Proc. Estonian Acad. Sci. Eng., 2004, 4, 313-328

Transfinite semantics in program slicing

Harmel Nestra

Institute of Computer Science, University of Tartu, J. Li®, 50409 Tartu, Estonia;
harmel.nestra@ut.ee

Received 4 August 2005, in revised form 23 September 2005

Abstract. This paper studies mathematically some special kinds péfirite trace semantics
and investigates program slicing w.r.t. these semantiever@l general facts about slicing,
which hold for a wide class of programming languages and tinensfinite semantics, are
proven. The principal part of the work is done on control flovghs keeping the treatment
abstracted from any concrete programming language. 8tedtontrol flow is not assumed
but programs written in standard programming languageh siituctured control flow are

among those to which our theory applies.

Key words: program slicing, transfinite semantics, transfinite iferat

1. INTRODUCTION

Program slicing is a kind of program transformation where the aim is to find an
executable subset of the set of atomic statements of a program whichdssésp
for computing all the values important to the user. Slicing was introduced and
its significance was explained first by Weis&; pummaries of its techniques and
applications can be found in Tig][and Binkley and GallagheF][.

A standard example of program slicing is the following (small numbers are
short denotations of program points):

Osum:= 0;'prod := 1; Osum:= 0;

2 .= . 2y . =

I_.—O,_ i = 0;

while 3 < n do (while 3 < n do (
o= o+ 1 o= o+ 1
Ssum = sum+ i ; Ssum = sum+ i ;
Sprod := prod * i

)) ;

7 7

313

The first program computes both the sum and the product of the: firssitive
integers (where is the initial value ofn). The second program computes the
sum; all statements concerning the product onlystioed away If sum is the only
interesting value, the two programs are equally good.

The specification of which variables are important at which program pa@ints
calledslicing criterion It can be given mathematically as a binary relation between
program points and variables. The essential property of a slice — bepiradjyegood
to the original program in computing the values of user’s interest — is thee mor
precisely formulated as follows: for arbitrary initial values of variables, glice
and the original program compute the same sequence of values forprogram
point and variable related by the criterion.

The slice above has been found w.r.t. criter{d@, sum)} saying that the user
is interested in the value of variabd@imat program poinf. As control reaches
program point7 just once (at the end of execution) and, when this happened, the
value ofsumcomputed by both programs is the same, the crucial property is met. If
the criterion werg (5, sum }, the property would mean that the sequence of values
aquired bysumat point5 be the same in both programs. This is also true since both
programs compute valuésl, 3,. .., (n — 1)n/2 for sumat5. These observations
together imply the property also for the criteri¢fb, sum), (7, sum)}.

If our concern is to prove correctness of slicing algorithms, we need a
formalization of the crucial property. Clearly this must involve a semantidsadt
been noticed earlier that standard semantics are not completely satisfactig
purpose because slicing can produce terminating programs from noraéngin
ones, which implies that the program points of interest can be reachedimese
in the slice than in the original program and the later reachings corresjpond
computation, never undertaken by the original program. As an illustratimsjader
the following example:

while %rue do ;
1X::O; — X :=0;
2 2

The second program is a slice of the first w.r.t. criter{g@, x)}. The loop
is sliced away since no influence toat point2 can be detected. This causes the
program point2 to be reached once during the run of the slice while not being
reached at all during the run of the original program.

This phenomenon is calledemantic anomalf* . It is a fundamental
issue since no slicing algorithm can decide whether a loop terminates. dieeref
non-trivial slicing algorithms, in particular the standard ones based onfldata
analysis, cannot be correct w.r.t. standard semantics in all cases.gReéyang{]
prove correctness of their notion of slice w.rt. standard semantics unéer th
restriction that the original program terminates.) Hence, for obtaining &imgpr
version of the notion of correctness here, one must abstract from trarn

314

Giacobazzi and Mastroen?][investigate transfinite semantics with the aim
of solving this problem; the idea has been proposed already by CollsdBy
transfinite semanticene means a semantics, according to which computation
may continue after an infinite number of steps from some limit state, determined
somehow by the infinite computation performed.

Our paper follows up transfinite semantics and program slicing in the context
of them. In Section 2, we argue that two special kinds of transfinite semantics
which we call iterative and corecursive, are particularly interestingveamaarry
out a mathematical investigation of them. Regarding deterministic transfinite
semantics, this improves the theory of transfinite corecursion theoryiteepoy
us in] (non-determinism is not investigated here). In Section 3, a transfinite
trace semantics for while-loops is described together with further explasatio
why transfinite semantics works for program slicing. It also discusstsirog
transfinite semantics for programs with unstructured control flow. Sectilefides
a class of transfinite semantics we call escaping. A theorem, estimating the length
of transfinite computation in escaping semantics, is proven; it both refirces an
generalizes an analogous result of Giacobazzi and Mastrejeiidction 5 proves
that the problem of finding statement minimal slice w.r.t. transfinite semantics is
undecidable. For standard semantics, this result is known. Section Gskscu
related work and points out a few important differences of our appréam that
of Giacobazzi and Mastroent]] Section 7 refers to some problems with using
transfinite semantics in program slicing and hints at the work yet to be done.

2. TRANSFINITE SEMANTICS ABSTRACTLY

A trace semantics of a program expresses its execution behaviour sségpby
It is basically a set of sequences of items representing execution stagtandlard
trace semantics, the sequences are finite lists or streams whose compo@ents a
indexed with natural numbers. In transfinite trace semantics, the segueree
transfinite, the components are indexed with ordinals. Call tiiansfinite lists

The notion of ordinal is obtained as a generalization of the notion of natural
number by adding transfinite elements. So we have all the natural numbers
0,1,2,...,aswellasv, w+1, w+2 etc.,w+w and a lot of greater elements, among
ordinals. Standardly, ordinals are defined as isomorphism classeslafrdered
sets. The essence of ordinals together with their standard order issagray the
fact that, for arbitrary set of ordinals, there exists the least ordirltgr than any
element of this set. There are many books giving profound introductioorslioal
theory; P 19 represent just two different approaches.

We treat transfinite lists oved as functions which take ordinals inté and
whose domain is downward closed. So a transfinite list oves a function
[: 0, — A for someo whereQ, denotes the set of all ordinals less tharin
this casey is calledlengthof [and denoted bj/|. Denote the empty list — the only
list of lengthO — by nil.

315

For a transfinite list anda < |I|, [(«) (or l,) is theath componenbf [. For
simplicity, we allow writingl(«) also fora > |I| and count(a) = L ¢ A in this
case. The first componerit)), is also denoted bltead (.

For every transfinite list ando < |l|, let takeol anddropol denote the
transfinite list which is obtained frorhby taking and dropping, respectively, the
first o elements from it. So, for any ordinal

I(m) fr<o J
take ol)(r) = { L (dropol)(n) =1 .
(takeot)(m) = { [T D7 <@ (dropol)(m) = (0 +)
Thereby, takeol| = o and|dropol| = |I| — o.

If o > |l| or] is not a list thentakeol = 1 = dropol. All
operations considered in this paper, including function application, dc#, $te.
a subexpression with value turns the value of the whole expressionlto

Lemma 1. Let! be any transfinite list.

(i) Forordinalso andw, [(0o+ m) = (dropol)(m);

(i) For ordinalso and, drop(o +) = drop 7(drop ol);

(iii) For ordinalso and, take 7w(drop ol) = drop o(take(o +) 1).

This lemma was proven if]. The claims are rather intuitive and we are going
to use them without any reference; however, note that the claims holdalsades
where some expressions evaluate to

A transfinite list is typically defined using transfinite recursion. This means
that every element of the list is expressed in terms of all the preceding @kemen
In the case of semantics, this is not completely satisfactory. In a deterministic
standard trace semantics, every execution state is completely determined by its
single predecessor and it would be unnecessarily burdening or misgtodoarry
all the preceding states along in definition.

When defining a transfinite computation, we similarly prefer to express every
state in terms of as few preceding states as possible. However, if the nomber
the preceding states is a limit ordinal then one cannot find the last among them o
which the new state could solely depend.

For example, if one is defininffw) then at leastv elements backward must
be taken into account. In definir@o + k) for a positive naturak, it suffices to
consider the last element only. But when definig+ w), there is no last element
again; at least elements backward must be studied.

This consideration leads to our notion of selfish ordinal.fij these ordinals
are calledadditive principal numberswe like our shorter term more.

Definition 1. We call an ordinaly > 0 selfishif v — o = - for everyo < ~.

In other words;y is selfish iff the well-order of the part, remaining when cutting
out any proper initial part from the well-ordér representingy, is isomorphic to
I itself. One more characterization is as follows> 0 is selfish iff it cannot be

316

expressed as the sum of two ordinals less thére. the set of ordinals less than
is closed under finite sums).

For examplew is selfish. If one cuts out any proper initial part of the well-order
representing (see figure), the remaining part represenitself.

The ordinalsy + w, w + w + w etc. are not selfish because removing the initial
leads to a smaller number. However, the limit of this sequence is selfish.

Note thatl is selfish — the least, the only finite and the only successor ordinal
among them.

Proposition 1.

(i) Every ordinalo > 0 is uniquely representable in the fon= « + v wherey is
selfish andv is the least ordinal for whicle — « is selfish.

(i) Every ordinalo > 0 is uniquely representable in the foron= \ + 5 where\
is selfish and? < o.

Proposition 1 implies that every ordinal can be uniquely expressed aarthe s
of the elements of a finite non-increasing list of selfish ordinals. This tatttso
be deduced from the classical theorem of ordinal theory aboutsemiaions on
base since it can be proven that an ordinal is selfish if and only if it is @&pofw;
the representation on basds also calledCantor normal forn2% 1.

In the rest, we call the representatior= « + v wherev being selfish andk
minimized (the representation of Proposition 1(i)) gréencipal representatiorof
o. If the Cantor normal form ob is written as a sum of powers af like in [1]
then adding all summands but the last of this sum gives the first compointet o
principal representation efand the last summand equals to the other component.

Suppose we are definirigo) in terms of elements preceding it in list The
selfish ordinal in the principal representationc€oincides with the number of
elements, inevitable to study backward in the listFor example, the principal
representation ofv is 0 + w; the principal representation of + k& with any
positive natural numbet is (w 4+ (k — 1)) + 1; the principal representation of
w-k =w+ ...+ wwith any positive natural numbérisw - (k — 1) 4+ w.

N———

Let «x be]; fixed selfish ordinal and |&tList A denote the set of all transfinite
lists overA of length not exceeding.. Let STList A denote the subset Gfl.ist A
consisting of lists by which next elements are defined, i.e. lists of length bethg b
selfish and less thar (lists of lengthoc do not have next elements). So

TList A= | J (0, —» 4), STListA= [(0, — A).

0 y<ox
~ selfish

Definition 2. Let X, A be sets. Assumg : X — 1+ A4 = AuU{Ll} and
¥ : STList A — X. We say that a functioh : X — TList A is iterative ony and
W iff, for eachx € X, the following two conditions hoid

317

=

h(z)(0) = o(z);
2. h(x)(o) = p((takey(drop a(h(x))))) for everyo < o with principal
representation = « + .

This notion captures the desire described abeWe:component of a list(x)
is defined in terms of preceding components whetes the selfish ordinal from
the principal representation of As 1 is one particular selfish ordinal, the iteration
schema handles finite and infinite steps uniformly.

Example 1. TakeA = N, X = Z. Forz € Z andl € STList N, define

v ifzeN headl if]l] =1
_ _ N : - |
(@) { 1 otherwisd ’ v(l) T_LIF 1 Ic];tlr;tri\?ls“ezes ton

Providedx > w?, the following functiorh is iterative ony andq:

(r,z,.. o+ Lx+1,...,04+2,2+2,..,......) ifxeN
N——
h(.%'): w w g w
w .
nil otherwis

Theorem 1. Let X, A be sets. Foreverp : X — 1+ A4 = Au{Ll} and
1 : STList A — X, there exists a unique functiol : X — TList A being
iterative onp and.

Proof. Essentially done in®] at the beginning of the proof of corecursion theorem
for deterministic semantics. ad

Theorem 1 asserts that, for defining a transfinite semantics “by iteration”, it
suffices to provide jusp andi).

Standard deterministic trace semantics have the nice property that the part
of the computation, starting from an intermediate statés independent of the
computation performed before reachingThis is because statealone uniquely
determines all the following computation. For transfinite semantics, even ifedefin
by transfinite iteration, this property may not hold.

Here we find a weaker condition holding also for iterative transfinite sensantic
furthermore, we find a natural restriction gnin case of which the corresponding
transfinite semantics satisfies also the desired stronger property. Weecadlah
conditions weak corecursivity and corecursivity, respectively. \Wese such
word because the conditions are to some extent analogous to traditiorzath stre
corecursion (the analogy will be explained below).

Definition 3. Let X, A be sets.

(i) Call any functiony) : STList A — X limit operatorif ¢ (1) = ¢ (drop A1) for
all selfish ordinals\, v with A < v < o and transfinite listg € O, — A.

(i) Assumep : X — 1+A = AU{L},¢ : STList A — X andh : X — TList A.
Consider the following properties

318

1. if o(z) = a € Athenhead(h(z)) = a, and
if o(z) = L thenh(x) = nil;

2. if |h(z)| = X and A\, u are consecutive selfish ordinals with< 1 < o then
for every ordinalo < p,

drop A(h(z))(0) = h(¢(take A(h(z))))(0);
3. if |h(z)| > Aand\ < « is selfish then
drop A(h(x)) = h(y(take A(h(x)))).

We say that, : X — TList A is weakly corecursive o and iff the condi-
tions1 and2 hold. We say thak : X — TList A is corecursive orp andv iff the
conditionsl and 3 hold.

Limit operators are analogous to limits in calculus by certain properties (the
limit of a sequence equals to the limit of its every subsequence; all sequence
obtained as a final part of a diverging sequence also diverge). elrtdbe of
semantics,y being a limit operator means that the limit state, which appears
immediately after an infinite computation, does not depend on the actual starting
point of the final part of selfish length, i.e. one does not need to useritiegal
representation to determine the final part to rely on, but may equivalerglgms
final part of the same length. This stricture gnseems natural but we will see
below that, when inventing transfinite semantics, appropriate for descshaimg
programs with unstructured control flow,may not be a limit operator.

Condition 3 of Definition 3(ii) obviously implies condition 2 (2 requires some-
thing to hold for every < p while 3 requires essentially the same thing to hold for
all 0), hence corecursivity implies weak corecursivity.

TakingA = 1in the definition gives a construction similar to stream corecursion
in the sense that the result list is defined by giving its head and exprétssiag
as the value of the same function which is being defined. (Conditions 2 ared 3 a
equivalent in stream case sinke= 1 implies u = w; so both conditions apply to
the whole stream). In transfinite corecursion, the breaking point caftdreaay
initial part of selfish length rather than after the head only. Unlike in the traditio
corecursion, any component of any list being a value of a functiorcaosie in
our sense determines all the following components uniquely.

With Theorem 2(i) below, we obtain the equivalence of iterativity and weak
corecursivity. Theorem 2(ii) was proven already $hjut there we gave a direct
proof while the proof presented here relies on weak corecursivity®]Jralso an
analogous theorem for non-deterministic semantics was proven.

Theorem 2. Let X, Abesets. Lep : X — AU{L} =1+A4,¢:STList A — X
andh : X — TList A.

(i) Thenh is iterative ony andv iff h is weakly corecursive o and).

(ii) If his iterative ony and and+ is a limit operator therh is corecursive on

pandq.

319

Proof.

(i) Similar to the proof of corecursion theorem for deterministic semanticyin [
whereby the uniqueness part there corresponds to the if-part here.

(ii) Our h is weakly corecursive by part (i). It remains to prove condition 3 from
Definition 3(ii). Prove by transfinite induction anthat

VA < oV € X (drop A(h(z))(0) = h(¢(take A(h(z))))(0)) ,

where) ranges over selfish ordinals only. df= 0 then the claim holds by weak
corecursivity. Ifo > 0, leto = k + g with selfishx andg < o (possible by Proposi-
tion 1(ii)). Fix A and letu be the next selfish ordinal. Jf > x theno =k + 8 <
(because otherwis@ > p implying 8 = k + 3 = o) and the claim holds again by
weak corecursivity. Hence assumes k. S0\ < k andA + x = k. The induction
hypothesis impliesake x(drop A(h(z))) = take k(h(¢)(take A(h(x))))), as well
as dropk(h(y))(8) = h(y(taker(h(y))))(B) for all y € X. Using this
knowledge together with the assumption titat a limit operator, we obtain

drop A(h(z))(k + B) = h(z)(A+ K + B) = h(z)(k + B) = drop x(h(x))(5)

(

= h(y(take x(h(x))))(P)

= h(y(drop A(take r(h()))))(5)

= h(¢(drop A(take(A +) (h(2)))))(5)
= h(y(take r(drop A(h(2)))))(5)

= h(y(take r(h(1(take A(h(2))))))) (5)
= drop k(h(1(take A(h(2)))))(5)

= h(y(take A(h(2))))(x + B) o

Function« of Example 1 is a limit operator, so Theorem 2(ii) gives thaif
that example is corecursive. It is also easy to check this directly. Weezhiwf]
that, without the restriction on, Theorem 2(ii) breaks.

We will need the following corollary in Section 4.

Corollary 1. LetX, Abesets. Lep: X — AU{L} =1+A4,v¢ : STList A — X
and leth : X — TList A be iterative onp and . Denote function composition
by ; (function in the left is applied first). Let, u be consecutive selfish ordinals
with A < . < . Then for every natural number,

h; drop(A-n) ; takepu = (h ; take X ;)" ; h ; take .
Proof. By weak corecursivity,
h;drop A ; take u = h ; take A ; ¢ ; h ; take .
By A < u andyu being selfish,
drop A ; take i = take(A 4) ; drop A = take p ; drop .

320

Argue by induction om. If n = 0, both sides of the desired equation reduce to
h ; take p. If the claim holds fom, we get

h;drop(A-(n+1));takep = h; drop(A-n+ \) ; take p
= h ;drop(A-n) ; drop A ; take p
= h ; drop(\ - n) ; take p ; drop A
= (h;take A ; ¢)" ; h; take pu ; drop A
= (h; take A ;¢)" ; h; drop A ; take u
= (h;take A ;¥)" ; h; take A ;¢ ; h; take p
= (h;take X ;)" ks takep . O

~— — ~— ~—

3. CONFIGURATION TRACE SEMANTICS

We work as much as possible on control flow graphs to obtain unifornttsesu
for a wide class of programming languages. Just say we have an imperativ
languageProg whose programs are all finite and involve neither recursion (direct or
mutual) nor non-determinism. In examples, we use ubiquitous syntactic ccisstru
belonging to the most popular imperative programming languages.

Program pointsof a programS are potential locations of control during
executions ofS. Assume that the set of all program points of any prograis
finite and contains a fixeihitial program point.

A configurationis a pair of a program point andsdate the latter containing
an evaluation of variables. Léitate and Conf denote the set of all states and
the set of all configurations, respectively. The configuration with anmgpointp
and states is denoted by(p | s); the program point occurring in configurations
denoted bypp c.

We are going to study semantics where the meaning of a program is a function
whose values are sequences of configurations expressing the ctorpptacess
step by step. The states of Section 2 are actually abstractions of cotifigara

Suppose a transition functiaext : Conf — 1+ Conf = Conf U {1} is
fixed; applyingnext represents making an atomic computation step. ddrerol
flow graphof a programS, denoted byfg S, is a directed graph whose vertices
are all the program points &f and arcs represent atomic computations (usually
assignment, predicate test etc.). The set of all program poirftcah therefore be
denoted byV (cfg S). Sois € V(cfgS), and ifnext(p | s) = (q | t) where
p € V(cfgS) theng € V(cfgS) andcfgS has an arc fronp to q. Every
computation with a prograrf redounds as a walk iefg S.

To see how transfinite trace semantics helps to avoid semantic anomaly of
program slicing (see Section 1), consider the following way to define firdtes
semantics for a program, containing a while-loop. Besides the transitiotidanc
we must provide principles for finding limit configurations of endless sece®

321

of them. As explained in Section 2, it suffices to provide rules for lists ofselfi
length (in terms of Definition 2 and Theorem 1, we must defirend1)).

For the limit program poiniim p of a transfinite listp, coming up as the
sequence of program points, visited during a repetition of the body oflaadwop
for w times, take the immediate postdominator of the program point, corresponding
to the head of the loop in the control flow graph. Typically, this correspoadhe
part of code, lexically following the loop.

This ensures that, after executing the body of a loop.fdimes, we reach a
configuration where we have “overcome” the loop. Alodpi | e B do T in
this semantics means “whilg keeps holding, dd@’, but never more thamn times”.

In the limit statelim s of a state list, a variableX has value: if the transfinite
list of the values ofX during the transfinite computation represented btabilizes
to a; if the list does not stabilize then the value &f is ambiguous 7). This
choice is to some extent arbitrary; some non-stabilizing sequences ofvahe
possess limits of some other kind being natural to use instead d¢fsiacobazzi
and Mastroeniq] have an example where the limit of the non-stabilizing sequence
1,2,3,...istaken to bev.)

For every transfinite configuration list= ((p, | so) : 0 <) with selfish

length~, define
_ f next(headc) ify=1
(o) = { (limp | lim s’) otherwise} ’

wheres’ is the transfinite list obtained fromby keeping only those states which
occur when control passes through the head of the while-loop causngfthite
computatione. Then we have) : STList Conf — 1 + Conf.

By Theorem 1, there exists a functiégn: 1 + Conf — TList Conf being
iterative onid : 1 + Conf — 1 + Conf and. The desired transfinite semantics
7T : Prog — State — TList Conf is achieved by defining (S)(s) = h({is | s)
for every progrant and initial states. It is easy to verify that) is a limit operator
in the sense of Definition 3(i); hence the semantics is even corecursive.

Being strict, applying Theorem 1 needs fixing an ordiralhich is the upper
bound of lengths of all transfinite lists obtained as values of the iterativaifuns.
We can choosex arbitrarily; Giacobazzi and Mastroeni][prove for a simple
language mpP with structured control flow that takingk = w**! ensures any
program being executed to the end of its code. In Section 4, we improveshk r
achievingw” as the bound and generalize it to a wider class of languages.

In this semantics, the execution of the program in the last example of Section 1
with initial state{ x — 1 } goes as follows:

O {x=1}H =0 {x=1}H =0 {x—=1})— ...
w steps

— <1‘ {X—>1}>—><2| {X—>O}>,
It visits program poin® once like the slice and computes the same value for

322

For everyy : STList Conf — 1 + Conf, denote the function being iterative
onid : 1 4+ Conf — 1+ Conf and+ by iter ¢) and the corresponding transfinite
semantics by/,,. So we have the formuld, (S)(s) = iter ¢ (is | s).

In the case of while-loops, defining limit configurations does not make much
trouble. The choice of the limit program point is particularly straightforward
because there is just one natural way to escape from the loop — follovéragdfof
the control flow graph used when the predicate evaluates to false.

If the control flow is unstructured, such an obvious choice need nist. ex
Obscurity can arise also in the case of structured control flow with statefilents
br eak in C as they can cause more than one arc escaping from a loop. To ensure
a transfinite semantics being in harmony with program slicing, a generalliggide
for defining a limit point could be choosing the point where control woulbliffa
the loop were removed.

In the following example with unstructured control flow, we use our abistrac
program point notation in goto-statements since the code is primarily intended to
be illustrative. Each if-statement incorporates only one row in the program.

‘read a; ‘read a;

if 'la < 0 then 2goto 8; if 'la < 0 then 2goto 8;
if 3a = 0 then “goto 6; if 3a =0 then “goto 6;
Sgoto 8§; —

ba :=a+ 1;7goto 9; ba :=a + 1;

2goto 5; 3

Suppose the slicing criterion i§9,a)}. The loop, consisting of statemerits
and8, does not affect the value af therefore it is sliced away. As a result of this
transformation, control reaches program p@iiso in the case > 0 (wherea is
the input value of). If a < 0, control bypasses this program point.

To be consistent with such a way of slicing, a transfinite semantics of the
original program must jump t6 after the infinite loop if it started &t (the case
a > 0) and to9 if it started at8 (the case: < 0). This way, the limit point of the
loop depends on how far backward we observe it. Thus if the semanti€shie o
form 7, thens is not a limit operator and the semantics is not corecursive.

4. ESCAPING TRANSFINITE SEMANTICS

Irrespective of the possible universal rules for choosing limit poines,can
notice a natural property, desired in probably all situations. Namely, the loiit p
must be outside the loop, causing non-termination as the idea behind thenftansfi
semantics to be able to overcome non-terminating parts of programs.

This observation leads to the kind of transfinite semantics we call escaping.

323

Definition 4.

(i) Letl € TList Conf \ {nil}. We call a program poinp looping in! iff, for every
ordinal o < |l|, there exists an ordinat, o < = < |l|, such thapp . = p. The
set of all program points looping ihis denoted byoop [.

(i) Callafunctiony : STList Conf — 1+ Conf escapindff, for everyc € Conf
and selfish ordinaly satisfyingl < ~ < |iter¢y ¢|, if we definel =
take y(iter ¢ ¢) theny(l) € Conf andpp(¢ (1)) ¢ loop!. Call a transfinite
configuration trace semantiescapingff it is of form7,, for some escaping.

Clearly a computatiom contains looping program points only if the length of
[is a limit ordinal. Note also that, for every non-empty computatidhere exists
an ordinalo < || such thatppl, € loop! for everyr, o < m < |l|. This holds
because, for every non-looping program point, eithéwes not visit it or a visit of
itis the last inl — as a program has a finite number of program points only, one can
find o so that no visits of non-looping program points occur afterdtiestep. A
semantics is escaping if, after any endless computation, control reaphegram
point which it has not visited during an infinite final part of this computatiome T
transfinite semantics for while-loops considered in Section 3 is obvioushpisr
by the definition oflim p for program point lists.

Next we prove that the theorem of Giacobazzi and Mastrogwir| estimation
of the length of transfinite computation of amp program holds for all escaping
semantics, irrespective of the language. We achieve also a bit better estimatio

Denote the set of all program points visited by computatibg occur c.

Lemma 2. Lety : STList Conf — 1+ Conf be escaping. For every natural
numberk and arbitraryc € Conf,

liter | > w® = |[loop (takew”(iter iy c))| > k,
liter ¢ ¢| > w* = |occur (take(w® + 1)(itert c))| > k.

Proof. Prove by induction ot. The casé: = 0 is trivial.
Suppose the claim holding fégrand assume

literpc| > Wt =wf w=wF o+
—_—

w

Thus the listtake w* ! (iter ¢ ¢) divides intow subparts, each of length®. Each
subpart is of the formake w* (drop(w® - n)(iter 1 ¢)) for a natural numben.

Apply Corollary 1 withh = itery and\ = ¥, p = w**1 (note that being
selfish is equivalent to being a powerw). We obtain

take w* ! (drop(w” - n)(iter i ¢)) = take w*(iter v d), (1)

whered = (iter ¢ ; takew” ; ¥)"(c). Both sides of (1) are different from since
our assumptioniter ¢ ¢| > w**! implies | drop(w” - n)(iter ¢ ¢)| > w*+1. This

324

allows to concludeiter v d| > w**! > w* andtake o(drop(w” - n)(itery c)) =
take o(iter ¢ d) for all o < w**1. Now the induction hypothesis gives

| occur (take(w® + 1)(drop(w” - n)(iter v c)))|
= | occur (take(w® 4 1)(iter ¢ d))| > k. 2

Let m = |loop (takew®t1(iter¢c)) |. It is possible to findn such that the
computationdrop(w® - n)(take w**!(iter+ c)) visits thesem looping program
points only. Thereforen > k + 1 since, by (2), the firsb* + 1 steps of this
computation visit more thah program points.

Finally, if |iter¢ | > w**! thenw**! < . The representation®*! =
0 + w**1 is principal, hence, by iterativity and escapement,

pp((iter ¢ ¢)(W 1)) = pp(t(take W (drop O(iter ¢ ¢))))
= pp(tp(take w1 (iter 1 c)))
¢ loop (take w" ! (iter v c)).

Therefore| occur (take(w* ™! + 1)(iter¢ ¢)) | > k + 1.]

Theorem 3. Let 7 be an escaping semantics. Letbe a transfinite list of
configurations obtained as a computation process according to a pmogidn
semanticg . Then|l| < w!V (eS| < v,

Proof. By conditions,! = 7(S5)(s) = iter ¢ (is | s) for some state and escaping
operatory). Supposél| > w!V (&Sl Then Lemma 2 implies thdtvisits more
program points than there is ifig S, a contradiction. ad

For everyn € N, the length of the transfinite computation of the program

while true do while true do

isw™. The least common upper bound of the numhgtrss w“. Hence Theorem 3
achieves the best conservative estimation common to all programs.

5. UNDECIDABILITY RESULTS

When slicing programs in practice, our natural desire is to compute slices
having as few statements as possible. Such slices are s#dlietinent minimal

Weiser [] has shown that the problem of finding statement minimal slices is
undecidable but he considers slicing w.r.t. standard semantics. The sgumeeat
fails for transfinite semantics. Therefore, it is natural to ask whether thienalin
slice problem is decidable w.r.t. transfinite semantics of our style.

325

The answer to this question is also negative. We prove this for while-loops,
hence the result holds also in general case. The idea of our proof isrsimila
Weiser’s: reduce the halting problem to the minimal slice problem.

Let S be an arbitrary program in our language. Assume that no branching
predicate inS has any side-effect. This assumption in no way loses the generality.
For each loop of shapghi | e B do T occurring inS, replace it with code

X = B;
while X do (T;X := B);
Z =X || z

whereX, Z are variables not occurring ifl. Let the resulting program b€

Denote the truth values byt andff. As predicates3 have no side-effect, the
change of the loops affects neither their termination/nontermination statusenor th
values assigned to the variables%fThusS” andS either both terminate or both
loop. If the body of a loop ir5” is executed a finite number of times then, before
exiting the loop,X gets valueff. If the body is executed fav times thenX has
always valuett when control reaches the head of the loop, hence the valug of
after leaving the loop ist. In this way, the running value of tells whether the
computation has already looped or not.

Consider finding a minimal slice of the prograih : = fal se ; S’ w.rt. Z
at the final point. IfS’ terminates thei has valuef at the final point, therefore
S’ can be sliced away. Note that there is no other statement in the program which
would alone guarante& having valueff at the end, thus a hypothetical solver
of minimal slice problem is required to outpat : = fal se. If S’ does not
terminate therZ has valuett at the final point, therefore the solver must output
something else. Altogether, this solver would decide also the halting problem.
Thus the minimal slice problem is undecidable.

Note that the difficulty actually lies in checking whether one program is a slice
of another w.r.t. given criterion. If we were able to perform this cheakywould
solve the minimal slice problem by checking all subsets of the given prograim
outputting one of the smallest subsets among those, which turn out to be Slices.
whatever semantics we have, if the programs are finite and minimal slice problem
is undecidable then “slice checking” problem is also undecidable.

Note also that the argument, used to prove the undecidability of minimal slice
problem, simultaneously proves the undecidability of constant propagatjan a
the construction above, determining whetleafter therunofZ : = fal se ; S’
is constantlyff would solve the halting problem fo§. Constant propagation is
known to be undecidable also in context of standard semantics.

6. RELATED WORK

Transfinite semantics have been studied first for functional programrfhg [
Paper §] is a fundamental theoretical work on program slicing in the context of

326

structured control flow and standard semantics. Besides transfinite tiesnased

in [%], other ways to handle semantic anomaly exist]. It is worth to note that
paper] almost bypasses the problem of determining program points where tontro
jumps after an infinite loop. In this sense, our work improves their approach
Moreover, we define also the limit states differently frotjy fheir treatment could

be achieved by replacing with s in our definition ofv in Section 3. In other
words, the limit state of9 depends on all the states observed during the infinite
computation while our limit state depends only on the states observed at the top
point of the loop. The following example shows the need for this change.

while %rue do (while %true do (
=1
2j =2 — % =2

RE)

The second program is a slice of the first w.r.t. criterig8,i)}. But in the
transfinite semantics of], the value ofi at3 is T in the first program bu2 in
the second. Hence the essential property of slicing is still not met. Our way to
define limit states helps.

The lazy semantic®f Danicic et al. {°] does not have this problem as they
handle the body of a loop as a unit when defining semantics of the loop.

7. CONCLUSIONS

In this paper, we have theoretically studied transfinite semantics in program
slicing — the method first used by Giacobazzi and MastrodniWe may conclude
that, at least in simple cases like those considered in this paper, transfinetses
are appropriate for semantics-based description of program slicinidesal a
definition consistent with standard slicing algorithms.

In general case, suitability of transfinite semantics in the forn?jodi of this
paper is not so clear. Firstly, recursion is not involved. With recunsieeedures,
one can obtain a new kind of loops due to infinitely deep recursion whicltses
also in infinitely long call stack. There is no obvious way to define limits of such
infinite computations. A promising idea is to replace transfinite semantics based
on ordinals with a more general semantics allowing also “backward infinityis T
would enable one to handle escaping infinitely deep recursion in the seemingly
most natural way: unloading the infinite call stack level by level startinghfro
infinity.

Secondly, even the usual branching according to a predicate cardmibés
when the value of the predicate happens toTheTo be consistent with the lazy
semantics of ¥], both branches should be entered and processed independently of
each other and, after the end of both computations, the resulting statéd bhou

327

merged into one. The mathematical structures used in this paper do not gnigble
Note, however, that the undecidability proof in Section 5 is valid also in this.cas
Another possibility is to count equivalent toff in branching, so keeping the
semantics in our framework. The suitability of this approach for our aims ieanc
Our work in progress shows the existence of a wide class of deterministsfitride
semantics for which standard slicing algorithms are correct. HowevegGamet
be sure that all the programs that are intuitively considered as slices whibeimg
producible via standard algorithms are slices w.r.t. any of these semantics.

REFERENCES

Weiser, M. Program slicindEEE Trans. Softw. Eng1984,10, 352-357.
Tip, F. A survey of program slicing techniqgudsProgram. Lang.1995,3, 121-181.
Binkley, D. W. and Gallagher, K. B. Program slicirgdv. Computersl 996,43, 1-50.
Reps, T. and Turnidge, T. Program specialization via auogslicing. InProc. Dagstuhl
Seminar of Partial Evaluatio(Danvy, O., Glueck, R. and Thiemann, P., edsecture
Notes in Computer Scienc996,111Q 409-429.
5. Giacobazzi, R. and Mastroeni, I. Non-standard semafaicgrogram slicing.Higher-
Order Symb. Compyt2003,16, 297-339.
6. Reps, T. and Yang, W. The semantics of program slicing angram integrationLecture
Notes in Computer SciencE389,352, 360—374.
7. Cousot, P. Constructive design of a hierarchy of semamfca transition system by
abstract interpretatiorElectron. Notes Theor. Comput. $di997,6, 25 p.
8. Nestra, H. Transfinite Corecursiddordic J. ComputForthcoming.
9. Moschovakis, Y. NNotes on Set TheorYndergraduate Texts in Mathematics. Springer-
Verlag, New York, 1994.
10. Schitte, K.Proof Theory Grundlehren der matematischen Wissenschaften. Springer
Verlag, Berlin, 1977.
11. Poizat, BA Course in Model Theory: an Introduction to Contemporarytiematical
Logic. Springer-Verlag, New York, 2000.
12. Kennaway, R., Klop, J. W., Sleep, R. and Vries, F.-J. dandfinite reductions in
orthogonal term rewriting systemsif. Comput, 1995,119, 18-38.
13. Danicic, S., Harman, M., Howroyd, J. and Ouarbya, L. Aylasemantics for
program slicing. InProc. 1st International Workshop on Programming Language
Interference and Dependend& t p: / / prof s. sci . univr.it/~mastroen/
downl oad/ PLI DY Pr oceedi ngs/ Proceedi ngs. ht m (2004)

PwnE

Transfiniitsed semantikad programmide viilutamisel
Harmel Nestra

Artikkel sisaldab teatavate transfiniitsete jalitussemantikate matemaatilise esi-
tuse ja on uuritud programmide viilutamist nende kontekstis. On tdestatud
moned uldised faktid viilutamisest, mis kehtivad paljude programmeerimiskeelte
ja nende transfiniitsete semantikate kohta. Pdhiline teemakasitlus on arendatud
juhtvoograafide jaoks, et abstraheeruda konkreetsetest prograimiskeeltest.
Juhtvoo struktuursust ei ole eeldatud, kuid arendatud teooria ralekiigile
standardsetele struktuurse juhtvooga programmeerimiskeeltele.

328

