
Proc. Estonian Acad. Sci. Eng., 2005,11, 4, 313–328

Transfinite semantics in program slicing

Härmel Nestra

Institute of Computer Science, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia;
harmel.nestra@ut.ee

Received 4 August 2005, in revised form 23 September 2005

Abstract. This paper studies mathematically some special kinds of transfinite trace semantics
and investigates program slicing w.r.t. these semantics. Several general facts about slicing,
which hold for a wide class of programming languages and their transfinite semantics, are
proven. The principal part of the work is done on control flow graphs keeping the treatment
abstracted from any concrete programming language. Structured control flow is not assumed
but programs written in standard programming languages with structured control flow are
among those to which our theory applies.

Key words: program slicing, transfinite semantics, transfinite iteration.

1. INTRODUCTION

Program slicing is a kind of program transformation where the aim is to find an
executable subset of the set of atomic statements of a program which is responsible
for computing all the values important to the user. Slicing was introduced and
its significance was explained first by Weiser [1]; summaries of its techniques and
applications can be found in Tip [2] and Binkley and Gallagher [3].

A standard example of program slicing is the following (small numbers are
short denotations of program points):

0sum := 0 ; 1prod := 1 ;
2i := 0 ;
while 3i < n do (

4i := i + 1 ;
5sum := sum + i ;
6prod := prod * i

) ;
7

−→

0sum := 0 ;
2i := 0 ;
while 3i < n do (

4i := i + 1 ;
5sum := sum + i ;

) ;
7

313

The first program computes both the sum and the product of the firstn positive
integers (wheren is the initial value ofn). The second program computes the
sum; all statements concerning the product only aresliced away. If sum is the only
interesting value, the two programs are equally good.

The specification of which variables are important at which program pointsis
calledslicing criterion. It can be given mathematically as a binary relation between
program points and variables. The essential property of a slice – being equally good
to the original program in computing the values of user’s interest – is then more
precisely formulated as follows: for arbitrary initial values of variables, the slice
and the original program compute the same sequence of values for everyprogram
point and variable related by the criterion.

The slice above has been found w.r.t. criterion{(7,sum)} saying that the user
is interested in the value of variablesum at program point7. As control reaches
program point7 just once (at the end of execution) and, when this happened, the
value ofsum computed by both programs is the same, the crucial property is met. If
the criterion were{(5,sum)}, the property would mean that the sequence of values
aquired bysum at point5 be the same in both programs. This is also true since both
programs compute values0, 1, 3, . . . , (n− 1)n/2 for sum at5. These observations
together imply the property also for the criterion{(5,sum), (7,sum)}.

If our concern is to prove correctness of slicing algorithms, we need a
formalization of the crucial property. Clearly this must involve a semantics. Ithas
been noticed earlier that standard semantics are not completely satisfactoryfor this
purpose because slicing can produce terminating programs from nonterminating
ones, which implies that the program points of interest can be reached moretimes
in the slice than in the original program and the later reachings correspondto
computation, never undertaken by the original program. As an illustration, consider
the following example:

while 0true do ;
1x := 0 ;
2

−→ 1x := 0 ;
2

The second program is a slice of the first w.r.t. criterion{(2,x)}. The loop
is sliced away since no influence tox at point2 can be detected. This causes the
program point2 to be reached once during the run of the slice while not being
reached at all during the run of the original program.

This phenomenon is calledsemantic anomaly[4, 5]. It is a fundamental
issue since no slicing algorithm can decide whether a loop terminates. Therefore
non-trivial slicing algorithms, in particular the standard ones based on dataflow
analysis, cannot be correct w.r.t. standard semantics in all cases. (Reps and Yang [6]
prove correctness of their notion of slice w.r.t. standard semantics under the
restriction that the original program terminates.) Hence, for obtaining a working
version of the notion of correctness here, one must abstract from termination.

314

Giacobazzi and Mastroeni [5] investigate transfinite semantics with the aim
of solving this problem; the idea has been proposed already by Cousot [7]. By
transfinite semanticsone means a semantics, according to which computation
may continue after an infinite number of steps from some limit state, determined
somehow by the infinite computation performed.

Our paper follows up transfinite semantics and program slicing in the context
of them. In Section 2, we argue that two special kinds of transfinite semantics,
which we call iterative and corecursive, are particularly interesting andwe carry
out a mathematical investigation of them. Regarding deterministic transfinite
semantics, this improves the theory of transfinite corecursion theory, reported by
us in [8] (non-determinism is not investigated here). In Section 3, a transfinite
trace semantics for while-loops is described together with further explanations
why transfinite semantics works for program slicing. It also discusses defining
transfinite semantics for programs with unstructured control flow. Section 4defines
a class of transfinite semantics we call escaping. A theorem, estimating the length
of transfinite computation in escaping semantics, is proven; it both refines and
generalizes an analogous result of Giacobazzi and Mastroeni [5]. Section 5 proves
that the problem of finding statement minimal slice w.r.t. transfinite semantics is
undecidable. For standard semantics, this result is known. Section 6 discusses
related work and points out a few important differences of our approach from that
of Giacobazzi and Mastroeni [5]. Section 7 refers to some problems with using
transfinite semantics in program slicing and hints at the work yet to be done.

2. TRANSFINITE SEMANTICS ABSTRACTLY

A trace semantics of a program expresses its execution behaviour step bystep.
It is basically a set of sequences of items representing execution states. In standard
trace semantics, the sequences are finite lists or streams whose components are
indexed with natural numbers. In transfinite trace semantics, the sequences are
transfinite, the components are indexed with ordinals. Call themtransfinite lists.

The notion of ordinal is obtained as a generalization of the notion of natural
number by adding transfinite elements. So we have all the natural numbers
0, 1, 2, . . ., as well asω, ω+1, ω+2 etc.,ω+ω and a lot of greater elements, among
ordinals. Standardly, ordinals are defined as isomorphism classes of well-ordered
sets. The essence of ordinals together with their standard order is expressed by the
fact that, for arbitrary set of ordinals, there exists the least ordinal greater than any
element of this set. There are many books giving profound introductions toordinal
theory; [9, 10] represent just two different approaches.

We treat transfinite lists overA as functions which take ordinals intoA and
whose domain is downward closed. So a transfinite list overA is a function
l : Oo → A for someo whereOo denotes the set of all ordinals less thano; in
this case,o is calledlengthof l and denoted by|l|. Denote the empty list – the only
list of length0 – bynil.

315

For a transfinite listl andα < |l|, l(α) (or lα) is theαth componentof l. For
simplicity, we allow writingl(α) also forα > |l| and countl(α) = ⊥ /∈ A in this
case. The first component,l(0), is also denoted byhead l.

For every transfinite listl and o 6 |l|, let take o l and drop o l denote the
transfinite list which is obtained froml by taking and dropping, respectively, the
first o elements from it. So, for any ordinalπ,

(take o l)(π) =
{
l(π) if π < o
⊥ otherwise

}

, (drop o l)(π) = l(o+ π) .

Thereby,| take o l| = o and|drop o l| = |l| − o.
If o > |l| or l is not a list thentake o l = ⊥ = drop o l. All

operations considered in this paper, including function application, are strict, i.e.
a subexpression with value⊥ turns the value of the whole expression to⊥.

Lemma 1. Let l be any transfinite list.
(i) For ordinalso andπ, l(o+ π) = (drop o l)(π);
(ii) For ordinalso andπ, drop(o+ π) l = dropπ(drop o l);
(iii) For ordinalso andπ, takeπ(drop o l) = drop o(take(o+ π) l).

This lemma was proven in [8]. The claims are rather intuitive and we are going
to use them without any reference; however, note that the claims hold also for cases
where some expressions evaluate to⊥.

A transfinite list is typically defined using transfinite recursion. This means
that every element of the list is expressed in terms of all the preceding elements.
In the case of semantics, this is not completely satisfactory. In a deterministic
standard trace semantics, every execution state is completely determined by its
single predecessor and it would be unnecessarily burdening or misguiding to carry
all the preceding states along in definition.

When defining a transfinite computation, we similarly prefer to express every
state in terms of as few preceding states as possible. However, if the numberof
the preceding states is a limit ordinal then one cannot find the last among them on
which the new state could solely depend.

For example, if one is definingl(ω) then at leastω elements backward must
be taken into account. In definingl(ω + k) for a positive naturalk, it suffices to
consider the last element only. But when definingl(ω+ω), there is no last element
again; at leastω elements backward must be studied.

This consideration leads to our notion of selfish ordinal. In [10], these ordinals
are calledadditive principal numbers; we like our shorter term more.

Definition 1. We call an ordinalγ > 0 selfishif γ − o = γ for everyo < γ.

In other words,γ is selfish iff the well-order of the part, remaining when cutting
out any proper initial part from the well-orderΓ representingγ, is isomorphic to
Γ itself. One more characterization is as follows:γ > 0 is selfish iff it cannot be

316

expressed as the sum of two ordinals less thanγ (i.e. the set of ordinals less thanγ
is closed under finite sums).

For example,ω is selfish. If one cuts out any proper initial part of the well-order
representingω (see figure), the remaining part representsω itself.

• — • — • — • — • — • — • — • — . . .

The ordinalsω + ω, ω + ω + ω etc. are not selfish because removing the initialω
leads to a smaller number. However, the limit of this sequence is selfish.

Note that1 is selfish – the least, the only finite and the only successor ordinal
among them.

Proposition 1.
(i) Every ordinalo > 0 is uniquely representable in the formo = α+ γ whereγ is

selfish andα is the least ordinal for whicho− α is selfish.
(ii) Every ordinalo > 0 is uniquely representable in the formo = λ + β whereλ

is selfish andβ < o.

Proposition 1 implies that every ordinal can be uniquely expressed as the sum
of the elements of a finite non-increasing list of selfish ordinals. This fact can also
be deduced from the classical theorem of ordinal theory about representations on
base since it can be proven that an ordinal is selfish if and only if it is a power ofω;
the representation on baseω is also calledCantor normal form[10, 11].

In the rest, we call the representationo = α + γ whereγ being selfish andα
minimized (the representation of Proposition 1(i)) theprincipal representationof
o. If the Cantor normal form ofo is written as a sum of powers ofω like in [10]
then adding all summands but the last of this sum gives the first component of the
principal representation ofo and the last summand equals to the other component.

Suppose we are definingl(o) in terms of elements preceding it in listl. The
selfish ordinal in the principal representation ofo coincides with the number of
elements, inevitable to study backward in the listl. For example, the principal
representation ofω is 0 + ω; the principal representation ofω + k with any
positive natural numberk is (ω + (k − 1)) + 1; the principal representation of
ω · k = ω + . . .+ ω

︸ ︷︷ ︸

k

with any positive natural numberk is ω · (k − 1) + ω.

Let ∝ be a fixed selfish ordinal and letTListA denote the set of all transfinite
lists overA of length not exceeding∝. Let STListA denote the subset ofTListA
consisting of lists by which next elements are defined, i.e. lists of length being both
selfish and less than∝ (lists of length∝ do not have next elements). So

TListA =
⋃

o6∝

(Oo → A), STListA =
⋃

γ<∝

γ selfish

(Oγ → A).

Definition 2. Let X, A be sets. Assumeϕ : X → 1 + A = A ∪ {⊥} and
ψ : STListA→ X. We say that a functionh : X → TListA is iterative onϕ and
ψ iff, for eachx ∈ X, the following two conditions hold:

317

1. h(x)(0) = ϕ(x);
2. h(x)(o) = ϕ(ψ(take γ(dropα(h(x))))) for every o < ∝ with principal

representationo = α+ γ.

This notion captures the desire described above:oth component of a listh(x)
is defined in terms ofγ preceding components whereγ is the selfish ordinal from
the principal representation ofo. As 1 is one particular selfish ordinal, the iteration
schema handles finite and infinite steps uniformly.

Example 1. TakeA = N,X = Z. For x ∈ Z andl ∈ STList N, define

ϕ(x) =
{
x if x ∈ N

⊥ otherwise

}

, ψ(l) =

{
head l if |l| = 1
n+ 1 if l stabilizes ton
−1 otherwise

}

.

Provided∝ > ω2, the following functionh is iterative onϕ andψ:

h(x) =







(x, x, . . .
︸ ︷︷ ︸

ω

, x+ 1, x+ 1, . . .
︸ ︷︷ ︸

ω

, x+ 2, x+ 2, . . .
︸ ︷︷ ︸

ω

,

︸ ︷︷ ︸

ω

) if x ∈ N

nil otherwise







.

Theorem 1. Let X, A be sets. For everyϕ : X → 1 + A = A ∪ {⊥} and
ψ : STListA → X, there exists a unique functionh : X → TListA being
iterative onϕ andψ.

Proof. Essentially done in [8] at the beginning of the proof of corecursion theorem
for deterministic semantics. ut

Theorem 1 asserts that, for defining a transfinite semantics “by iteration”, it
suffices to provide justϕ andψ.

Standard deterministic trace semantics have the nice property that the part
of the computation, starting from an intermediate states, is independent of the
computation performed before reachings. This is because states alone uniquely
determines all the following computation. For transfinite semantics, even if defined
by transfinite iteration, this property may not hold.

Here we find a weaker condition holding also for iterative transfinite semantics;
furthermore, we find a natural restriction onψ in case of which the corresponding
transfinite semantics satisfies also the desired stronger property. We call the two
conditions weak corecursivity and corecursivity, respectively. We chose such
word because the conditions are to some extent analogous to traditional stream
corecursion (the analogy will be explained below).

Definition 3. LetX,A be sets.
(i) Call any functionψ : STListA → X limit operatorif ψ(l) = ψ(dropλ l) for

all selfish ordinalsλ, γ with λ < γ < ∝ and transfinite listsl ∈ Oγ → A.
(ii) Assumeϕ : X → 1+A = A∪{⊥},ψ : STListA→ X andh : X → TListA.

Consider the following properties:

318

1. if ϕ(x) = a ∈ A thenhead(h(x)) = a, and
if ϕ(x) = ⊥ thenh(x) = nil;

2. if |h(x)| > λ andλ, µ are consecutive selfish ordinals withλ < µ 6 ∝ then,
for every ordinalo < µ,

dropλ(h(x))(o) = h(ψ(takeλ(h(x))))(o);

3. if |h(x)| > λ andλ < ∝ is selfish then

dropλ(h(x)) = h(ψ(takeλ(h(x)))).

We say thath : X → TListA is weakly corecursive onϕ andψ iff the condi-
tions1 and2 hold. We say thath : X → TListA is corecursive onϕ andψ iff the
conditions1 and3 hold.

Limit operators are analogous to limits in calculus by certain properties (the
limit of a sequence equals to the limit of its every subsequence; all sequences
obtained as a final part of a diverging sequence also diverge). In the case of
semantics,ψ being a limit operator means that the limit state, which appears
immediately after an infinite computation, does not depend on the actual starting
point of the final part of selfish length, i.e. one does not need to use the principal
representation to determine the final part to rely on, but may equivalently use any
final part of the same length. This stricture onψ seems natural but we will see
below that, when inventing transfinite semantics, appropriate for describingslicing
programs with unstructured control flow,ψ may not be a limit operator.

Condition 3 of Definition 3(ii) obviously implies condition 2 (2 requires some-
thing to hold for everyo < µ while 3 requires essentially the same thing to hold for
all o), hence corecursivity implies weak corecursivity.

Takingλ = 1 in the definition gives a construction similar to stream corecursion
in the sense that the result list is defined by giving its head and expressingits tail
as the value of the same function which is being defined. (Conditions 2 and 3 are
equivalent in stream case sinceλ = 1 impliesµ = ω; so both conditions apply to
the whole stream). In transfinite corecursion, the breaking point can be after any
initial part of selfish length rather than after the head only. Unlike in the traditional
corecursion, any component of any list being a value of a function corecursive in
our sense determines all the following components uniquely.

With Theorem 2(i) below, we obtain the equivalence of iterativity and weak
corecursivity. Theorem 2(ii) was proven already in [8] but there we gave a direct
proof while the proof presented here relies on weak corecursivity. In[8], also an
analogous theorem for non-deterministic semantics was proven.

Theorem 2. LetX,A be sets. Letϕ : X → A∪{⊥} = 1+A,ψ : STListA→ X
andh : X → TListA.
(i) Thenh is iterative onϕ andψ iff h is weakly corecursive onϕ andψ.
(ii) If h is iterative onϕ andψ andψ is a limit operator thenh is corecursive on

ϕ andψ.

319

Proof.
(i) Similar to the proof of corecursion theorem for deterministic semantics in [8]

whereby the uniqueness part there corresponds to the if-part here.
(ii) Our h is weakly corecursive by part (i). It remains to prove condition 3 from

Definition 3(ii). Prove by transfinite induction ono that

∀λ < ∝∀x ∈ X (dropλ(h(x))(o) = h(ψ(takeλ(h(x))))(o)) ,

whereλ ranges over selfish ordinals only. Ifo = 0 then the claim holds by weak
corecursivity. Ifo > 0, leto = κ+ β with selfishκ andβ < o (possible by Proposi-
tion 1(ii)). Fix λ and letµ be the next selfish ordinal. Ifµ > κ theno =κ+ β < µ
(because otherwiseβ > µ implying β = κ+ β = o) and the claim holds again by
weak corecursivity. Hence assumeµ 6 κ. Soλ < κ andλ+κ = κ. The induction
hypothesis impliestakeκ(dropλ(h(x))) = takeκ(h(ψ(takeλ(h(x))))), as well
as dropκ(h(y))(β) = h(ψ(takeκ(h(y))))(β) for all y ∈ X. Using this
knowledge together with the assumption thatψ is a limit operator, we obtain

dropλ(h(x))(κ+ β) = h(x)(λ+ κ+ β) = h(x)(κ+ β) = dropκ(h(x))(β)

= h(ψ(takeκ(h(x))))(β)

= h(ψ(dropλ(takeκ(h(x)))))(β)

= h(ψ(dropλ(take(λ+ κ)(h(x)))))(β)

= h(ψ(takeκ(dropλ(h(x)))))(β)

= h(ψ(takeκ(h(ψ(takeλ(h(x)))))))(β)

= dropκ(h(ψ(takeλ(h(x)))))(β)

= h(ψ(takeλ(h(x))))(κ+ β) . ut

Functionψ of Example 1 is a limit operator, so Theorem 2(ii) gives thath of
that example is corecursive. It is also easy to check this directly. We showed in [8]
that, without the restriction onψ, Theorem 2(ii) breaks.

We will need the following corollary in Section 4.

Corollary 1. LetX,A be sets. Letϕ : X → A∪{⊥} = 1+A,ψ : STListA→ X
and leth : X → TListA be iterative onϕ andψ. Denote function composition
by ; (function in the left is applied first). Letλ, µ be consecutive selfish ordinals
with λ < µ 6 ∝. Then, for every natural numbern,

h ; drop(λ · n) ; takeµ = (h ; takeλ ; ψ)n ; h ; takeµ.

Proof. By weak corecursivity,

h ; dropλ ; takeµ = h ; takeλ ; ψ ; h ; takeµ.

By λ < µ andµ being selfish,

dropλ ; takeµ = take(λ+ µ) ; dropλ = takeµ ; dropλ.

320

Argue by induction onn. If n = 0, both sides of the desired equation reduce to
h ; takeµ. If the claim holds forn, we get

h ; drop(λ · (n+ 1)) ; takeµ = h ; drop(λ · n+ λ) ; takeµ

= h ; drop(λ · n) ; dropλ ; takeµ

= h ; drop(λ · n) ; takeµ ; dropλ

= (h ; takeλ ; ψ)n ; h ; takeµ ; dropλ

= (h ; takeλ ; ψ)n ; h ; dropλ ; takeµ

= (h ; takeλ ; ψ)n ; h ; takeλ ; ψ ; h ; takeµ

= (h ; takeλ ; ψ)n+1 ; h ; takeµ . ut

3. CONFIGURATION TRACE SEMANTICS

We work as much as possible on control flow graphs to obtain uniform results
for a wide class of programming languages. Just say we have an imperative
languageProg whose programs are all finite and involve neither recursion (direct or
mutual) nor non-determinism. In examples, we use ubiquitous syntactic constructs
belonging to the most popular imperative programming languages.

Program pointsof a programS are potential locations of control during
executions ofS. Assume that the set of all program points of any programS is
finite and contains a fixedinitial program pointiS .

A configurationis a pair of a program point and astate, the latter containing
an evaluation of variables. LetState andConf denote the set of all states and
the set of all configurations, respectively. The configuration with program pointp
and states is denoted by〈p | s〉; the program point occurring in configurationc is
denoted bypp c.

We are going to study semantics where the meaning of a program is a function
whose values are sequences of configurations expressing the computation process
step by step. The states of Section 2 are actually abstractions of configurations.

Suppose a transition functionnext : Conf → 1 + Conf = Conf ∪ {⊥} is
fixed; applyingnext represents making an atomic computation step. Thecontrol
flow graphof a programS, denoted bycfgS, is a directed graph whose vertices
are all the program points ofS and arcs represent atomic computations (usually
assignment, predicate test etc.). The set of all program points ofS can therefore be
denoted byV (cfgS). So iS ∈ V (cfgS), and if next〈p | s〉 = 〈q | t〉 where
p ∈ V (cfgS) then q ∈ V (cfgS) and cfgS has an arc fromp to q. Every
computation with a programS redounds as a walk incfgS.

To see how transfinite trace semantics helps to avoid semantic anomaly of
program slicing (see Section 1), consider the following way to define transfinite
semantics for a program, containing a while-loop. Besides the transition function,
we must provide principles for finding limit configurations of endless sequences

321

of them. As explained in Section 2, it suffices to provide rules for lists of selfish
length (in terms of Definition 2 and Theorem 1, we must defineϕ andψ).

For the limit program pointlim p of a transfinite listp, coming up as the
sequence of program points, visited during a repetition of the body of a while-loop
for ω times, take the immediate postdominator of the program point, corresponding
to the head of the loop in the control flow graph. Typically, this corresponds to the
part of code, lexically following the loop.

This ensures that, after executing the body of a loop forω times, we reach a
configuration where we have “overcome” the loop. A loopwhile B do T in
this semantics means “whileB keeps holding, doT , but never more thanω times”.

In the limit statelim s of a state lists, a variableX has valuea if the transfinite
list of the values ofX during the transfinite computation represented bys stabilizes
to a; if the list does not stabilize then the value ofX is ambiguous (>). This
choice is to some extent arbitrary; some non-stabilizing sequences of values may
possess limits of some other kind being natural to use instead of>. (Giacobazzi
and Mastroeni [5] have an example where the limit of the non-stabilizing sequence
1, 2, 3, . . . is taken to beω.)

For every transfinite configuration listc = (〈po | so〉 : o < γ) with selfish
lengthγ, define

ψ(c) =

{
next(head c) if γ = 1
〈lim p | lim s′〉 otherwise

}

,

wheres′ is the transfinite list obtained froms by keeping only those states which
occur when control passes through the head of the while-loop causing the infinite
computationc. Then we haveψ : STListConf → 1 + Conf .

By Theorem 1, there exists a functionh : 1 + Conf → TList Conf being
iterative onid : 1 + Conf → 1 + Conf andψ. The desired transfinite semantics
T : Prog → State → TList Conf is achieved by definingT (S)(s) = h〈iS | s〉
for every programS and initial states. It is easy to verify thatψ is a limit operator
in the sense of Definition 3(i); hence the semantics is even corecursive.

Being strict, applying Theorem 1 needs fixing an ordinal∝ which is the upper
bound of lengths of all transfinite lists obtained as values of the iterative functions.
We can choose∝ arbitrarily; Giacobazzi and Mastroeni [5] prove for a simple
language IMP with structured control flow that taking∝ = ωω+1 ensures any
program being executed to the end of its code. In Section 4, we improve the result
achievingωω as the bound and generalize it to a wider class of languages.

In this semantics, the execution of the program in the last example of Section 1
with initial state

{
x → 1

}
goes as follows:

〈0 |
{
x → 1

}
〉 → 〈0 |

{
x → 1

}
〉 → 〈0 |

{
x → 1

}
〉 →

︸ ︷︷ ︸

ω steps

→ 〈1 |
{
x → 1

}
〉 → 〈2 |

{
x → 0

}
〉 .

It visits program point2 once like the slice and computes the same value forx.

322

For everyψ : STList Conf → 1 + Conf , denote the function being iterative
on id : 1 + Conf → 1 + Conf andψ by iterψ and the corresponding transfinite
semantics byTψ. So we have the formulaTψ(S)(s) = iterψ〈iS | s〉.

In the case of while-loops, defining limit configurations does not make much
trouble. The choice of the limit program point is particularly straightforward
because there is just one natural way to escape from the loop – following the arc of
the control flow graph used when the predicate evaluates to false.

If the control flow is unstructured, such an obvious choice need not exist.
Obscurity can arise also in the case of structured control flow with statementslike
break in C as they can cause more than one arc escaping from a loop. To ensure
a transfinite semantics being in harmony with program slicing, a general guideline
for defining a limit point could be choosing the point where control would fall if
the loop were removed.

In the following example with unstructured control flow, we use our abstract
program point notation in goto-statements since the code is primarily intended to
be illustrative. Each if-statement incorporates only one row in the program.

0read a ;
if 1a < 0 then 2goto 8 ;
if 3a = 0 then 4goto 6 ;

5goto 8 ;
6a := a + 1 ; 7goto 9 ;
8goto 5 ;
9

−→

0read a ;
if 1a < 0 then 2goto 8 ;
if 3a = 0 then 4goto 6 ;

6a := a + 1 ;
8

9

Suppose the slicing criterion is{(9,a)}. The loop, consisting of statements5
and8, does not affect the value ofa, therefore it is sliced away. As a result of this
transformation, control reaches program point6 also in the casea > 0 (wherea is
the input value ofa). If a < 0, control bypasses this program point.

To be consistent with such a way of slicing, a transfinite semantics of the
original program must jump to6 after the infinite loop if it started at5 (the case
a > 0) and to9 if it started at8 (the casea < 0). This way, the limit point of the
loop depends on how far backward we observe it. Thus if the semantics is of the
form Tψ thenψ is not a limit operator and the semantics is not corecursive.

4. ESCAPING TRANSFINITE SEMANTICS

Irrespective of the possible universal rules for choosing limit points, we can
notice a natural property, desired in probably all situations. Namely, the limit point
must be outside the loop, causing non-termination as the idea behind the transfinite
semantics to be able to overcome non-terminating parts of programs.

This observation leads to the kind of transfinite semantics we call escaping.

323

Definition 4.
(i) Let l ∈ TList Conf \{nil}. We call a program pointp looping inl iff, for every

ordinal o < |l|, there exists an ordinalπ, o < π < |l|, such thatpp lπ = p. The
set of all program points looping inl is denoted byloop l.

(ii) Call a functionψ : STList Conf → 1+Conf escapingiff, for everyc ∈ Conf

and selfish ordinalγ satisfying 1 < γ < | iterψ c|, if we definel =
take γ(iterψ c) thenψ(l) ∈ Conf andpp(ψ(l)) /∈ loop l. Call a transfinite
configuration trace semanticsescapingiff it is of formTψ for some escapingψ.

Clearly a computationl contains looping program points only if the length of
l is a limit ordinal. Note also that, for every non-empty computationl, there exists
an ordinalo < |l| such thatpp lπ ∈ loop l for everyπ, o < π < |l|. This holds
because, for every non-looping program point, eitherl does not visit it or a visit of
it is the last inl – as a program has a finite number of program points only, one can
find o so that no visits of non-looping program points occur after theoth step. A
semantics is escaping if, after any endless computation, control reaches aprogram
point which it has not visited during an infinite final part of this computation. The
transfinite semantics for while-loops considered in Section 3 is obviously escaping
by the definition oflim p for program point listsp.

Next we prove that the theorem of Giacobazzi and Mastroeni [5] on estimation
of the length of transfinite computation of an IMP program holds for all escaping
semantics, irrespective of the language. We achieve also a bit better estimation.

Denote the set of all program points visited by computationc by occur c.

Lemma 2. Let ψ : STListConf → 1 + Conf be escaping. For every natural
numberk and arbitraryc ∈ Conf ,

| iterψ c| > ωk ⇒ | loop (takeωk(iterψ c))| > k,

| iterψ c| > ωk ⇒ | occur (take(ωk + 1)(iterψ c))| > k.

Proof. Prove by induction onk. The casek = 0 is trivial.
Suppose the claim holding fork and assume

| iterψ c| > ωk+1 = ωk · ω = ωk + ωk + . . .
︸ ︷︷ ︸

ω

.

Thus the listtakeωk+1(iterψ c) divides intoω subparts, each of lengthωk. Each
subpart is of the formtakeωk(drop(ωk · n)(iterψ c)) for a natural numbern.

Apply Corollary 1 withh = iterψ andλ = ωk, µ = ωk+1 (note that being
selfish is equivalent to being a power ofω). We obtain

takeωk+1(drop(ωk · n)(iterψ c)) = takeωk+1(iterψ d), (1)

whered = (iterψ ; takeωk ; ψ)n(c). Both sides of (1) are different from⊥ since
our assumption| iterψ c| > ωk+1 implies |drop(ωk · n)(iterψ c)| > ωk+1. This

324

allows to conclude| iterψ d| > ωk+1 > ωk andtake o(drop(ωk · n)(iterψ c)) =
take o(iterψ d) for all o 6 ωk+1. Now the induction hypothesis gives

| occur (take(ωk + 1)(drop(ωk · n)(iterψ c)))|
= | occur (take(ωk + 1)(iterψ d))| > k. (2)

Let m = | loop
(
takeωk+1(iterψ c)

)
|. It is possible to findn such that the

computationdrop(ωk · n)(takeωk+1(iterψ c)) visits thesem looping program
points only. Thereforem > k + 1 since, by (2), the firstωk + 1 steps of this
computation visit more thank program points.

Finally, if | iterψ c| > ωk+1 thenωk+1 < ∝. The representationωk+1 =
0 + ωk+1 is principal, hence, by iterativity and escapement,

pp((iterψ c)(ωk+1)) = pp(ψ(takeωk+1(drop 0(iterψ c))))

= pp(ψ(takeωk+1(iterψ c)))

/∈ loop (takeωk+1(iterψ c)).

Therefore| occur
(
take(ωk+1 + 1)(iterψ c)

)
| > k + 1. ut

Theorem 3. Let T be an escaping semantics. Letl be a transfinite list of
configurations obtained as a computation process according to a program S in
semanticsT . Then|l| 6 ω|V (cfgS)| < ωω.

Proof. By conditions,l = T (S)(s) = iterψ〈iS | s〉 for some states and escaping
operatorψ. Suppose|l| > ω|V (cfgS)|. Then Lemma 2 implies thatl visits more
program points than there is incfgS, a contradiction. ut

For everyn ∈ N, the length of the transfinite computation of the program

while true do while true do
︸ ︷︷ ︸

n

is ωn. The least common upper bound of the numbersωn is ωω. Hence Theorem 3
achieves the best conservative estimation common to all programs.

5. UNDECIDABILITY RESULTS

When slicing programs in practice, our natural desire is to compute slices
having as few statements as possible. Such slices are calledstatement minimal.

Weiser [1] has shown that the problem of finding statement minimal slices is
undecidable but he considers slicing w.r.t. standard semantics. The same argument
fails for transfinite semantics. Therefore, it is natural to ask whether the minimal
slice problem is decidable w.r.t. transfinite semantics of our style.

325

The answer to this question is also negative. We prove this for while-loops,
hence the result holds also in general case. The idea of our proof is similar to
Weiser’s: reduce the halting problem to the minimal slice problem.

Let S be an arbitrary program in our language. Assume that no branching
predicate inS has any side-effect. This assumption in no way loses the generality.
For each loop of shapewhile B do T occurring inS, replace it with code

X := B ;
while X do (T ; X := B) ;
Z := X || Z

whereX, Z are variables not occurring inS. Let the resulting program beS′.
Denote the truth values bytt andff . As predicatesB have no side-effect, the

change of the loops affects neither their termination/nontermination status nor the
values assigned to the variables ofS. ThusS′ andS either both terminate or both
loop. If the body of a loop inS′ is executed a finite number of times then, before
exiting the loop,X gets valueff . If the body is executed forω times thenX has
always valuett when control reaches the head of the loop, hence the value ofX
after leaving the loop istt. In this way, the running value ofZ tells whether the
computation has already looped or not.

Consider finding a minimal slice of the programZ := false ; S′ w.r.t. Z
at the final point. IfS′ terminates thenZ has valueff at the final point, therefore
S′ can be sliced away. Note that there is no other statement in the program which
would alone guaranteeZ having valueff at the end, thus a hypothetical solver
of minimal slice problem is required to outputZ := false. If S′ does not
terminate thenZ has valuett at the final point, therefore the solver must output
something else. Altogether, this solver would decide also the halting problem.
Thus the minimal slice problem is undecidable.

Note that the difficulty actually lies in checking whether one program is a slice
of another w.r.t. given criterion. If we were able to perform this check, we would
solve the minimal slice problem by checking all subsets of the given programand
outputting one of the smallest subsets among those, which turn out to be slices.So
whatever semantics we have, if the programs are finite and minimal slice problem
is undecidable then “slice checking” problem is also undecidable.

Note also that the argument, used to prove the undecidability of minimal slice
problem, simultaneously proves the undecidability of constant propagation as, in
the construction above, determining whetherZ after the run ofZ := false ; S′

is constantlyff would solve the halting problem forS. Constant propagation is
known to be undecidable also in context of standard semantics.

6. RELATED WORK

Transfinite semantics have been studied first for functional programming [12].
Paper [6] is a fundamental theoretical work on program slicing in the context of

326

structured control flow and standard semantics. Besides transfinite semantics used
in [5], other ways to handle semantic anomaly exist [4, 13]. It is worth to note that
paper [5] almost bypasses the problem of determining program points where control
jumps after an infinite loop. In this sense, our work improves their approach.
Moreover, we define also the limit states differently from [5]; their treatment could
be achieved by replacings′ with s in our definition ofψ in Section 3. In other
words, the limit state of [5] depends on all the states observed during the infinite
computation while our limit state depends only on the states observed at the top
point of the loop. The following example shows the need for this change.

while 0true do (
1i := 1 ;
2i := 2

) ;
3

−→

while 0true do (

2i := 2
) ;

3

The second program is a slice of the first w.r.t. criterion{(3,i)}. But in the
transfinite semantics of [5], the value ofi at 3 is > in the first program but2 in
the second. Hence the essential property of slicing is still not met. Our way to
define limit states helps.

The lazy semanticsof Danicic et al. [13] does not have this problem as they
handle the body of a loop as a unit when defining semantics of the loop.

7. CONCLUSIONS

In this paper, we have theoretically studied transfinite semantics in program
slicing – the method first used by Giacobazzi and Mastroeni [5]. We may conclude
that, at least in simple cases like those considered in this paper, transfinite semantics
are appropriate for semantics-based description of program slicing leading to a
definition consistent with standard slicing algorithms.

In general case, suitability of transfinite semantics in the form of [5] or of this
paper is not so clear. Firstly, recursion is not involved. With recursiveprocedures,
one can obtain a new kind of loops due to infinitely deep recursion which results
also in infinitely long call stack. There is no obvious way to define limits of such
infinite computations. A promising idea is to replace transfinite semantics based
on ordinals with a more general semantics allowing also “backward infinity”. This
would enable one to handle escaping infinitely deep recursion in the seemingly
most natural way: unloading the infinite call stack level by level starting from
infinity.

Secondly, even the usual branching according to a predicate can raisedoubts
when the value of the predicate happens to be>. To be consistent with the lazy
semantics of [13], both branches should be entered and processed independently of
each other and, after the end of both computations, the resulting states should be

327

merged into one. The mathematical structures used in this paper do not enablethis.
Note, however, that the undecidability proof in Section 5 is valid also in this case.

Another possibility is to count> equivalent toff in branching, so keeping the
semantics in our framework. The suitability of this approach for our aims is unclear.
Our work in progress shows the existence of a wide class of deterministic transfinite
semantics for which standard slicing algorithms are correct. However, onecannot
be sure that all the programs that are intuitively considered as slices while not being
producible via standard algorithms are slices w.r.t. any of these semantics.

REFERENCES

1. Weiser, M. Program slicing.IEEE Trans. Softw. Eng., 1984,10, 352–357.
2. Tip, F. A survey of program slicing techniques.J. Program. Lang., 1995,3, 121–181.
3. Binkley, D. W. and Gallagher, K. B. Program slicing.Adv. Computers, 1996,43, 1–50.
4. Reps, T. and Turnidge, T. Program specialization via program slicing. InProc. Dagstuhl

Seminar of Partial Evaluation(Danvy, O., Glueck, R. and Thiemann, P., eds.).Lecture
Notes in Computer Science, 1996,1110, 409–429.

5. Giacobazzi, R. and Mastroeni, I. Non-standard semanticsfor program slicing.Higher-
Order Symb. Comput., 2003,16, 297–339.

6. Reps, T. and Yang, W. The semantics of program slicing and program integration.Lecture
Notes in Computer Science, 1989,352, 360–374.

7. Cousot, P. Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation.Electron. Notes Theor. Comput. Sci., 1997,6, 25 p.

8. Nestra, H. Transfinite Corecursion.Nordic J. Comput.Forthcoming.
9. Moschovakis, Y. N.Notes on Set Theory. Undergraduate Texts in Mathematics. Springer-

Verlag, New York, 1994.
10. Schütte, K.Proof Theory. Grundlehren der matematischen Wissenschaften. Springer-

Verlag, Berlin, 1977.
11. Poizat, B.A Course in Model Theory: an Introduction to Contemporary Mathematical

Logic. Springer-Verlag, New York, 2000.
12. Kennaway, R., Klop, J. W., Sleep, R. and Vries, F.-J. de. Transfinite reductions in

orthogonal term rewriting systems.Inf. Comput., 1995,119, 18–38.
13. Danicic, S., Harman, M., Howroyd, J. and Ouarbya, L. A lazy semantics for

program slicing. InProc. 1st International Workshop on Programming Language
Interference and Dependence. http://profs.sci.univr.it/~mastroen/
download/PLID/Proceedings/Proceedings.html (2004)

Transfiniitsed semantikad programmide viilutamisel

Härmel Nestra

Artikkel sisaldab teatavate transfiniitsete jälitussemantikate matemaatilise esi-
tuse ja on uuritud programmide viilutamist nende kontekstis. On tõestatud
mõned üldised faktid viilutamisest, mis kehtivad paljude programmeerimiskeelte
ja nende transfiniitsete semantikate kohta. Põhiline teemakäsitlus on arendatud
juhtvoograafide jaoks, et abstraheeruda konkreetsetest programmeerimiskeeltest.
Juhtvoo struktuursust ei ole eeldatud, kuid arendatud teooria rakendub kõigile
standardsetele struktuurse juhtvooga programmeerimiskeeltele.

328

