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Abstract. Pointer analysis is a well known, widely used and very important static program
analysis technique. After having studied the literature inthis field of research we found that
most of the methods approach the problem in a flow-insensitive way, i.e. they do not use the
control-flow information. Our goal was to develop a technique that is flow-sensitive and can
be used in the analysis of large programs. During this process we have found that this method
can give more accurate results if we build the call graph and compute the pointer information
at the same time. In this paper we present two of our algorithms for pointer analysis and give
some examples to help their comprehension. In the future these algorithms are planned to form
the basis of a flow- and context-sensitive method, to be used in the impact analysis of real life
applications.
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1. INTRODUCTION

Pointer analysis is a well known and widely used static program analysis
technique. The point of the analysis is to compute which variables use the same
memory locations and which pointers may point to the same memory address. We
have studied the relevant literature in this field (in a survey written in hungarian
language [1]) and found that most of the methods use a flow-insensitive approach
to the problem. This results in a faster, but less accurate algorithm. There are
several methods developed to compute the pointer information for a given program.
Although the speed and the accuracy of some algorithms are very good, wedid not
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see any technique that gives a language-independent, flow- and context-sensitive
solution to the problem.

In his works Hind summarizes the results in this field [2] and describes related
issues and open problems, associated with pointer analysis [3]. Yur et al. [4] give
a flow- and context-sensitive algorithm, which was developed for the analysis of
C programs. Hind et al. [5] and Marx et al. [6] give a flow-sensitive, but context-
insensitive solution for the problem. Andersen’s context-sensitive algorithm [7] is
a benchmark in this field, but Wilson et al. [8] and Whaley et al. [9] also present
good context-sensitive techniques. Bacon and Sweeney [10] use the pointer analysis
to handle the virtual function calls in the C++ code. Milanova et al. [11] measure
the performance of a technique calledFlow-insensitive Alias Analysisand define
object sensitivity to support the pointer analysis for object-oriented languages [12].

With the knowledge, gained from our survey, we decided not to use any of the
techniques cited above, but to develop our own method. In the future we want to use
the algorithm for impact analysis of large (over million lines of code), real-lifeC++
applications; thus we cannot afford to lose accuracy. Our algorithm is a general,
language-independent, flow-sensitive approach to the problem, which can be used
for the analysis of object-oriented programs. The basic idea is a forward-slicing
technique, which ensures maximum possible accuracy. An additional advantage of
the algorithm is its short execution time even for large programs.

During the development of the algorithm we discovered that an interprocedural
pointer analysis can only be successful if it builds the call graph at the same
time. For this reason we present our algorithm in two steps. First, we give
an intraprocedural algorithm that computes the pointer information for a given
function. This algorithm is flow-sensitive and context-insensitive, as anyalgorithm
that focuses on only one function. Second, we present our final results in the form
of an interprocedural algorithm, which computes the pointer information and builds
the call graph in parallel.

The rest of the paper is organized in the following way. In the next section
we introduce the intraprocedural algorithm and give an example to help its
comprehension. In Section 3, we present the interprocedural algorithm.Finally,
in Section 4, we draw some conclusions from our results and outline the directions
of our future work.

2. INTRAPROCEDURAL POINTER ANALYSIS

The first step of the algorithm is to search for the memory allocation points in
the program, and also for the statements, where a pointer variable is set to point
to an invalid memory location (in different languages this can be expressed with
nil, null, NULL or 0). For these statements we set the initial pointer information to
be{〈(p), u〉}, whereu is the number of the statement andp is the variable, getting
a value at that statement. (The algorithm stores the pointer information as a set
of pairs like〈variable set, number〉, where a pair gives the set of variables that may
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point to the same object after a statement and to the number of the statement, where
the object was created).

Once we have found the memory allocation points, we can propagate this
information through the statements of the program. The pointer information of a
statement depends on two things: 1) the information at the statements that precede
the current statement in the control-flow of the program and 2) the semanticsof the
statement itself. First, we compute the union of the information, propagated from
the statement ancestors and then we modify this result according to the statement.
If a pointer gets a new value at the statement, we remove the pointer from eachset
of variables and add it to those sets that contain the variables, which were used in
the definition of the pointers new value. We let the algorithm iterate until it reaches
its fixpoint.

The pseudo code of the algorithm is given in Fig. 1. The following notation is
used in the code:
• f is a procedure or a function,
• u andv are arbitrary statements in the program,
• List is a list or a set, which contains the statements to be analysed,
• p andq are arbitrary pointer variables,
• P is the set of pointer variables that point to the same location,
• MemAlloc(f) is a set that contains those statements of the functionf that are

memory allocations or assign thenull value to a variable,

1 algorithm intraprocedural_pointer_analysis(f )
2 List = MemAlloc(f)
3 while List is not emptydo
4 u ∈ List, List = List \ {u}
5 PtrInf∗ =

⋃
v∈Prev(u) PtrInf(v)

6 if p gets a value atu then
7 for each 〈P, v〉 ∈ PtrInf∗ pairdo
8 P = P \ {p}
9 if ∃q ∈ P : q ∈ Use(p, u) then

10 P = P ∪ {p}
11 endif
12 endfor
13 if u ∈ MemAlloc(f) then
14 PtrInf∗ = PtrInf∗ ∪ {〈Def(u), u〉}
15 endif
16 endif
17 if PtrInf∗ 6= PtrInf(u) then
18 List = List∪ Next(u)
19 endif
20 PtrInf(u) = PtrInf∗

21 endwhile
22 algorithm end

Fig. 1. Intraprocedural pointer analysis algorithm.
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• Def(u) is the (pointer) variable that gets a value at the statementu,
• Use(p, u) is the set of variables that appear in the definition of the pointerp

at the statementu,
• Prev(u) is the set of statements that precede the statementu in the control

flow of the program,
• Next(u) is the set of statements that succeed the statementu in the control

flow of the program,
• PtrInf(u) contains the pointer information associated with the statementu

(it is empty at the start and it contains the required information after the
execution of the algorithm).

To help the comprehension of the algorithm, we present a small example with
only a few variables and one conditional statement. This can be seen in Fig. 2.
In the beginningList = MemAlloc(f) = {1, 2, 5, 7}, because the memory
allocation points are at1, 2, 5 and7. Also PtrInf(i) = ∅ for i = 1, . . . , 8. We
can see the necessary information and the results of the algorithm in three tables.
First, in Table 1 we give the statements that precede and succeed each statement in
the control flow of the example. Second, we show the iteration of the algorithmin
Table 2. Finally Table 3 holds the pointer information for the example.

proceduref ()
begin

x1 = new A(); (1)
x2 = new B(); (2)
if ( . . .) then begin (3)

x3 = x1; (4)
x1 = new A(); (5)

end else begin
x3 = x2; (6)
x1 = new B(); (7)

end;
x4 = x3; (8)

end;

Fig. 2. An example of the intraprocedural algorithm.

Table 1. Control flow of the example in Fig. 2

Number of
the statementu

Prev(u) Next(u)

1 ∅ {2}
2 {1} {3}
3 {2} {4,6}
4 {3} {5}
5 {4} {8}
6 {3} {7}
7 {6} {8}
8 {5,7} ∅
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Table 2. The iteration of the algorithm, step by step, on the example in Fig. 2

Current
statementu

PtrInf (u) List

1 {< x1, 1 >} {2, 5, 7}
2 {< x1, 1 >,< x2, 2 >} {5, 7, 3}
5 {< x1, 5 >} {7, 3, 8}
7 {< x2, 7 >} {3, 8}
3 {< x1, 1 >,< x2, 2 >} {8, 4, 6}
8 {< x1, 5 >,< x2, 7 >} {4, 6}
4 {< (x1, x3), 1 >,< x2, 2 >} {6, 5}
6 {< x1, 1 >,< (x2, x3), 2 >} {5, 7}
5 {< x3, 1 >,< x2, 2 >,< x1, 5 >} {7, 8}
7 {< x1, 1 >,< x3, 2 >,< x2, 7 >} {8}

8
{< (x3, x4), 1 >,< x2, 2 >,< x1, 5 >,
< x1, 1 >,< (x3, x4), 2 >,< x2, 7 >} ∅

Table 3. The pointer information for each statement for the example in Fig. 2

Number of
the statementu

PtrInf (u)

1 {< x1, 1 >}
2 {< x1, 1 >,< x2, 2 >}
3 {< x1, 1 >,< x2, 2 >}
4 {< (x1, x3), 1 >,< x2, 2 >}
5 {< x3, 1 >,< x2, 2 >,< x1, 5 >}
6 {< x1, 1 >,< (x2, x3), 2 >}
7 {< x1, 1 >,< x3, 2 >,< x2, 7 >}

8
{< (x3, x4), 1 >,< x2, 2 >,< x1, 5 >,

< x1, 1 >,< (x3, x4), 2 >,< x2, 7 >}

3. INTERPROCEDURAL ANALYSIS

The only way to compute precise pointer information is to propagate the
necessary information across function boundaries in the program. There is no
problem if the program contains only simple function calls, because in this case
we always know where to propagate the information. This task becomes harder if
the program contains function calls, whose target is not obvious (i.e. in thecase of
function pointers or polymorphic function calls). In this case we need to update the
call graph as we compute the pointer information; thus the possible targets of such
function calls become clear.

The first step of the algorithm is to find the possible entry points of the program
(it is usually one function, likemain, and all the static initialization blocks). After
this we start the iteration of the algorithm. When we find a function call, we
compute the possible targets for that call from the pointer information known so
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far. Although this is not necessary for direct function calls, the targets of indirect
function calls can only be determined from the parallel points-to analysis. Ifthe
iteration reaches a new function, we initialize the information for that function and
it becomes part of the iteration.

We also have to define how we are propagating the information at function
calls. We split each call into two parts (i.e. two nodes in the control-flow graph),
a call point and a return point. This way the predecessors of a function entry point
are the call points, from where we could have called the function. Likewisethe
successors of the function exit point are the possible return points of thefunction.

We present the pseudo code of the algorithm in Fig. 3. We use the same
formalism as before with the following extensions:
• F is the set of functions and procedures to be analysed,
• EntryPointsis the set of functions that can be the entry points of the program,
• FuncListis the set of functions, found during the iteration,
• Target(u, PtrInf) is the set of functions that are the potential targets of the

function call at statementu according to the pointer informationPtrInf.
The algorithm builds the call graph in an implicit way. After the iteration, the

Target(u, PtrInf(u)) expression will give us the set of potentially called functions
at an arbitrary statementu.

1 algorithm interprocedural_pointer_analysis(F )
2 List =

⋃
f∈EntryPointsMemAlloc(f)

3 FuncList= EntryPoints
4 while List is not emptydo
5 u ∈ List, List = List \ {u}
6 PtrInf∗ =

⋃
v∈Prev(u) PtrInf(v)

7 if p gets a new value atu then
8 for each 〈P, v〉 ∈ PtrInf∗ pairdo
9 P = P \ {p}

10 if ∃q ∈ P : q ∈ Use(p, u) then
11 P = P ∪ {p}
12 endif
13 endfor
14 if u ∈ MemAlloc(f) then
15 PtrInf∗ = PtrInf∗ ∪ {〈Def(u), u〉}
16 endif
17 else ifu is the entry point of a function callthen
18 List = List∪ (

⋃
f∈Target(u,PtrInf∗)\FuncListMemAlloc(f))

19 FuncList= FuncList∪ Target(u, PtrInf∗)
20 endif
21 if PtrInf∗ 6= PtrInf(u) then
22 List = List∪ Next(u)
23 endif
24 PtrInf(u) = PtrInf∗

25 endwhile
26 algorithm end

Fig. 3. Interprocedural pointer analysis algorithm.
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Again, to help the comprehension of the algorithm we present in Fig. 4 a simple
example with four functions. In Table 4 we give the statements that precede and
succeed each statement in the control flow of the example. We divided the call
points into two parts, labelledNh for the call andNv for the return. Functionmain

is the only entry point of the program, soEntryPoints = FuncList = {main}
and according to thisList = MemAlloc(main) = {10, 11}. In the beginning,
PtrInf(i) = ∅ for i = 1, . . . , 12 (this includes both parts of the split points). We
show the iteration of the algorithm in Table 5 and finally Table 6 holds the pointer
information for the example.

proceduref () procedureh()
begin begin

x3 = x1; (1) x3 = x2; (8)
g(); (2) x5 = new B(); (9)
x4 = x1; (3) end;
h(); (4)
x5 = x2; (5)

end;

procedureg() proceduremain()
begin begin

x1 = x2; (6) x1 = new A(); (10)
x4 = new A(); (7) x2 = new B(); (11)

end; f (); (12)
end;

Fig. 4. An example for the interprocedural algorithm.

Table 4. Control flow of the example in Fig. 7

Number of
the statementu

Prev(u) Next(u)

1 {12h} { 2h}
2h {1} {6}
2v {7} {3}
3 {2v} { 4h}
4h {3} {8}
4v {9} {5}
5 {4v} { 12v}
6 {2h} {7}
7 {6} { 2v}
8 {4h} {9}
9 {8} { 4v}

10 ∅ {11}
11 {10} { 12h}
12h {11} {1}
12v {5} ∅
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Table 5. The iteration of the algorithm, step by step, on the example in Fig. 7

Current
statementu

PtrInf (u) List

10 {< x1, 10 >} {11}
11 {< x1, 10 >,< x2, 11 >} {12h}
12h {< x1, 10 >,< x2, 11 >} {1}
1 {< (x1, x3), 10 >,< x2, 11 >} {2h}
2h {< (x1, x3), 10 >,< x2, 11 >} {7, 6}
7 {< x4, 7 >} {6, 2v}
6 {< x3, 10 >,< (x1, x2), 11 >} {2v, 7}
2v {< x4, 7 >} {7, 3}
7 {< x4, 7 >,< x3, 10 >,< (x1, x2), 11 >} {3, 2v}
3 {< ∅, 7 >} {2v}
2v {< x4, 7 >,< x3, 10 >,< (x1, x2), 11 >} {3}
3 {< ∅, 7 >,< x3, 10 >,< (x1, x2, x4), 11 >} {4h}
4h {< x3, 10 >,< (x1, x2, x4), 11 >} {9, 8}
9 {< x5, 9 >} {8, 4v}
8 {< ∅, 10 >,< (x1, x2, x3, x4), 11 >} {4v, 9}
4v {< x5, 9 >} {9, 5}
9 {< (x1, x2, x3, x4), 11 >,< x5, 9 >} {5, 4v}
5 {< ∅, 9 >} {4v}
4v {< (x1, x2, x3, x4), 11 >,< x5, 9 >} {5}
5 {< (x1, x2, x3, x4, x5), 11 >,< ∅, 9 >} {12v}

12v {< (x1, x2, x3, x4, x5), 11 >} ∅

Table 6. The pointer information for each statement for the example in Fig. 7

Number of
the statementu

PtrInfo(u)

1 {< (x1, x3), 10 >,< x2, 11 >}
2h {< (x1, x3), 10 >,< x2, 11 >}
2v {< x4, 7 >,< x3, 10 >,< (x1, x2), 11 >}
3 {< x3, 10 >,< (x1, x2, x4), 11 >}
4h {< x3, 10 >,< (x1, x2, x4), 11 >}
4v {< (x1, x2, x3, x4), 11 >,< x5, 9 >}
5 {< (x1, x2, x3, x4, x5), 11 >}
6 {< x3, 10 >,< (x1, x2), 11 >}
7 {< x4, 7 >,< x3, 10 >,< (x1, x2), 11 >}
8 {< (x1, x2, x3, x4), 11 >}
9 {< (x1, x2, x3, x4), 11 >,< x5, 9 >}

10 {< x1, 10 >}
11 {< x1, 10 >,< x2, 11 >}
12h {< x1, 10 >,< x2, 11 >}
12v {< (x1, x2, x3, x4, x5), 11 >}
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4. CONCLUSIONS AND FUTURE WORK

We presented two language-independent, flow-sensitive algorithms to compute
the pointer information for a program. Our empirical tests show that the algorithms
can be used quite efficiently. Not only that we can determine the precise pointer
information, but we can also build a call graph that is more accurate than the ones,
computed without the points-to information. Unfortunately, we did not implement
the algorithms for any particular programming language yet, so we cannot present
our empirical results in the terms of numbers.

The goal of our future work is to develop a system for the impact analysis of
large, real-life programs. The algorithms presented in this paper are a part of this
future system. The developments will include the following:
• making the algorithm context sensitive; by making the algorithm context-

sensitive we will be able to distinguish the different call sites of a function
and so we can make the pointer information more precise;

• making the algorithm incremental; if only minor changes are made to the
program we do not have to compute all the information from the beginning,
but will be able to reuse some data from previous runs;

• focusing on the special properties of the C++ language; there are only a
few methods that can compute pointer information for a C++ program. Since
nowadays C++ is one of the most popular programming languages, we would
like to help the developers (and compilers) in the computation of points-to
information for real-life C++ programs.
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Juhtimisvoogu arvestav üldine viidaanalüüs
ja juhtimisvoograafi koostamine

Endre Horváth, István Forgács, Ákos Kiss, Judit Jász ja Tibor Gyimóthy

Viidaanalüüs on staatilise programmianalüüsi tuntud tehnika. Valdkonna uuri-
misel on leitud, et enamik viidaanalüüsi meetodeist ei arvesta analüüsides prog-
rammi juhtimisvoos antud teavet. Eesmärgiks on luua selline staatilise programmi-
analüüsi tehnika, mis arvestaks juhtimisvoogu (oleks n-ö juhtimisvootundlik)
ja oleks rakendatav suurte programmide analüüsil. On täheldatud, et niisugune
analüüsimeetod annab täpsemaid tulemusi siis, kui samaaegselt koostatakse
juhtimisvoograaf ja tehakse viidaanalüüs. Artiklis on esitatud koos selgitavate näi-
detega kaks sellist viidaanalüüsi algoritmi. Esitatud algoritmid on aluseks tuleva-
sele juhtimis- ja kontekstitundlikule viidaanalüüsimeetodile.
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