environment, where some restrictions are to be taken intowat. One such restriction is
energy consumption, which can be affected by code genaratio this paper, we discuss
the different candidate optimizations that we have idesttifand whether or not they can be
implemented within the scope of the compiler backend.
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1. INTRODUCTION

Code generation for a certain hardware platform has several phkseg a
compiler reads and analyses the source code, producing an intermextiege r
sentation of it. The part of a compiler, executing this phase, is commonly called
compiler frontend. The internal representation is then analysed and aenaib
optimizations is applied to it. This part of the compiler is sometimes referred to
as the middle end. Then, the compiler generates a low-level code that iicspec
to the hardware platform. The part of a compiler that does this is referrad to
backend. Finally, the generated code is linked and loaded to the hardeiage
different tools.

As a result of the above scheme, once a new programming language is used
or some extensions are included in an already existing language, onewigateto

347



a compiler frontend that reflects the particularities of the language, buttaée
already existing backends can be used for code generation. For lex&3qGC []
offers frontends for C, C++, Objective-C, Fortran, Java, and, Adgether with
a remark that further frontends are available. In contrast, when a meve p
of hardware is introduced, one can rely on already existing frontdmasmust
implement a backend, specific to this particular hardware platform. In addition
before a completed program can be run, a linker and a loader aredneeidestall
the program to the target device. These may be vendor specific, as types of
special actions may be needed, or, alternatively, standardized toalsy ase, as
long as the output of the backend is at the level of assembly instructiornsaine
tool chain can be used.

As backends are always specific to a certain hardware platform, tley ar
the natural location for hardware-dependent optimizations when instnuetel
optimizations are aimed at. The motivation is that, as long as we do not need
to modify compiler frontend or associated tools that are needed for installing
compiled software to a hardware platform, the results of optimization arebieysa
disregarding programming languages and auxiliaries needed for plasfoenific
installation.

In this paper, we study the types of optimizations that are applicable in compiler
backend when aiming at low energy consumption at instruction level. Thewsay
have carried out the study is the following. First, we measured energyngution
of some real-life executions in our target platform. Based on the measalgsky
we then went on to create candidate optimizations that could be implemented in
order to conserve energy. Provided with the candidates, we then addham to
see if they could be handled at compiler backend.

The paper is organized as follows. Section 2 introduces the environment, in
which our case study has been conducted, including the target hardwerthe
compiler we used as the reference. Section 3 then goes on to introduceahierese
ments, we conducted in order to find candidates for energy-aware ogfoniza
This part of the paper has already been discusseq.iGgction 4 forms the core of
this paper by introducing the candidates as well as the analysis on theiredgljiijc
at the compiler backend level. Section 5 discusses related work, andrS6éctio
finally concludes the paper.

2. ENVIRONMENT

The measurements were made on an AT90S8515-based custom-builteneasur
ment board. The AT90S8515 microcontroller is a 8-bit RISC-type micriwober,
manufactured by Atmel Corporatiod][ It was selected as the target platform
because of its relative simplicity, the availability of an existing compiler backend,
and because the research team had previous experience with the same micr
controller.
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Fig. 1. The AT90S8515 architecturé]|

AT90S8515 is based on the AVR architecture (Fig. 1). It has 32 8-bi¢igd-
purpose registers, 8 KB of in-system programmable FLASH memory, 5tE2 loy
EEPROM memory, and 512 bytes of data SRAM. Six of the 32 registers (r&3,)..,r
also serve as three 16-bit registers that can be used as indirect cega pointers
(registers X, Y and Z). The processor follows the Harvard architeciwg. it has
separate memories and buses for program and data. Programs areaxeith
a two-stage pipeline: while one instruction is being executed, the followingsone
being pre-fetched from the program memory.

The AT90S8515 instruction set consists of 118 instructidiis Most of the
instructions have 16-bit opcodes that contain the instruction parameteesideth
within the opcode. The only exceptions are the branch commapals| " and
“j mp”, and the SRAM access commandsds” and “st s”. The parameters of
these four instructions are too large to fit inside a 16-bit opcode, so ttnadtisns
are encoded with 32-bit opcodes. The execution time of an instructiors\eoi@
one (most arithmetic-logical instructions) to fouref i , return from interrupt)
clock cycles.

An example of the opcode encoding is the instructiadd Rd, Rr” which
calculates the sum of two registers and stores the result in the first redgister
encoding is presented in Fig. 2. The bits marked wiithre used to specify the
destination register number while the bits marked witpecify the other register.
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ADD Rd, Rr Rd <~ Rd + Rr

15 0

0000 11rd dddd rrerr

Fig. 2. The 16-bit opcode for the ADD command.

The test programs were compiled with GNU C compiler of WinAVR develop-
ment environment. This compiler was selected because its sources draiak
able, and therefore the implementation of possible backend optimizations is more
feasible than with a closed-source tool. Furthermore, this would also Kuppo
idea of reuse, discussed above.

3. MEASUREMENTS

Two types of measurements were made. First, energy consumption ofssariou
test programs was measured at the level of instructions. The data fram the
measurements was then inspected and used as a basis for a seriestiogsigpo
which were then verified by measuring the mean current over the contndiiesr
it was running small test programs.

The instruction-level energy consumption was measured with a high-speed
digital oscilloscope that continuously measured the voltage drop over af set
resistors, which were connected serially to the microcontroller and the titape
over both the microcontroller and the resistors. From these figures it ogste
to calculate the current and the voltage over the microcontroller, and thistéhe
energy consumption in the controller. To synchronize this calculated data with
the actual instructions that the controller was executing, two more signaés wer
monitored: the microcontroller clock signal and an 1/O pin in the controller. The
test programs were written so that they ran in a loop, whose body consisted
first signalling the monitored 1/O pin, then running the instructions to be medsure
Figure 3 shows the measurement arrangement.

The data, collected by the oscilloscope, was transferred to a desktomPC v
a serial cable. There it was loaded into a spreadsheet program khaltitzd the
energy consumption at different points of time. To minimize the effect of naise
test programs were measured twenty times, and the spreadsheet calswilegien
performed on the average values of these measurements.

From the first results it became evident that the energy consumption of
consecutive instructions varied even when the instruction codes weelex
identical. Therefore it was assumed that the energy consumption of the-micro
controller at a given time is not a simple function of the current instructioe dmat
rather a more complicated function, involving multiple variables. These vasiable
included the data being processed, the instruction address in the memayeaind
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the instruction code of the previously executed instruction, whose reseifesstill
being written back to registers or memory. Thus, instead of trying to create a
simple mapping from instruction codes to their energy consumption, we started
experimenting with the effects of the aforementioned variables. By varyiag th
memory location of the test programs, the data values that were processttba
instructions that were executed immediately before the instructions were reeéasu
we were able to find candidates for energy-aware optimizations.

4. CANDIDATE OPTIMIZATIONS

In the following, we discuss the different alternatives that we considere
applicable for energy conservation.

4.1. Favouring set bits in the code

The instruction-level energy consumption measurements suggested that an
increase in the number of set bits in the instruction code decreases tgg eoer
sumption of the instruction. A possible explanation for this is a decrease itatie s
energy consumption (i.e. the leakage current) in the processor logidtgirdthis
correlation was preliminarily verified by measuring the overall current of test
programs; one that used registers with few set bits, and another thatheawise
identical to the first one, but used registers with many bits set. The measugeme
showed that the latter program had a smaller current consumption. Tl
seem beneficial to favor instructions with many set bits over those thatlésse
bits set. To accomplish this, we examined several different alternatives.

4.1.1.Selecting theright registers

When an instruction accesses a register, the number of the register &3 acce
is encoded into the instruction code. For example, the instruction code for the
“move” instruction ‘ov rd, rs” in AVR architecture is the binary number
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001011sdddddssss, where the bits marked witd tell the number of the
destination register, and the bits marked vettell the source register. This can be
used to increase the number of set bits in program instructions by usingrityima
those register numbers that have a high number of bits set, for examgsyipige
the register r31 over rl16.

However, a compiler backend has a very limited freedom in selecting which
register numbers to use. For example, the hardware we used only suggister
indirect addressing with the 16-bit registers X, Y and Z (i.e., the 8-bit t&gs
r26,...,r31); no other registers can be used. Also, many instructions tausm
the registers between r16 and r31, and the compiler parameter passindimitsle
the available user registers even more.

Still, it is possible to optimize the order in which the GCC backend allocates
the available user registers. After measuring the mean energy consumiition w
program snippets that used different registers, we made an initial attempt o
optimizing the register allocation order. We modified the GCC backend so that
it tries to allocate first those registers that consume the least amount gyener
Next, a test program was compiled with the modified compiler and loaded into the
target processor. When executed, the program consumed 0.5%degy tran the
same program when compiled with the original compiler. Although this differenc
in energy consumption was relatively small, it was clearly observable.

Furthermore, it is likely that the allocation order we used was not the optimal
one, so there is a distinct possibility of achieving larger savings. Theteftd
different register allocation orders need to be evaluated in furtheriexgpets.

4.1.2.Using displacement with tables

Another way to increase the number of set bits in a program involves table
lookups. In the AT90S8515, there are three addressing modes suitaltéble
access. If the data to access is at a fixed index in the table (for exampleoideC
shnippet 1 nt t=tabl e[2]; "), the compiler can uselata direct addressing,
where the location of the data is embedded into the instruction code. If, kowev
the table element to access is not fixed (e.qp < table[i];"), the data
location cannot be embedded into the instruction code. In this case, the compile
needs to usalata indirect addressing. In data indirect addressing, the actual
location of the data is stored in a register, and the instruction code contdins on
information about which register to use. The basic form of data indireteading
is thus “use the data in the location in registér However, another form is also
available: theadata indirect addressing with displacement. In this addressing mode,
the instruction code contains two constants: the register number to use ianadl a s
displacement to add into the register content. Thus, this form is “use the dht in
memory location that you get by addidgo the value in the registet’.

Indirect addressing with displacement can be used to increase the nafber
set bits in executed instructions. If the table to be used starts at lodati@nd
the table element to be accessechih in the table, the straightforward way to
access the element is to calculéte + (n — 1) x elem_size, store the result in
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some register and then use register indirect addressing to access théategaer,
using indirect addressing with displacement makes it possible to store tleeofalu
loc+ (n — 1) x elem_size + disp to the register and then usel; — disp] as the
location of the data. If the displacement value is selected to be 63 (the maximum
possible), the number of set bits inladad” instruction can be six more than with
no displacement. From a total of 16 bits per instruction, this is more than 3émerc
increase in the number of set bits. In the caselaf “r 31, Y” instruction, the
number of set bits increases from six to twelve — a total of 100% increase.

The effect of this technique to the total current was measured by cotisgu
a program that calculated the sum of two hundred elements in a table. The
first version loaded the base address of the table toZthregister and then
used 1d r29, z+”in a loop to go through the table. This command uses
indirect addressing with post-increment; after accessing the data, it aidaltya
increments the value of tt#register. The program ran in an endless loop, counting
the sum of the values over and over. The microcontroller took 7.12 mArdurre

The program was then modified so that instead of loading the base adéiress
the table to th& register, the valuéase — 63 was loaded. Thel“d r 29, z+”
instruction was also replaced with the instruction pdidd r29, z+63”,
“i nc r30". Since the table to access was entirely within a 256-byte segment,
there was no need to modify31 (the high byte of the register). This program
was then loaded to the test board and the mean current was measuredrrene
was now 6.98 mA.

Thus, by replacing Id r29, z+” with “ldd r29, z+63” and
“i nc r 307, the mean current taken by the test board was cut down by two percent.
Unfortunately, this decrease in power consumption was more than congebya
the increase in clock cycles to go through the table — thec” r 30” instruction
added one clock cycle to the inner loop in the test program, thus increaging th
total execution time by roughly 15 percent. So, even though indirect ssidge
with replacement may decrease the current through the controller, it n@y of
need supplementary instructions that result in a net increase in the totglyene
consumption. Still, when such supplementary instructions are not needgd (e
when the auto-incrementing form bfl is not used), the compiler backend should
consider using indirect addressing with replacement instead of ordindingct
addressing.

4.1.3.Choosing the right instruction codes

When there are more than one instruction codes that accomplish the same task,
the compiler should select the instruction code with the highest number atset b
An example of this is clearing the registel5: it can be achieved with instructions
“clr r15”, “and r15,r0” “nov r15, r0” or “sub r15,r15". The
instruction code that has the largest number of bits set should be usedis in th
casecl r (Table 1).

A similar analysis should be done for all the operations that the compiler
backend implements, and the results should then be used in the code generatio
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Table 1.Clearing the register r15

Instruction [ Instruction format | Instruction code | Bits set

clr r15 (eor r15,15) 0010 01sd dddd ssss 001001001111 1111 10

and r15,r0 0010 00sd dddd ssss 0010 0000 1111 0000 5
mov r15,r0 0010 11sd dddd ssss 0010 1100 1111 0000 7
sub r15,r15 0001 10sd dddd ssss 0001 1000 1111 1111 10

It should be noted that the best instruction to use depends on the instruction
parameters — the cheapest way to clear regiddes to use thaerov instruction.

4.2. Favouring cleared bits in the data

The instruction-level measurements also showed a decrease in the energy
consumption when the instructions were accessing data that consisted mainly
of zeros. Thus, it would be beneficial to prefer small data values ovge la
ones. This is, however, something that the compiler backend cannotnicélue
Instead, suitable data transformations in the middle-end of the compiler sheuld b
researched.

4.3. Aligning loops within page boundaries

The measurements also showed a peak in the energy consumption at regular
intervals. This is probably due to the internal organization of the microckertro
flash memory. It was observed that every 16th instruction was clearly more
expensive than the average. Thus it was assumed that the flash menwory wa
divided into pages of 32 bytes each, and that the activation of a newlpade
to an increase in energy consumption. A small test program was written thigest
assumption. It consisted of a small endless loop that was located in the mesmory s
that it fitted completely within a 32-bit page. Another version of the same anogr
was also constructed that was otherwise similar to the first one, but hadojie lo
located so that it went over a page boundary. The mean current wasdesured
for both programs. The first one had a clearly lower mean currentucaption,
which supported the assumption. Thus, it would seem beneficial to aliga in@p
program so that they cross as few page boundaries as possiblevétpgirce the
actual memory addresses are assigned by the linker, the compiler backerat
do this alignment without some help from the linker.

4.4, Choosing the right optimizations

The previous work on different architectur&$] has shown that many existing
performance optimizations are such that applying them to a program alsottead
a reduction in the program energy consumption. This is mainly due to theegduc
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execution time of the program. It may even be possible that all known optimization
that reduce the program energy consumption, also reduce the exetiot@nn
other words, all energy optimizations may be performance optimizations.

However, it is possible that the reverse does not hold: all performaptoaiza-
tions are not necessarily good from the energy consumption point of @Gevthe
contrary, it is likely that some performance optimizations increase the [mamces
power consumption more than they reduce the execution time, leading to an
increase in the total energy consumption. Therefore, when craftingeagyeaware
compiler, care should be taken to enable only those performance optimiztbins
also decrease the energy consumption. As the result, the effect oédifexisting
optimizations on the energy consumption need to be measured.

4.5. Minimizing the switching activity

An important factor in the processor energy consumption is the switching
activity in various parts of the processor. By minimizing the switching activity,
it is possible to reduce the amount of consumed energy.

The compiler backend can reduce switching activity in the processoratistnu
bus in two ways: by instruction selection and scheduling. Reduction by atistinu
selection is possible when a task, such as clearing a register, can becdde
many alternative instructions; the compiler can then choose the instructiois that
closest to the instructions immediately preceding and following it (measured in the
Hamming distance). The compiler can also schedule the instructions so that the
total switching activity in the code is minimized. An example of such scheduling
is presented in’.

However, these optimizations are only possible if the compiler backend can
obtain the actual instruction codes for different instructions. In GCC,kimisv-
ledge is contained in the separate assembler that creates the actual madkine c
Thus, in order to implement any kind of switching activity optimizations, the
backend must be augmented with assembler-like capabilities. This is currently
outside the scope of our research. Still, optimization of the switching activity is
a promising target for future work.

5. RELATED WORK

The energy impacts of various compiler optimizations have been studied
in [689]. These studies have, however, used a simulator-based approach to
calculate energy consumption. Therefore, the correctness of theltsrdgpends
on the correctness of the used simulator and its energy model.

In [°], the effects of compiler optimizations on the processor energy consump-
tion are measured using an actual microprocessor. The Pentium 4 sootesy
use is significantly more complex that the one in our work, thereby hiding many
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energy effects. By focusing on a simpler microcontroller, we hope to fettar
insight into the functioning of the processor.

A similar method for measuring the power, drawn by a microprocessor, was
described by Tiwari et al.'f]. However, their measurements were made only on
the mean current over the processor, while we have developed a metiged to
instruction-level measurements.

6. CONCLUSIONS

In this paper, we introduced a case study on using compiler backend
optimization as the means for obtaining instruction-level energy awarenéss.
were able to find a number of candidate optimizations that can be used tereduc
energy consumption by studying the behaviour of the associated hargiafiorm
using different reference loads. However, many of the optimizatione hawned
out to be such that they cannot be applied at backend level as swatbadnthey
require a redefinition of the scope of the work so that some parts of theileomp
frontend, linker and loader would be modified as well. This, however, naoas
considered an option in our work due to possible problems with compatibility with
off-the-shelf tools later on.

In addition to finding candidate optimizations using hardware profiling, we
intend to measure the effect of different performance optimizationsreaffby
the used compiler to energy consumption. Intuitively, it seems rational thex wh
performance is improved, the processor performs less computations, ihion
results in energy savings. However, validating this assumption remains aofopic
future study.
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Genereeritava masinakoodi k&sutasemel optimeerimisest
energiatarbe suhtes

Kimmo Surakka, Tommi Mikkonen, Hannu-Matti Jarvinen, Tiviaorela
ja Jukka Vanhala

On Kkasitletud kompilaatori poolt genereeritava masinakoodi kasutasemel
optimeerimist kasu energiatarbe kriteeriumi méttes. Genereeritava koadiane
tarbe kriteeriumile vastavaid vBimalikke optimeerivaid teisendusi on analldsitud
nii teisenduste sobivuse kui ka koodigeneraatoris realiseeritavissikalealt.
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