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Abstract. Product line processes use commonalities of products to provide the basis for various 
technological aids. From the point of view of the tool support, the most significant commonalities 
are the relationships among models. These relationships may cause interdependence of the model 
elements and imply functionality to the tools supporting the process. Similarly, as the 
commonalities of the relationships within product line processes provide the basis for automation, 
the commonalities of models and the relationships among different product line processes provide a 
common basis for the tool support for them. The main goal of our research is to provide 
customizable tool support for product line processes in general. Hence, in this paper we study the 
nature and commonalities of models and model relationships in various product line processes from 
the viewpoint of tool support. 
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1. INTRODUCTION

The quest for better quality and productivity is the basic reason for arranging 
activities as processes in organizations. If a project is carried out according to a 
suitable process, chances for success will grow. A suitable process conforms to 
the requirements of the current organization, project, product, etc. Even in the 
present countermovement against overly bureaucratic software development 
processes, in agile software development (such as [1]), process is still the key 
concept. It is the cost-benefit factor that counts. The used technology, such as 
automation of some activities, as well as tools that guide the work or make it 
easier otherwise, have a great influence on the cost-benefit factor. 

Product line processes concentrate on defining, designing, producing, and 
maintaining software product families, that is, software products with some similar 
attributes. These commonalities provide the basis for various technological aids 
within product line processes. One reason for this is that common parts of the 
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systems can be modelled, and sometimes even implemented, before the design and 
implementation of the applications. Thus, possible variation (i.e. design decisions 
to be made) is diminished by fixing the amount of models and model relationships. 

The product line processes (process models) can also be considered to form a 
product line, in which each process model can be considered as an application 
within the family. There are similarities among the processes, leading to a 
possibility of forming a common basis for automation of the activities of product 
line processes. The similarities are necessarily neither in the intended domain of 
a certain process nor in the activities or their actual order in the process. It is also 
clear that the details of the processes vary a lot. From the point of view of the 
tool support, the most significant similarities are in the relationships among 
models. Similarly, as the commonalities of the relationships within product line 
processes provide the basis for automation, the commonalities of the models and 
relationships among different product line processes provide a common basis for 
the tool support for product line processes in general. 

In order to provide customizable tool support for product line processes in 
general, we study the nature and commonalities of models and model relationships 
in various product line processes from the viewpoint of tool support. In Section 2 
we discuss some related papers to position our work. We also form a background 
for discussing the model relationships by considering the relationships and 
dependencies among models in processes in general. We explain the actual 
comparison with its starting point, criteria, and results in Section 3. Section 4 
considers tool support and automation of the tasks in the processes, taking into 
account found relationships. Section 5 discusses some concrete tools, implemented 
by our research group and by others as well as tool integration to support the whole 
product line process. Section 6 finally concludes the paper. 

 
 

2. MODEL  RELATIONSHIPS 

2.1. Model  relationships  as  the  basis  for  comparison   
of  product  line  processes 

 
There exist several papers, reporting comparison of product line processes. 

For instance, in [2] five product line processes have been compared. It is found 
that all the processes are different with their special goals and ideology, suiting to 
different purposes, and thus, the processes do not compete with each other. The 
purpose of the comparison was to find out the properties of the processes in order 
to select the most appropriate process for one’s purposes, and the focus was 
mostly on the individual characteristics of each process. 

We believe that none of the processes is suitable as such, but a process must 
always be customized (or even built) for the needs of the current organization, 
project, product, etc. Hence, instead of finding selection criteria for a process, we 
concentrate on finding commonalities among the processes in order to find a 
common basis for tool support for product line processes in general. 
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Similar reasoning is presented in [3]. A tool has been implemented that 
automatically analyses the similarity of two processes that are not necessarily 
product line processes. They use specific rules for formalizing similarity aspects. 
Also in [4] a generic product-line process framework has been generated acting as 
a benchmark for existing processes. 

In all the above comparisons, the goals, ideology, phases, etc. have been used 
as comparison criteria. In contrast, we believe that from the point of view of the 
tool support the most significant similarities are in the relationships among 
models. Tool support can exploit relationships between any modelled (or meta-
modelled) elements, such as UML models [5], single model elements, diagrams, 
as well as the source code of a program. Actually, in model-centric software 
development processes everything is considered as models. The relationships 
may suggest dependencies among the elements and imply functionality to the 
tools, supporting the process. Examples of such functionality are the tasks of 
checking and generating models, as well as various tools for guiding the model-
building tasks. 

In many product line engineering processes, an ordinary software engineering 
process is used when an application (within the product line) is developed. To form 
the basic understanding of the model relationships, in Sections 2.2 and 2.3 we 
briefly discuss relationships within software development processes in general. 

 
2.2. Relationships  within  software  development  processes  in  general 

 
Let us call a set of descriptions, requirements and constraints as design rules, 

and apply them in different concepts in software development processes. Design 
rules for a software development process include optional and mandatory 
activities (e.g. requirement-specification phase, or the task of requirement-
specification documentation), and possible and required relationships between 
the activities in the process. Relationships between the activities include defining 
the order of the activities, the input and output artifacts (e.g. a UML class dia-
gram) of an activity and relationships among the artifacts of different activities. 

For a single activity, design rules include possible and required artifacts, 
accessed or created during the activity, as well as the possible and required 
relationships among artifacts within the activity. Activities are often hierarchical, 
that is, an activity may include a sub-process description with tasks (or sub-
activities), their relationships, and input and output artifacts. The models within a 
single phase usually describe the same thing on the same level of abstraction. In a 
way, they can be seen as parts of the same model, and completing each other. 
Hence, also the relationships among the models are strong and imply strong 
possibilities for automation. 

Although each diagram type, used in a process, emphasizes a particular kind of 
information, the information originates from the same sources, from the target 
domain and the target system to be specified. For example, changes in one model 
may imply changes in another, and a portion of one model may be inferred on the 
basis of another. Accordingly, in addition to the possible inheritance and composi-
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tion relationships between models, there can also be more complex relationships 
among them. These relationships carry information about the meaning of a model 
in the context of some other models. That is, the process, defining the relationships 
among the models, can be considered to introduce semantics for the models. 

In the early phases of the development process, models are typically very 
abstract. They will be refined in later phases when more detailed information 
about the system to be specified is available. The same holds true also for the 
relationships between the models. Thus, the possibilities of automation in early 
phases are usually more restricted than in the later phases. 

Design rules for an artifact in a phase of a process define the elements and the 
relationships for each artifact. If the artifact is a UML model, the abstract syntax 
and well-formedness rules of the type of the model specify characteristics of a 
legal model instance. Nevertheless, since the semantics of UML models have not 
been tied, the ways of using a certain model type may vary among processes, or 
even from phase to phase within a single process. Therefore, it must be possible 
to restrict and extend the selected model types in each process. In UML, this can 
be done using profiles. 

Regardless of how processes are described, the descriptions of the processes 
are also models. Thus, it is possible to find relationships also between different 
processes as well as between the process model and the actually realized process 
instance. For example, consider an organization with a basic process framework 
that is varied for each process, e.g. by the size, complexity or other features of 
the project. The situation is similar to product line architectures. 

During the lifetime of a system, the system may undergo modifications to 
respond to changes in the environment where it is used. Hence, certain aspects in 
the system need to be redesigned, leading to revised models, describing the 
modified parts. This implies again strong relationships between the original models 
and the modified ones. This is a particularly important factor in iterative and 
incremental process models, but must be considered as a tool support for processes. 
This is also one of the reasons, why automation possibilities are greater in product 
line processes compared to ordinary software engineering processes. It may be that 
there are already several products in the same product family. That is, there may be 
a bunch of ready made models and defined model relationships existing already. 

 
2.3. Architectural  implications  to  the  relationships 

 
Often, the most critical relationships are implied for the selected software 

architecture. Thus, the architecture (architectural style) of the specified system 
affects heavily the relationships in the process. OMT++ [6] is an example of a 
process model that follows a default architectural style called MVC++, where 
there is a model, a controller, and a view part in object design of each component 
(similarly to the original MVC model [7]). This fact implies some relationships 
for the process. The initial version of the model part is a fragment of the analysis 
model. Similarly, the initial versions of the view and controller parts are 
generated from a fragment of a dialogue diagram. Initially, each dialogue in a 
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dialogue diagram is translated to a view class, a corresponding controller class is 
created and associated with each view class, and the controller of the main 
dialogue composes the other controllers. 

The standard architectural style in OMT++ simplifies the automation of the 
process since one of the varying parameters is bound. Apart from OMT++, the 
software architecture is most often specified during the software development 
process. Thus, the relationships, implied by the architecture, are not known until in 
the middle of the process. Similarly, change of the architectural style would change 
the relationships within OMT++. This means that it should be possible to change 
the relationships within the process according to the selected architectural style. 

In software product families the situation is similar to OMT++. Often the 
common product platform ties the architectural style of the applications. As a 
result, the application engineering process is simpler than a corresponding process, 
implemented from scratch, and the possibilities of automation are greater. The 
models (e.g. UML models) of family members have also relationships among each 
other. Especially, the models, specifying an application, should be consistent with 
the product platform. 

The rules for different kinds of architectural styles can be specified as 
architectural profiles as is done, for example, in [8]. This would imply also relation-
ships between the architecture and its profile. 

 
 
3. IDENTIFYING  COMMONALITIES  AMONG  PRODUCT  LINE  

PROCESSES 

3.1. Starting  point  for  the  comparison 
 
To find out the commonalities among product line processes, we have made a 

commonality analysis of the model relationships of four process models: FAST [9], 
FORM [10,11], KobrA [12] and QADA [13]. The criterion for choosing the processes 
was the (satisfactory) amount of information we could find about them. These four 
processes also differ from each other enough to be a fair sample of product line 
processes. The knowledge about different product line processes is derived from 
literature, and more detailed version of this study is presented in [14]. 

Each of the processes has its own characteristics and emphasis. FAST domain 
engineering provides an environment (consisting of tools and languages) to be 
exploited during application engineering. It guides the workflow of the process in 
a traceable and disciplined way by determining the steps that can follow a certain 
step. FAST reveals mainly temporal workflow dependencies. Software process is 
seen as decision making, and these decisions have partial orders among each 
other: some decision must be made before others. For example, family design can 
be started when both commonality analysis and the decision model have been 
reviewed. 

FORM domain engineering produces feature models and a reference 
architecture, from which reusable components can be derived during application 
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engineering. Features and their relationships play an essential role, for example, 
in grouping the features into subsystems. Composition rules ensure consistency 
and completeness of features. These rules inform, for example, if several features 
should be selected together. The features in different models (subsystem, process 
and module models) are organized so that closely related features belong to the 
same group to avoid unnecessary relations between different groups. 

KobrA concentrates on components and their composition. Common compo-
nents (called framework components) are produced during domain engineering and 
instantiated during application engineering. KobrA reveals several kinds of 
consistency rules. Intra-diagram rules ensure that a single (UML) diagram is 
complete and well-formed. Inter-diagram rules ensure that diagrams, associated 
with specification, realization, and implementation, are consistent with each other. 
Realization rules ensure that realization of a component represents a faithful 
representation of its specification. Containment, specialization and clientship rules 
are associated to containment, inheritance and clientship relations, respectively. 

QADA emphasizes architectural assessment along with architectural styles 
and the rationale how requirements guide finding a suitable style. It does not 
support application engineering like the other processes. QADA supports 
constraint violation, checking different views (structural, behaviour and deploy-
ment views) and refinements between conceptual and concrete architecture. 
Moreover, these refinements must not violate the selected architectural style. 
QADA assessment evaluates the architecture against its requirements. 

 
3.2. Criteria for  the  comparison 

 
The processes have clearly different emphasis, but many “structural” 

similarities like the division into domain engineering and application engineering, 
as well as some common phases, are easy to detect. However, the similarities of the 
model relationships within the processes are not that easily detected – mainly 
because they are not extensively documented in the process descriptions. Thus, we 
had to make the comparison indirectly, through the similarity of the models. 

We based the comparison on the following assumptions. The fact that each 
process gives semantics to its models can be reversed assuming that if the 
semantics of all the models in two processes are the same, the processes are 
essentially the same. Furthermore, if the semantics of models in two different 
processes are the same, it can be expected that the relationships in the models and 
between the models are also the same. For each model relationship that is found 
to be similar in two processes, it is possible to apply the same tool support. 

As actual criteria for comparing the semantics of the models in the commonality 
analysis, we used model name, model description and the abstraction level of the 
model. Names usually attempt to express the meaning of the model, thus the model 
names were used as the starting point of searching for commonalities. Neverthe-
less, the main comparison means used were the descriptions of the models, because 
they revealed the semantics of the models more deeply. However, two descriptions 
may look the same, but if they are at different levels of abstraction (within the 
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process), the models cannot be considered the same. The level of abstraction refers 
here to the phase division of the process. The earlier the phase, the more abstract 
the models typically are. 

It is notable that in this comparison, the tasks to be carried out during pro-
cesses may be different, but they may still produce similar models. This means 
that the tasks, phases, etc. have no other meaning than revealing the level of 
abstraction of the models in the process. For this reason, we have “unified” the 
phases in the processes. That is, we have a single name for the phases on the 
same level of abstraction. 

 
3.3. Actual  comparison  and  its  results 

 
Table 1 shows the comparison criteria, i.e. the models of the chosen product 

line processes, in condensed form. The table is divided horizontally according to 
the “unified” phases, and each row contains the models produced during a certain 
phase. The derivation of the phases is based on both ordinary processes and 
product line processes. Due to the nature of product line processes, the phases of 
the ordinary process are repeated twice during product line processes: once in 
domain engineering and the other time in application engineering. 

Each slot may contain several models (beginning with a capital) together with 
its content (sub-models or description, shown as an itemized list). Due to the 
different emphasis of each process, the models are not exactly the same (as can 
be seen in their names and contents), but we have tried to find as close corres-
pondences as possible. 

To keep the abstraction levels (rows) consistent, we have, for example, 
divided the domain model of FAST into two parts: one part produced during 
domain analysis and the other part during domain design. Originally, FAST has 
no domain design; it is included in domain analysis. Note also that all models are 
not present in all processes, and thus, there are empty slots in the table. 

Collecting the models was not straightforward. For instance, they have 
hierarchical relationships, i.e. some models consist of other models (sub-
artifacts). When visualizing these relationships between models in tree-like 
pictures, corresponding models can be found on different levels of different 
processes. For example, FORM has a domain scope as a part of context analysis, 
while QADA has a corresponding model, called product line scope, as an upper-
level model. In these cases, we compared the hierarchies to find out the most 
common way to compose the models and tried to identify the most acceptable 
abstraction among the model compositions. 

Table 1 is a starting point for Table 2, showing the “unified models”, i.e. the 
most common models for the processes. Note that not all the models in Table 2 
must be found for all of the processes. None of the models is considered as manda-
tory. Thus, there are also models like “Architectural assessment” in Table 2 since it 
could easily be added to any of the processes without any side effects if suitable. 

The models in Table 2 are considered in greater detail in the next section, 
where model  relationships and their possible influence to process automation are  
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Table 2. The most common models of the processes 
 

 Model 

Domain requirements specification/ 
Domain analysis 

Economic model 
Terminology 
Commonality model 
Context analysis 
Decision model 

Domain design Architectural style 
Architectural views 
Toolset design 
Composition mapping 
Application modelling language 
Application engineering process 

Domain implementation Reusable components 
Framework 
Product line tools 

Testing Architecture assessment 

Application requirements specification Application specification 

Application design Application model 

Application implementation Application 
 

 

discussed. As the result of the comparison, we can state that the processes do have 
a lot of models that can be considered to be essentially the same. This means that 
there are a great amount of commonalities also in the model relationships, and it is 
reasonable to consider a common “family of tool support” for product line pro-
cesses. 
 
 

4. IDENTIFYING  POSSIBILITIES  FOR  PROCESS  AUTOMATION 
4.1. Automation  possibilities  implied  by  general  model  relationships 

 
The purpose of, and methods used in domain and application engineering in 

product line processes differ from the purpose and methods of ordinary software 
engineering. Nevertheless, the nature of relationships, and thus, also the possible 
automation are essentially similar in both domains. Examples of tool support 
needed in different phases and different artifacts are collected in Table 3. The 
listed automating facilities are discussed in the rest of this section from the point 
of view of model relationships. 

As mentioned earlier, relationships may lead to, or actually present a group of 
dependencies among models. A dependency has semantics, or a rule that specifies 
how the two models depend on each other. As an example, the relationship 
between a profile and its instance (a model) is a simple one – the model, as well as 
every element in it, must conform to its profile. The functionality, implied by 
checking of the well-formedness (Table 3) of the models, that is, the conformity to 
profiles,  is  typically  simple,  including  warnings  and  indication  of the  possible  
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Table 3. Produced artifacts and possible tools needed in process phases 
 

Phase Artifact Examples of possible tools needed 

Economic 
model 

•   •   •      • •  • 

Terminology •  • • •  •      • •  • 
Commonality 
model 

• • • •   •      • •  • 

Context 
analysis 

•  • •   •      • •  • 

Domain 
requirements 
specification/ 
Domain analysis 

Decision 
model 

•  • •   •      • •  • 

Architectural 
style 

•  • •   •      • • • • 

Architectural 
views 

•  • • •  •      • • • • 

Toolset design •  • • •  •   •  • • • • • 
Composition 
mapping 

•  • •   • •     • • • • 

Application 
modelling 
language 

•  • •   •      • • • • 

Domain design 

Application 
engineering 
process 

•  • •   •   •   • • • • 

Reusable 
components 

    • • • •  • • • • • • • 

Framework   •   • • •  • • • • • • • 

Domain 
implementation 

PL tools     • • • •  • • • • • • • 

Testing Architectural 
assessment 

  • •   •  •    • •  • 

Application 
requirements 
specification 

Application 
specification 

•  • •   •      • • • • 

Application 
design 

Application 
model 

•  • • •  • •  • • • • • • • 

Application 
implementation 

Application •  • • • • • •  • • • • • • • 

Testing  •  • • •  •  • • •  • •  • 

Deployment               • • • 

Operation and 
maintenance 

Updated 
components, 
tools, and 
applications 

• • • • • • • • • • •  • •  • 

Project plan •  • •   •       •  • 
Project report     •  •       •  • 

Project & process 
management 

Assessment & 
feedback 

• • • •   •  •    • •  • 

General Profiles (e.g. 
UML prof.) 

•  • •   •         • 
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problems. However, further processing may vary according to made decisions, e.g. 
in the guided correction of the problems. In some cases, profiles can also be used in 
the generation of parts of the model instead of mere checking. This ideology is 
parallel to the use of patterns, as considered in [15]. 

The models within a single activity (like phase or sub-phase) of a process 
usually describe the same thing at the same level of abstraction and from the same 
viewpoint. In a way, they can be seen as parts of the same model and completing 
each other. Hence, also the relationships among the models are strong and imply 
strong possibilities for automation. Examples of this kind of relationships, requir-
ing consistency (Table 3) among models, include: class diagrams of the analysis 
model and the corresponding data dictionary, operation list in the behavioural 
analysis and the sequence diagram for each operation as well as component dia-
grams and corresponding deployment diagrams. 

The situation is somewhat similar to the above when considering the relation-
ships among models, produced in different activities. However, in general, most 
of the dependencies are actually partial, more complex than the above examples, 
and imply highly varying functionality. The partiality of the dependencies may 
be problematic for preserving consistency. For instance, if a class in detailed 
design (in class diagram) is removed, should this affect the analysis model or 
not? How about adding a class or changing its name? 

These kinds of decisions are carried out separately for each process or in many 
cases even for each inconsistency situation. Thus, there may be several possibilities 
for actions implied by a dependency and in many cases it is the best choice to let 
the designer of the models to decide which one is applied in a certain situation. 
Furthermore, interaction with the tool user may, at its best, enable exploitation of 
even the weakest relationships among the models for the purposes of tool support. 
It is also important to remember that inconsistency is not the only feature of 
software engineering process needing functionality. For example, functionalities 
like dependency initialization and model generation may be needed. 

 
4.2. Domain  engineering  specific  automation 

 
One of the notable deviations from ordinary software engineering processes is 

the existence of domain analysis. If there are existing applications meant to be 
used as the basis of forming a product family, a tool set for finding a common 
basis for products (commonality and variation detectors in Table 3) could help 
domain analysis phase considerably. The basis of this analysis could be either 
existing or reverse engineered models of the applications. The result of the 
analysis could be shown, for instance, by coloring the differences of the static 
models of the applications. Besides revealing the similarities of the applications, 
the tool can also show the possible variation points in the application family. 

The relationships in the later phases of a product line process are more 
specific and more detailed than in the earlier phases. Thus, the possibilities of 
automation in later phases of the process are greater. In contrast to the ordinary 
software development processes, the early phases of the application engineering 
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are in the middle, or even in the end, of the whole product line processes. On the 
flip side of the more concrete and bounded application engineering, the early 
phases (or even all of the phases) of the domain engineering are even more 
abstract than in the ordinary processes, since the focus is wider. 

In the early models in domain engineering, there are very little or no 
possibilities for automation (e.g. economic model). The created models are very 
abstract – typically meant only for humans, and hence, a computer can not easily 
use the possible relationships among the models. Again, in the other phases (like 
domain analysis, design and implementation) it is possible to automatically check 
the consistencies and generate warnings or tasks to repair the consistency viola-
tions, as well as (possibly) automatically generate the skeleton for the successive 
models. Naturally, all these issues depend on the specific method at hand. 

Altogether, domain engineering aims to create the basis for the automation in 
the actual application engineering process. For instance, marking of the vari-
ability points during domain engineering indicates on one hand the fixed parts, 
and on the other hand the possible choices within the application engineering. 
The variability points guide the work and permit automation in application 
engineering. They can also be incorporated in the base architecture (framework) 
of the product line (e.g. dynamic plug-in interfaces). Thus, a great amount of the 
needed automation is not necessarily visible in the process itself, but is found 
inside of the used framework. 

A variation of using frameworks is to fix the architecture model in domain 
engineering, and use a (e.g. visual) component composition language or another 
similar mechanism in application engineering to fill in and vary features of the 
application. Similar ideas can be used also in testing. For example, by building a 
common test bench (framework) in domain engineering, it is possible to 
automate some parts of the testing in application engineering. 

 
4.3. Application  engineering  specific  automation 

 
Application engineering benefits of the work done in domain engineering and 

other applications. As an example, the gathering and analysis of requirements 
and the domain are probably accomplished to a great extent, and the architectural 
style is already fixed. It is also possible to have the basic architecture (e.g. a 
framework) completed already, as well as some other applications of the same 
family. As a result, the strong relationships between the common parts of the 
product line (such as components and features), as well as between other applica-
tions in the family, permit application of various potential tools. 

During domain engineering, it is possible to form a preset group of choices, 
for instance, for the basic set of requirements (or features) of the system. Each 
feature implies a piece of analysis, which again implies a piece of design and so 
on. When the designer then selects a set of requirements for an application 
(during application engineering) she also binds some of the features of other 
models (analysis, design, etc.), and possible choices in the rest of the phases. 
When the designer then, in later phases (like analysis), binds a variation point, 
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the effect is similar. This means that the possible variation in the rest of the 
phases is more limited. Requirements also often depend on each other. If the 
designer has chosen a certain requirement, the depending requirements should be 
taken as well. Naturally, this can be done also automatically. The same applies 
also to the other pieces of models. 

All this also implies timely relationships among the parts of the models. It is 
possible to get an order to the tasks to be performed, based on the relationships 
modelled in the domain engineering and the choices the designer makes. This 
leads to a tool that would guide the work by giving tasks to the designer (fixing a 
variation point, etc.). When the user has completed the tasks, the model changes 
and implies another set of tasks. In separation to typical workflow tools, where 
there are merely predefined phases with timely relationships, the needed tasks are 
generated dynamically according to the defined model relationships. However, in 
addition to these kinds of task generation tools, there is also a need to explicitly 
pre-define the general workflow of the process. 

Instead of picking the requirements or other pieces of models from the base of 
the product line only, it is also possible to use other applications of the same 
family in the similar fashion. Thus, it is possible to choose requirements, features 
and models from other applications, and use them to complete the selections 
made from the base of the product line. These choices can even guide the work 
and bind other choices even more than the ones made from the base of the 
product line, since the other application is typically more detailed and more 
complete than the base of the product line. 

When time passes, the product line architecture evolves, and the changes are 
most often due to the new applications, built in the family. This means that 
existing applications could also be used to complete certain aspects of the base of 
the product line in the same way we described how the existing applications can 
be used as the basis of forming a product family. Again, except the similarities of 
the applications, it is possible to find also possible variation points in the applica-
tion family. This feedback from application engineering to domain engineering is 
basically a reverse engineering tasks. However, at least some mechanisms for 
abstraction of the models must also be available. In this way, it could also be 
possible to form a common database, including, e.g. well-defined requirements, 
use cases, and pieces of analysis to be used in the future applications. This 
approach is especially applicable in component-based product lines. 
 
 

5. EXISTING  TOOLS  AND  THEIR  INTEGRATION 
 
Even though some of the aforementioned tools seem to be no more than wild 

ideas, there actually exist several tools for most of the tasks. As an example, an 
essential task in the context of product lines is to identify the common features 
either in existing applications or in the domain. Tools for these purposes typically 
fall into domain analysis category, and their requirements are discussed in [16]. 
An example of a concrete domain analysis tool is DARE [17]. Commonality 
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detection can be based on reverse engineering, and tools for this area can be 
found in [18]. Product line engineering process is often based on frameworks that 
are thoroughly discussed in [19]. Frameworks can be used to guide building 
applications by composing from common components or features [20,21]. 

The above tools and platforms typically address some specific tasks during 
product line engineering. However, separate tools are not enough, but it should be 
possible to integrate them into the processes in order to get the real benefit out of 
them. Furthermore, there should be ways to define the relationships and processes, 
as well as to attach arbitrary, and possibly interactive functionality to any situations 
or activities within the specified process. In addition, all this should be possible to 
integrate with the existing CASE-tools, like editors, version control tools, etc. 

As examples of tool sets, we have tools and platforms, developed in our 
research group. One of them is a tool-independent software platform, called 
xUMLi [22,23]. It permits building and combining UML processing facilities and 
using them as integrated CASE tools like Rational Rose [24]. The very basis of 
xUMLi is a visual data and control flow language called Visiome [25]. A Visiome 
script consists of activities that are either Visiome components, created as COM 
components, or other Visiome scripts. Single Visiome activity gets data 
(typically a model or model fragment) as input, and gives another data (model) as 
output. Activities have arbitrary but typically relatively simple functionality, and 
they are combined with Visiome to gain more complex functionality. 

In addition to Visiome, xUMLi provides, e.g., a tool-independent API for 
processing UML models that are created by various kinds of tools. Typical 
functionality, used in xUMLi, includes transformations between different diagram 
types, combining and merging the information content of two models of the same 
diagram types, and construction of more complicated transformation and combina-
tion operations based on more simple ones. xUMLi is also used to build more 
complex tools like ArtDeco architecture validation tool [8,23]. 

Another tool developed in our group is JavaFrames (earlier known as Fred) [26]. 
It is built on Eclipse [27] and it provides an extendable framework to be exploited 
during application development. The extension is specified as an interface, consist-
ing of patterns. Such pattern includes roles that are interdependent and that are 
bound to concrete program elements during specialization, as well as rules and 
constraints for them. The specialization process consists of steps, having partial 
order among each other. The tool uses patterns to automatically generate a dynamic 
task list, guiding the application programmer. During specialization, new tasks are 
generated for missing elements and repairing tasks are generated when a constraint 
is detected to be violated. Examples of tasks are creation of a new class or a new 
operation. Performing a task may generate new tasks. 

From the basis of the aforementioned tools, a tool called MADE (modelling and 
architecting development environment) is developed in our research group [28–30]. 
MADE exploits pattern-driven specialization properties from JavaFrames and its 
task-driven guiding mechanism. Pattern is an abstract concept without semantic 
contents, and thus, the pure concept can be used in different contexts. MADE 
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extends the JavaFrames to support also other than Java-specific pattern role types, 
such as UML and general text files. xUMLi again is at the moment used merely for 
integrating JavaFrames and Rational Rose. 

As already stated above, the basic idea of MADE is to define and describe the 
possible and required relationships among metaelements in the form of patterns 
and use this information to maintain and instantiate valid models. However, 
MADE does not, for example, have possibilities to tie more general, arbitrary 
functionality to the inconsistency situations, nor exist mechanisms to define, 
instantiate, or otherwise support the whole software development processes. The 
customizability in MADE is in the relationships, i.e. patterns, instead of, for 
example, in functionality. 

In Visiome, the models are manipulated programmatically, that is, the relation-
ships of the models are defined and maintained with programs. Mechanism is more 
complex than in MADE, and there is no easy way to observe the relationships of 
the models separately from the functionality. However, Visiome as a programming 
language gives the possibility to define arbitrary functionality at reasonably high 
level. Furthermore, we use a specialized version of Visiome to describe the whole 
software development processes, i.e. the workflow, as well as the functionality 
needed in them. On the contrast to MADE, the customizability is in the 
functionality in Visiome. 

We believe that by combining these two approaches and platforms, Visiome 
and MADE, we are able to gain the benefits of both of them and to create a basis 
for a customizable tool support for product line processes in general. Our project 
group is currently working on the integration of the platforms. 
 
 

6. CONCLUDING  REMARKS 
 

In this paper, we made commonality analysis for model relationships of product 
line processes in order to consider common basis for tool support of the product 
line process. We conclude that the processes do have a lot of commonalities in the 
model relationships, and it is reasonable to consider a common “family of tool 
support” for product line processes. In our project group, we are currently setting 
up a project, where the goal is to implement the described customizable family of 
tool support for product line processes. As the starting point for the implementa-
tion, we shall use tools, languages, and platforms produced in our earlier projects, 
including Visiome, xUMLi, JavaFrames and MADE. 

However, we still have to clarify the details of the relationships in the future. 
It is not enough to know, for instance, that some artifacts depend on each other 
and one must be completed before the other. Equally, drawing a line, no matter 
how much decorated, is not enough to specify the meaning of a relationship. 
When processes are automated, it is essential to know the exact semantics of the 
relationships, and to describe them in a form that the computer can understand. 
Furthermore, the process must be described in the way that automated tasks are 
attached to the appropriate places of the process. 
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In order to provide customizable and flexible tool support for processes, there 
must be means to define the relationships and rules in a way that they can be 
changed when the need arises. That is, any of the relationships cannot be hard 
coded to the tools. It should also be possible to specialize processes for various 
purposes. If a general support for processes is desired, a strong mechanism for 
specification and automation is needed. All this remains as future work. 
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Tarkvaraprotsessimudelite  ühised  omadused 
 

Jari Peltonen ja Maarit Harsu 
 

Tarkvaraprotsessimudelite ühised omadused on üheks tarkvaraprotsessi auto-
matiseerimise aluseks. Arendusvahendite aspektist on kõige olulisemaks ühiste 
omaduste klassiks mudelitevahelised seosed. Artiklis on analüüsitud tarkvara-
mudelite ja mudelitevaheliste seoste ühiseid omadusi erinevates tarkvaraprotses-
sides arendusvahendite ühise baasi koostamiseks. 
 


