Proc. Estonian Acad. Sci. Eng., 2004, 4, 286—-295

General flow-sensitive pointer analysis and call
graph construction

Endre Horvath, Istvan Forgads Akos Kiss, Judit Jas
and Tibor Gyimothy

a Department of Software Engineering, University of Szegeddi Vértanuk tere 1, 6720
Szeged, Hungary; {hendre,akiss,jasy,gyimi}@inf.u-sgkgu
b 4D Soft Ltd., Telepy u. 24, 1096 Budapest, Hungary; forga¢ddft.hu

Received 4 August 2005, in revised form 30 September 2005

Abstract. Pointer analysis is a well known, widely used and very imgmiristatic program
analysis technique. After having studied the literaturéhis field of research we found that
most of the methods approach the problem in a flow-inseesit&y, i.e. they do not use the
control-flow information. Our goal was to develop a techeidhat is flow-sensitive and can
be used in the analysis of large programs. During this psoagshave found that this method
can give more accurate results if we build the call graph amdpute the pointer information
at the same time. In this paper we present two of our algostfimpointer analysis and give
some examples to help their comprehension. In the futusethkgorithms are planned to form
the basis of a flow- and context-sensitive method, to be us#tkiimpact analysis of real life
applications.

Key words: pointer analysis, flow-sensitive, interprocedural.

1. INTRODUCTION

Pointer analysis is a well known and widely used static program analysis
technique. The point of the analysis is to compute which variables use the same
memory locations and which pointers may point to the same memory address. We
have studied the relevant literature in this field (in a survey written in hurmgaria
language T]) and found that most of the methods use a flow-insensitive approach
to the problem. This results in a faster, but less accurate algorithm. There ar
several methods developed to compute the pointer information for a giggren.
Although the speed and the accuracy of some algorithms are very goaiit] wet

286

see any technique that gives a language-independent, flow- anctesensitive
solution to the problem.

In his works Hind summarizes the results in this fieldgnd describes related
issues and open problems, associated with pointer analysiuf et al. ['] give
a flow- and context-sensitive algorithm, which was developed for the sisady
C programs. Hind et al®] and Marx et al. {] give a flow-sensitive, but context-
insensitive solution for the problem. Andersen’s context-sensitive ighgof’] is
a benchmark in this field, but Wilson et af] and Whaley et al.q] also present
good context-sensitive techniques. Bacon and Sweéfgyde the pointer analysis
to handle the virtual function calls in the C++ code. Milanova et 'dl. fneasure
the performance of a technique callEbw-insensitive Alias Analysiand define
object sensitivity to support the pointer analysis for object-oriented kyegif?].

With the knowledge, gained from our survey, we decided not to use faimg o
techniques cited above, but to develop our own method. In the future nteovase
the algorithm for impact analysis of large (over million lines of code), realdife-
applications; thus we cannot afford to lose accuracy. Our algorithm enargl,
language-independent, flow-sensitive approach to the problem, waichecused
for the analysis of object-oriented programs. The basic idea is a forsliardg
technique, which ensures maximum possible accuracy. An additionaltadesof
the algorithm is its short execution time even for large programs.

During the development of the algorithm we discovered that an interpuoaied
pointer analysis can only be successful if it builds the call graph at the sa
time. For this reason we present our algorithm in two steps. First, we give
an intraprocedural algorithm that computes the pointer information for engiv
function. This algorithm is flow-sensitive and context-insensitive, asadggrithm
that focuses on only one function. Second, we present our findtseés the form
of an interprocedural algorithm, which computes the pointer information aitakb
the call graph in parallel.

The rest of the paper is organized in the following way. In the next section
we introduce the intraprocedural algorithm and give an example to help its
comprehension. In Section 3, we present the interprocedural algorfmally,
in Section 4, we draw some conclusions from our results and outline theidirec
of our future work.

2. INTRAPROCEDURAL POINTER ANALYSIS

The first step of the algorithm is to search for the memory allocation points in
the program, and also for the statements, where a pointer variable is seénhto po
to an invalid memory location (in different languages this can be expresiied w
nil, null, NULL or 0). For these statements we set the initial pointer information to
be{((p),u)}, whereu is the number of the statement gné the variable, getting
a value at that statement. (The algorithm stores the pointer information as a set
of pairs like(variable setnumbej, where a pair gives the set of variables that may

287

point to the same object after a statement and to the number of the statemeat, wher
the object was created).

Once we have found the memory allocation points, we can propagate this
information through the statements of the program. The pointer information of a
statement depends on two things: 1) the information at the statements thategprece
the current statement in the control-flow of the program and 2) the semahtics
statement itself. First, we compute the union of the information, propagated fro
the statement ancestors and then we modify this result according to the statemen
If a pointer gets a new value at the statement, we remove the pointer fronsetach
of variables and add it to those sets that contain the variables, which sedanu
the definition of the pointers new value. We let the algorithm iterate until it e=sach
its fixpoint.

The pseudo code of the algorithm is given in Fig. 1. The following notation is
used in the code:

f is a procedure or a function,

u andv are arbitrary statements in the program,

Listis a list or a set, which contains the statements to be analysed,

p andq are arbitrary pointer variables,

P is the set of pointer variables that point to the same location,
MemAllod f) is a set that contains those statements of the fungtidwat are
memory allocations or assign thell value to a variable,

1 algorithm intraprocedural_pointer_analysfy(
2 List = MemaAillog f)
3 while Listis not emptydo
4 u € List, List = List\ {u}
5 Ptrinf® = U, cprevu) PHrINf(v)
6 if p gets a value at then
7 for each (P, v) € PtrInf* pairdo
8 P =P\ {p}
9 if 3¢ € P : q € Us€g(p,u) then
10 P=PU{p}
11 endif
12 endfor
13 if w € MemAllog f) then
14 Ptrinf* = Ptrinf* U {(Def(u), u)}
15 endif
16 endif
17 if Ptrinf* 2 Ptrinf(w) then
18 List = ListU Nex{(u)
19 endif
20 Ptrinf(u) = Ptrinf*
21 endwhile

22 algorithm end

Fig. 1. Intraprocedural pointer analysis algorithm.

288

e Def(u) is the (pointer) variable that gets a value at the statement

e Usdp,u) is the set of variables that appear in the definition of the pomter
at the statement,

. Preu) is the set of statements that precede the stateménthe control

flow of the program,
. Nex{u) is the set of statements that succeed the stateméenthe control

flow of the program,
e Ptrinf(u) contains the pointer information associated with the statement

(it is empty at the start and it contains the required information after the
execution of the algorithm).

To help the comprehension of the algorithm, we present a small example with
only a few variables and one conditional statement. This can be seen in.Fig. 2
In the beginningList = MemAlloc(f) = {1,2,5,7}, because the memory
allocation points are at, 2,5 and7. Also Ptrinf(i) = 0 fori =1,...,8. We
can see the necessary information and the results of the algorithm in thies tab
First, in Table 1 we give the statements that precede and succeed eattestate
the control flow of the example. Second, we show the iteration of the algoiithm
Table 2. Finally Table 3 holds the pointer information for the example.

procedure f()
begin
x1 = new A(); (1)
T3 = new B(); (2)
if (...) then begin (3)
r3 =T, (4)

z1=newA(); (5
end else begin

T3 = T2, (6)
z1=newB(); (7)
end;
T4 =T3, (8)
end;

Fig. 2. An example of the intraprocedural algorithm.

Table 1. Control flow of the example in Fig. 2

th!—:\lzg ?e enr]g:m Prev(u) Next(u)
1 1] {2}
2 {1} {3}
3 {2} {4,6}
4 {3} {5}
5 {4} {8}
6 {3} {7}
7 {6} {8}
8 {57} 0

289

Table 2. The iteration of the algorithm, step by step, on the exampleg. 2

stgtlé%inr;[u Ptrinf(u) List
) fgol>) (2,5,7)
2 {<x1,1>,< 22,2 >} {5,7,3}
. f<anb>) {7.3,8}
7 {< 22,7 >} {3,8}
3 {<21,1>,<29,2>} {8,4,6}
8 {< 21,5 >, <a2,7>} (4.6}
4 {< (w1,23),1 >, < 9,2 >} 16,5}
6 {< '1:171 >, < ($2,$3),2>} {5,7}
5 {<23,1>,<22,2>,< 21,5 >} {7,8}
7 {< 21,1 >,<x3,2>,< 29,7 >} {8}
8 {<(@3,24),1 >, < 22,2 >, < 21,5 >, 0

< 21,1 >, < (23,24),2 >, < 29,7 >}

Table 3. The pointer information for each statement for the exampleig. 2

Number of

the statement Ptrinf(u)

{<11,1>}

{< 21,1 >,< 22,2 >}

{<x1,1>,< 22,2 >}

{< (Ihl’g),l >, < T, 2 >}

{<z3,1 >, <x9,2>,< 21,5 >}

{< 1,1 >, < (1’2,(E3),2 >}

{< 21,1 > <23,2> < x9,7>}

{< (#3,24),1 >, < 22,2 >,< 21,5 >,
<xzp,l>,< (563,334),2 >, < X0, 7 >}

O O Utk WM

3. INTERPROCEDURAL ANALYSIS

The only way to compute precise pointer information is to propagate the
necessary information across function boundaries in the program.e Tero
problem if the program contains only simple function calls, because in thés cas
we always know where to propagate the information. This task becomesrhfr
the program contains function calls, whose target is not obvious (i.e. icaese2of
function pointers or polymorphic function calls). In this case we need tateptie
call graph as we compute the pointer information; thus the possible targetstof s
function calls become clear.

The first step of the algorithm is to find the possible entry points of the pnogra
(it is usually one function, likenain and all the static initialization blocks). After
this we start the iteration of the algorithm. When we find a function call, we
compute the possible targets for that call from the pointer information known s

290

far. Although this is not necessary for direct function calls, the targeitsdirect
function calls can only be determined from the parallel points-to analysiteIf
iteration reaches a new function, we initialize the information for that functieh a
it becomes part of the iteration.

We also have to define how we are propagating the information at function
calls. We split each call into two parts (i.e. two nodes in the control-flow graph
a call point and a return point. This way the predecessors of a funatioy @oint
are the call points, from where we could have called the function. Likethise
successors of the function exit point are the possible return points afrtbdon.

We present the pseudo code of the algorithm in Fig. 3. We use the same
formalism as before with the following extensions:

° Fis the set of functions and procedures to be analysed,

EntryPointsis the set of functions that can be the entry points of the program,
FunclListis the set of functions, found during the iteration,

Targe(u, Ptrinf) is the set of functions that are the potential targets of the

function call at statement according to the pointer informatid®irinf.
The algorithm builds the call graph in an implicit way. After the iteration, the

Targe(u, Ptrinf(u)) expression will give us the set of potentially called functions
at an arbitrary statement

1 algorithm interprocedural_pointer_analysis(
2 List = UfeEntryPointsMemAlloc(f)
3 FuncList= EntryPoints
4 while Listis not emptydo
5 u € List, List = List\ {u}
6 Ptrinf® = U, cpreyu) PrINf(v)
7 if p gets a new value at then
8 for each (P, v) € PtrInf* pairdo
9 P =P\ {p}
10 if 3¢ € P : ¢ € Us€g(p,u) then
11 P=PuU{p}
12 endif
13 endfor
14 if w € MemAllog f) then
15 Ptrinf* = Ptrinf* U {(Def(u), u)}
16 endif
17 else ifu is the entry point of a function cathen
18 List = ListU (UfeTarge(u,Ptrlnf*)\FuncListMemA"OC(f))
19 FuncList= FuncListU Targe{u, Ptrinf*)
20 endif
21 if Ptrinf* # Ptrinf(u) then
22 List = ListU Nex{u)
23 endif
24 Ptrinf(u) = Ptrinf*

25 endwhile
26 algorithm end

Fig. 3. Interprocedural pointer analysis algorithm.

291

Again, to help the comprehension of the algorithm we presentin Fig. 4 a simple
example with four functions. In Table 4 we give the statements that precetle a
succeed each statement in the control flow of the example. We divided Ithe ca
points into two parts, labelledy;, for the call andV,, for the return. Functiomain
is the only entry point of the program, $tntryPoints = FuncList = {main}
and according to thifist = MemAlloc(main) = {10,11}. In the beginning,
Ptrinf(i) = 0 fori = 1,...,12 (this includes both parts of the split points). We
show the iteration of the algorithm in Table 5 and finally Table 6 holds the pointer
information for the example.

procedure f() procedure h()
begin begin
T3 =T, (1) T3 = T2, (8)
90; (2) x5 = new B(); ©)
T4 =121, 3 end;
hQ); 4)
Ty5 = T2, (5)
end;
procedure g() procedure main()
begin begin
T, =T, (6) r1 = nhew A(); (10)
g =newA(); (7) 2 = new B(); (11)
end; f0; (12)
end;

Fig. 4. An example for the interprocedural algorithm.

Table 4. Control flow of the example in Fig. 7

Number of

the statement Prev() Next(u)

1 {12} {2n}

2n {1} {6}

2 {7} {3}

3 {2} {4r}

4p, {3} {8}

4, {9} {5}

5 {4,} {12,}

6 {2} {7}

7 {6} {2}

8 {4n} {9}

9 {8} { 4.}
10 0 {11}
11 {10} {125}
12, {11} {1}
12, {5}]

292

Table 5. The iteration of the algorithm, step by step, on the exampleg. 7

Current

statement, Ptrinf(u) List
10 {< 21,10 >} {11}
11 {< 21,10 >, < 29,11 >} {12}
12y, {< 21,10 >, < x2,11 >} {1}
1 {< (!L‘l,xg,),lo >, < 9,11 >} {2h}
2 {< (.%‘1,1‘3),10 >, < 9,11 >} {7,6}
7 {< 4,7 >} {G,QU}
6 {< x3,10 >, < (.Il,ﬂig), 11 >} {21), 7}
2, {< 24,7 >} 7,3}
7 {< 24,7 >, < 23,10 >, < (21,22), 11 >} {3,2,}
3 {<0,7>} {2,}
2, {< 4,7 >,< 23,10 >, < (21,22),11 >} {3}
3 {< @,7>,< 3,10 >, < (.131,I2,1‘4),11 >} {4h}
4p {< 23,10 >, < (21,22, 74), 11 >} 19,8}
9 {< 1'539 >} {8a4v}
8 {< @, 10 >, < (:vl,xg,m37x4), 11 >} {41;79}
4, {< 5,9 >} {9,5}
9 {< ($1,$2,$3,$4), 11 >, < 5,9 >} {5)41.1}
5 {<0,9>} {4,}
4y {< (@1, 22, 23,24),11 >, < 25,9 >} {5}
) {< ($1,$2,$3,x47$5), 11 >, < 079 >} {121)}
12, {< (x1, 22,23, 24,75),11 >} 0

Table 6. The pointer information for each statement for the exampleig. 7

Number of
the statement

Ptrinfo(u)

>

<

o=
N =
= (an)

12,

{< (z1,23),10 >, < 29,11 >}
{<(z1,23),10 >, < w2, 11 >}

{< 24, 7>, < 23,10 >, < (21,22),11 >}

{< 3,10 >, < (1‘1,.%'2,.’174), 11 >}
{< 3,10 >, < (£1,$27x4), 11 >}
{< (%1, 22, 23, 74), 11 >, < 5,9 >}
{< (x1, 79,23, 74,75),11 >}

{< z3,10 >, < (xl,xg), 11 >}

{< 24, 7>, < 23,10 >, < (21, 22),11 >}

{< (.’1,'1,.7,'2,1‘3,1‘4), 11 >}

{< (z1, @0, 3, 24),11 >, < @5,9 >}
{< 71,10 >}

{< 21,10 >, < z9,11 >}

{< 21,10 >, < z2,11 >}

{< (1‘1,1‘2,&63,.%'4,1'5), 11 >}

293

4. CONCLUSIONS AND FUTURE WORK

We presented two language-independent, flow-sensitive algorithms taie®mp
the pointer information for a program. Our empirical tests show that the algwith
can be used quite efficiently. Not only that we can determine the precistepoin
information, but we can also build a call graph that is more accurate thamése o
computed without the points-to information. Unfortunately, we did not implement
the algorithms for any particular programming language yet, So we canesmr
our empirical results in the terms of numbers.

The goal of our future work is to develop a system for the impact analysis o
large, real-life programs. The algorithms presented in this paper are afghis
future system. The developments will include the following:

e making the algorithm context sensitive by making the algorithm context-
sensitive we will be able to distinguish the different call sites of a function
and so we can make the pointer information more precise;

° making the algorithm incremental; if only minor changes are made to the
program we do not have to compute all the information from the beginning,
but will be able to reuse some data from previous runs;

° focusing on the special properties of the C++ languagdhere are only a
few methods that can compute pointer information for a C++ program. Since
nowadays C++ is one of the most popular programming languages, we would
like to help the developers (and compilers) in the computation of points-to
information for real-life C++ programs.

REFERENCES

1. Jasz, J., Horvéth, E., Kiss, A., Forgacs, |. and GyimdéthiPointeranalizis University of
Szeged, Szeged, 2004.

2. Hind, M. and Pioli, A. Which pointer analysis should | us&CM SIGSOFT Softw. Eng.
Notes 2000,25, 113-123.

3. Hind, M. Pointer analysis: Haven't we solved this problget? In Proc. 2001
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Soétwools and
Engineering New York, 2001.

4. Yur, J., Ryder, B. G. and Landi, W. A. An incremental flowdaiontext-sensitive pointer
aliasing analysis. IfProc. 21st International Conference on Software Engimegri
Los Angeles, 1999, 442-451.

5. Hind, M., Burke, M., Carini, P. and Choi, J.-D. Interprdceal pointer alias analysiaCM
Trans. Program. Lang. SystL999,21, 848-894.

6. Marx, D. I. S. and Frankl, P. G. Path-sensitive alias asiglfor data flow testingSoftw.
Test. Verif. Reliah.1999,9, 51-73.

7. Andersen, L. OProgram Analysis and Specialization for the C Programmiagduage
PhD thesis, DIKU, University of Copenhagen, 1994.

8. Wilson, R. P. and Lam, M. S. Efficient context-sensitivénper analysis for C programs.
ACM SIGPLAN Notices 995,30, 1-12.

9. Whaley, J. and Lam, M. S. Cloning-based context-seesjininter alias analysis using
binary decision diagram&CM SIGPLAN Notice004,39, 131-144.

294

10. Bacon, D. F. and Sweeney, P. F. Fast static analysis ofu@ttsal function calls ACM
SIGPLAN Notices1996,31, 324—-341.

11. Milanova, A., Rountev, A. and Ryder, B. Precise call grapnstruction in the presence
of function pointers. IfProc. Second IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM 2002 ontreal, 2002, 155.

12. Milanova, A., Rountev, A. and Ryder, B. G. Parameterizigigct sensitivity for points-to
and side-effect analyses for Jap&CM Trans. Softw. Eng. Methodc2002,14, 1-11.

Juhtimisvoogu arvestav Uldine viidaanallts
ja juhtimisvoograafi koostamine

Endre Horvéth, Istvan Forgacs, Akos Kiss, Judit Jasz jarT@yomothy

Viidaanallils on staatilise programmianaltitsi tuntud tehnika. Valdkonna uuri-
misel on leitud, et enamik viidaanallilisi meetodeist ei arvesta anallilsmlgs pr
rammi juhtimisvoos antud teavet. Eesmargiks on luua selline staatilise programmi-
analldsi tehnika, mis arvestaks juhtimisvoogu (oleks n-6 juhtimisvootundlik)
ja oleks rakendatav suurte programmide analltusil. On tdheldatud, et miesugu
analiiisimeetod annab tdpsemaid tulemusi siis, kui samaaegselt koostatakse
juhtimisvoograaf ja tehakse viidaanallits. Artiklis on esitatud koos selgitasiate n
detega kaks sellist viidaanallilisi algoritmi. Esitatud algoritmid on aluseks tuleva-
sele juhtimis- ja kontekstitundlikule viidaanalliisimeetodile.

295

