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Abstract. More and more embedded systems are used in the world. Thed@nas have
limited resources as, e.g., the background storage sizeinfiportant to increase the storage
capacity of these machines. A possible solution for thimmpressing the files before they are
written on the storage device. This is usually done by a gérmempresssor. There are files
containing text or binary data and in many cases binary pragztode. A general compressor
compresses all of them with almost the same efficiency. Buiraptessor, specialized for
one type of input, would compress files of that type much betteus using many special
compressors would save space and increase the virtualigaphthe storage device. Using
this idea, our goal was to create a compression algorithnbiftary program code. Most
compression methods can be separated into two parts: thel mod the coder. In this paper
we introduce a decision-tree based modelling method. Webowd this method with an
arithmetic coder and applied it in a modified JFFS2 file systéeLinux distribution, running
on a PDA machine. The original file system used only one mefiiofile compression (zlib),
the modified file system uses many compressors, includingnagiel-based one. This PDA
machine has an ARM processor; thus our method was implechéotehe compression of
ARM instructions. The results were very promising: depagdbn the parameters of the
method, at least 12.6% of the 13 MB image, created with ortyc@mpression, were saved,
and it costed boot speed slowdown only at most 3 times.

Key words: embedded system, code compression, decision trees.

1. INTRODUCTION

There are more and more embedded systems spreading all around the world
(e.g. mobile phones, PDAs). The capacity of these small computers is limited in
many ways. These limitations include processor speed, available engngynit
memory and background storage size.
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In many cases the background storage is some kind of static memory (e.g.
flash), which keeps its state without consuming energy. The size of this memor
is minimized by the embedded tools. But on the other hand, embedded systems
contain more and more programs and data. To save space, a good solttion is
compress programs and data.

This compression is usually done by a compressed file system. Such a file
system logically stores fixed-sized blocks, but physically stores them ressgu
in variable-length blocks, logically increasing the capacity of the storagealdn
most cases the used compression algorithm is a general one, whichnopress
programs and data with the same efficiency (e.g. gzip).

The blocks to be compressed can be classified. There are blocks auntaxt
data, binary data or program code. File systems compress all these Wititkise
same compression method. However, special compression methods casieidbe
to compress different kinds of blocks. The size of a block, comprdssis special
compressor, is usually smaller than the size of the same block, compressed by
the general compressor. Thus compressing each block with its spetiptessor
makes the compressed block smaller and saves space.

To take advantage of this, we created a compression algorithm for the binar
program code. We aimed this algorithm on the ARM instruction set, which is
the most frequent code set in embedded systems. The implementation is called
ARMIib. However, the method can be applied for other binary codes thiafysa
some requirements (e.g. well separatable instruction/parameter/condition bits)

There are lots of code compression methods introduced in the literajure [
These methods usually can be separated into a model and a coder pantetbod
also has these parts: based on previous works of Figserd Garofalakis et al?],
we used special decision trees as the model and an arithmetic épaetlje coder.

The method was implemented and tested on real iPAQ machines with a
specially modified file system. The original JFFS? file system was designed
for flash devices and included zlib compression. This was modified to handle
both ARMlib and zlib compressed blocks at the same tifje This file system
modification itself is not a subject of this paper, but it was necessaryyfiogtour
compression method in a real environment.

The compression efficiency of JFFS2 was improved with ARMIib: on an image
of about 25 MB uncompressed size, from 1.7 to 2.6 MB were saved, tseng
algorithm. This means that the compressed image was from 12.6 to 19.4% smaller
when ARMIib was used, compared to the original (zlib-only) compressedamag
thus this amount of flash memory could have been saved.

The drawback of ARMIib is its speed. The boot time of the iPAQ, when
ARMIib was used, was from 2 to 4 times the original boot time (when only zlib was
used). However, except some extreme cases, the slowness of ARMiilmiyunot
recognized by a human user after the boot procedure has beendinishe

In this paper we introduce a decision tree based code compression method,
which combines Fraser’s idea of using decision trees as compressiorsniijde
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and the effective tree construction algorithm of Garofalakis et*3lwhich were
originally designed for building trees for classification. We applied this method
in a real environment®]. Namely, the JFFS2 file system in the Familiar Linux
distribution was modified to use both zlib and our method on an iPAQ machine.
(The method is usable on other binary machine codes too. We tried it for Thumb
where the method saved 3.5 to 8.5% of the uncompressed size, which méags sa

9 to 20% relative to the zlib-compressed size. However, these ratiosrgpear®
thumb code compression and not for system-wide use due to lack of a Thumb
hardware unit.)

The rest of the paper is organized as follows. In Section 2 some terms of
compression and decision trees are introduced and in Section 3 some ecoskéing
compression and decision tree building methods are described. In Seatian 4
method is introduced. In Section 5 an existing implementation on iPAQ machines
is introduced and in Section 6 the results are presented. In the last seetiestlts
are summarized and some issues of further improvement are mentioned.

2. BACKGROUND

In this section we briefly describe what compression means and how Ityusua
works, then we shortly describe decision trees.

2.1. Compression

The term “compression” can be defined &k ['storing data in a format that
requires less space than usual”. In other words, compression meamasarting
data in a form that is smaller than the original representation. The term
“decompression” means the inverse of compression, thus restoringtthandhe
original form.

2.1.1.Theoretical background

The theory behind compression is based on the resultéaymation theory In
this section we will review some terms of information theory. We define the input
of a compression method as a sequence of input symbols. These syntbbks ca
the bits or bytes of the input as well as more complex entities. These entities are
usually called tokens. The input sequence may contain values from asftexd
symbols (token values). The basic idea of most compression algorithms g&@dao as
acodeto each symbol in such a way that the sequence of the codes will be shorter
than the sequence of the symbols.

Each symbol in the input has @obability. By giving a shorter code to a
more frequent symbol and a longer code to a less frequent one, thallsize
of the output sequence will be smaller than the size of the input sequenogt. M
compression methods use this idea to produce smaller output sequences.
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Formally that can be expressed as follows. et {a1,as, ..., an } be a set of
symbols. LetX = x1,x9, ..., x,,, be a sequence with; € A, (i = 1, ...,m). Now,
a € A has a probabilityPx (a) > 0 in the sequencel, with >, Px(a) = 1.

We can compute thimformation contendf X. The less information is stored
in X, the shorter encoded sequence can represent it. The informatiomicoate
be measured by the entropy &fusing the following formula:

Hu(X) == Px(a)logyPx(a).
acA

This formula gives the minimum average number of bits required to encode one
symbol in the sequencE. If H4(X) is multiplied bym, we get the theoretically
minimal size (in bits) of the encoded sequenceXof

2.1.2.Compression model

As mentioned above, most of the compression methods are based on the
information content of the input sequence by assigning shorter codes ® mo
frequent tokens. Thus the compression method can be separated intartao p
1) gathering information about the input sequence and 2) assigninglsuitades
to the tokens. The first component is calieddeller the second component is
called coder and it uses the model, provided by the modeller during the code
assigning process. Most compression methods contain separately a mawieiée
coder, although these are usually fine-tuned on each other. Many medeliebe
used with the same coder and vice versa; thus these two can be treatpdrasese
research topics.

The goal of the model is to provide a good probability distribution on the
next token in the input: for all token values tell what is the chance of thateve
that the next token has the said value. Modelling can mean almost anything: the
simplest model is the probability distribution of the token values in the input, but
the probability distribution provided by the model may change from token tatoke
For example, the values provided by the model may depend on the valuela$the
token.

The coders also vary. There are coders that directly assign codiéaveach
individual input token value (e.g. Huffman) and there are coders gsgmaa final
codeword to a sequence of tokens (e.g. arithmetic). ddemderimplements the
inverse of the coder (it restores the tokens from the codes); howieweses the
same model that was used by the coder.

2.2. Code compression
Code compression covers the compression of almost any form of aapmogr
including intermediate representation or binary program code but exglsdurce
code (which is sooner a special case of text compression than codesssion).
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Although all these forms are considered as “code”, there can be mdayediées
between them; e.g. the IR code can be some kind of a tree (e.g. AbstraakSyn
Tree) while binary code is a sequence of machine instruction.

2.3. Decision trees

Decision trees are used for storing information about a set of objectse Mo
precisely, decision trees are trees that provide some information abouairdjed-
attribute of an object using some other attributes of it. A usual application of the
is the classification of objects, where the object is put into one of the glasses
based on some properties (attributes) of the obfeft [

In Figure 1, the objects are given by their attributes and assigned to a class
(+ or —). The decision tree on this figure encodes this classification.

The tree contains an expression with attributpgedictor9 in each of its
internal nodes. Such an expression can be the attribute itself (as in thelexar
the comparsion of the attribute to one of its possible values or more complicated
expressions too. An outgoing edge is assigned to each of the possilits ofshe
expression in the node. These edges end in subtrees. In the leavesietision
tree the information (target-attribute) is stored that corresponds to thaatecis
made on the route from the root to the actual leaf.

To extract the information about an object (which is given by its attribute
values) from a decision tree, first evaluate the decision in the root usragttibute
values of the given object, then check the end of the edge, assigned evitbstlit.

If there is a subtree then repeat the process on that. When a leaf isde#chill
contain the required information.

Decision trees are mainly used because they can be automatically built. Tree
construction algorithms require only a great number of examples (whetarges-
attributes are also known) to automatically create a decision tree. The loeat kn
decision tree building algorithms are ID3 pnd C4.5 f].

AT']I-'#l ATI\#Z AT)'(I'#B CLﬁ\SS
2 A X -
3 B y + 1 2 3
3 C y + |
2 B X - ATT#2) (-) (ATT#3
2 B X NG ESEGE
1 A y + ABC
1 C y - x Y
2 A y - /1 [\
1 B y - (NG () (D

Fig. 1. A simple decision tree.
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3. PREVIOUS WORKS

In this section previous works on binary code compression and decigien tr
building are described, showing their advantages and disadvantages.

3.1. Code compression methods

Code compression is used for various reasons. The goal can baltiwdioe
of energy consumption, which can be the result of the smaller stored sizeran
of the smaller data size, sent through the channels between hardwaratsleme
Sometimes compresson has no other reason than saving space, thus igirevin
capacity of the storage device. For any reasons, code compressiardsietin be
very different.

We concentrate on binary code compression although we borrow some
concepts from other code compression as well.

Benini et al. created aransparentcompression method®], where the
compressed code is decoded by a hardware unit between the memorg &telih
The decoder unit is a simple table that contaiss most frequent codes, assigned
to a byte-long codeword. The 256th value is an escape character torstetecaled
instruction. The most frequent codes come from statistics and the codiewar
assigned using Minimal Hamming Distance.

Wolfe et al. described hlock-basedompression method, usable on hardware
with memory cache'f]. The cache pages are stored in the memory in compressed
form and decompressed into the cache when a cache miss occurs. |8tl@re
between the in-cache and real memory addresses are resolved usimg a L
Allocation Table (LAT). Many coders were tried, and a version of Huffraading
was proposed by the authors for application.

Breternitz and Smith enhanced the previous metHdHdnd eliminated the
LAT. The memory addresses in the code are modified to contain a cache page
address and an offset of the target instruction. This solution createdprmslems,
for example, when the program runs through a cache page boundtfgutva
jump. (This was later solved by automatically generated jump instructions.) The
best compression ratio, achieved 1h][ was0.56.

Laketsas et al.'F] improved Wolfe’s method. They proposed the decomposi-
tion of RISC instructions intstreamsthus different parts of the instructions (e.g.
operation code, target register) are encoded in different seguentiey also
proposed arithmetic coding. Their models were Markov models and dictignarie
Their average compression ratios were 0.5t0 0.7.

The work of Lefturgy et al. P] is similar to Wolfe’s solution, but they assign
codewords not only to single instructions but to instruction sequencesTbe.
used model is a dictionary, the codewords have fixed size. The Cddefeditod of
IBM [ 4] is similar to this but much more complicated. The 32-bit long instructions
are divided into two 16-bit long parts and these are encoded with a vatéigéeh
coding. The decoder is also a hardware unit, but the software-basedidg was
also studied. The compression ratios for these methods were@Bout
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The methods above are designed for hardware decompression. Their ma
task was to reduce the energy consumption of the embedded systems, thus the
simplicity was more important than the greater compression ratio. Their models
are usually based on some kind of a dictionary. In our case the enargyroption
is secondary, the decompression can be done by software and ceimpradio is
more important. Thus our model can be more complex.

In [?] Fraser creates a model for code compression using machine learning
methods. The coder and decoder are not the subject of his papercused on
finding the relevant statistical information existing in the code to be compressed
and automatically extracting it.

Fraser works on an intermediate representation (IR), not on the biods/ c
The information he extracts from this representation are probability distritsitio
usable by his coder. He stores these distributions in the “leaves” of tHEatetree
like model. To do this, predictors are required that describe the contthe attual
token. Fraser used the last 10 to 20 token values before the actualsokealled
“Markov” predictors) as predictors, and some computed predictors likestidck
depth. He used a simple tree-building algorithm to infer his model automatically:
it gets a large number of internal representation codes and builds thetriesf
data set. Fraser reduced the size of the model making a [#€cted acyclic
graph) from the tree by merging similar leaves. The presented results showed a
compression ratio of 0.19 on IR code. But these results did not counzthefdhe
model, which can be very large.

3.2. Decision tree building

Decision trees can be automatically generated on large and representative
training data setsand thus it is easy to use them. One of the best known tree
building algorithms is ID3 {]. It is based on entropy gain. Let be a set of
objects, I’ the target-attribute and a non-target attribute. L&E and A denote the
set of target and non-target attribute values. Now define the probaBitity) and
setX,, forallt € Tanda € A as

_ x|z € X, T(x) =t}
| X ’
Xaog={zlr € X, A(x) = a}.

Now the entropy gain of attributd on the set of objects, using the formula
Hg(X) introduced in Section 2.1, is

EGA(X) = |X[Hr(X) = ) (I1Xaa
a€cA
Tree building works as follows: a set of object¥’), whose attributes are
known, is assigned to the root; thest attribute(A), which produces the highest
entropy gain £G 4(X)) is then selected; the set of objects is split into subsets,
based on the best attribut& {; ,) and each subset is assigned to a child of the root.

Px (1)

Hr (Xay4) ).
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The algorithm is then invoked for the children. If all attributes produceatieg
entropy gain, the node becomes a leaf, encoding information of the taingjet e
values of the objects.

A problem can be theverfitting If a tree, trained on a noisy training set (that
contains many errors), exactly fits the training set, then the answers thgivese
will also contain errors. Two methods can solve this problem.

The first is applied during tree building. When a new node is examined to
decide whether it is to be expanded or not, s@t@pping criterionsare checked.
These may depend on various properties of the node and on the assajnid)
set. If any of these criteria becomes true, the node is not expanded.

The other method is applied on the fully built tree. The subtrees are examined
and replaced with leaves, if necessary. This is cafladhing It gives more
accurate result than the previous method, because all subtrees arenowet
during pruning, while in the previous method the subtrees are not knofanebe
the stopping decision. On the other hand, it may happen that a greatesisiarelt
first and then dropped during pruning.

An enhancement of the ID3 algorithm is C4.3.[ It contains a pruning
algorithm that works on a rule-set derived from the tree. Each leapiesented
by the decisions, made in the tree from the root to that leaf, then these rales a
merged and sorted and the resulted rule list is used.

In [}] Garofalakis et al. introduced some methods for efficent building of
decision trees. Their trees are built for classifications and used the MIhinjal
Description Length) measure for pruning.

Their pruning method works on the tree. Liebe the root of the (sub)tree to be
pruned,Ci..s is the MDL cost of a leaf that encodes the information of the training
set assigned witlk. TheC\,q. cOst of the (sub)tree can be recursively computed.
The pruning algorithm works as follows:

Procedure Prunié®)
Cleas := cost of a leaf at nod&
Chode = Zicchildren 7) PTUNER;) +
cost of encoding internal node
If Cleaf < Cnode Then
Replace the subtree rootedrawith a leaf
ReturnCieas
Else
ReturnCode

In [3] two enhanced versions of this methods were described. In the first, the
size of the tree (number of nodes in it) can be maximized by replacing subtrees
of the pruned tree with leaves, using the dynamic programming method. In the
second, the minimal precision of the tree can be set. This uses the previthasime
initially setting the limit on the tree size to 1, then increasing the limit by 1 until
the precision of the tree reaches the required value.

In the same paper a third method was also described that can use the limits set
for tree size during tree building phase (usbrgnch and boundechnique).
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4. ARMIib CODE COMPRESSION FOR ARM

In this section our compression method is described thréwRjMlib.

ARMIib is a function library that contains functions for ARM binary code
compression. ARM binary code was selected because ARM instructigi®$et
is the most popular instruction set in embedded systems.

Based on the work of Frasef][ our model in ARMIib is a decision tree, whose
leaves contain probability distributions. For an application of ARMIib, the datis
tree is pre-built {frained) on a host machine using a great number of binary code
blocks training se}.

The building of the decision tree is based on the papets [The building
is automatic: it optimizes the image size; thus not only the compression ratio is
minimized (because it would result in a very precise but huge model) butzie s
of the tree itself is also considered. These models provide best perfoenfiae
greatest compression) on code sequences that are very similar to ¢hthepavere
trained on. By setting the parameters of the training, the efficiency and sptee
compression can be varied.

An arithmetic coder, based ofj[is used as the coder in ARMIib.

4.1. The parts of ARMIib

ARMIib consists of 3 main parts: model generator, compressor and decom-
pressor modules. The model generator creates the model from a greben
of example programs (the training data set). The compressor is to comprkss a
the decompressor is to decompress the binary ARM code; both use theustev
created model. The tokenizer and detokenizer algorithms are also parte of th
ARMlib. Tokenizer transforms the raw ARM binary code into the sequerice o
tokens usable by the modeller and coder, and detokenizer transfornexjtiense
of tokens into ARM binary codes after decompression. Figure 2 showsti®
parts of the ARMIib work together.

Model Generato|r Compressor| Decompressor

(Trai ning Data Set)|( Progr am Code )|(Decorrpressed Code)

| | I |
| Tokeni zer ||| Det okeni zer |
| | ' f

|
| Model | er ||| Coder ||| Decoder |
|

f

( Conpr essed Code )

( Model )

Fig. 2. The structure of ARMIib.
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4.2. Pre- and post-processing

The input of model generation and compression and the output of
decompression are in the ARM binary code. But the presented methokowar
sequence of tokens, so we need to transform the raw 32-bit long ARlesdato
tokens and the tokens back to ARM codes. These transformations adoydime
tokenizer/detokenizer modules.

ARM instructions are 32 bits long that would be too large for our method, so an
instruction must be split into more smaller tokens. In ARMIib the instructions are
fragmented into 8 tokens which are 4 bits long each. So the first step of thel mod
generation and the compression is to create a sequence of tokens freentleace
of ARM instructions, which is done by the tokenizer module. The last stepeof th
decompression is to create the ARM instruction sequence from the tokesrsey
This is done by the detokenizer.

The 4-bit long tokens were chosen for two reasons: the first is that ftid A
instructions functionally consist of parts whose length in bits is a multiple of 4. Th
second reason is that 4 bits means 16 token values and this small numbsr is ver
good for the model. The order of the tokens in the token stream of an itistruc
was determined and fixed after some preliminary measurements had beenrmade o
test data. This was necessary because the value of figkehan instruction may
imply some values of tokef, of the same instruction, b}, has no such influence
onT,. In this casél,, must preced&,.

The method can be easily applied to any architecture whose instructiona have
fixed length. And if the bits of the instructions can be assigned to functiooapg,
the method might be as successful as in case of ARM.

4.3. The modd

ARMIib uses special decision trees. The decision trees of ARMIib have the
following traits: objects are the tokens; predictors are the last 16 tokdnsebe
the actual token and of the type of the actual token (e. g. destination rigikte
information, stored in the leaves, consists of the probability distributions of the
possible token values.

In [2] Fraser uses many kinds obmputedandreducedpredictors. In our case,
predictors that required complex computations did not improve the efficiribg
method so much as to be worth of being used. The ‘lastken” type predictors
were combined with only one computed predictor, which states the type of the
actual token. The last x 2 tokens were also used as predictors, thus the last 2
values of each of the 8 types of tokens were stored as predictorse ahegasy
to compute and the possibility of decomposing the input into many streams still
remains; however, the tree-building algorithm has to decide if it is worth ubimg
type predictor at the root of the tree or not. (Using it corresponds tottkars
separation.)
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In the internal nodes of the tree many types of decisions can be used. The
simplest decision is a predictor itself (as in ID3 and C4.5 trees). A node with this
type of decision has so many children as many values the predictor hasg8en c
of the type predictor, 16 otherwise). Another type of decision is the casgraof
a predictor with one of its possible values. This can be an equality or a less-th
comparison. A node with this kind of decision has two children: one fotriine
and one for théalsevalue.

The MDL measure, used irt]} is not enough to build an optimal tree in this
case, because the size of the tree and the size of the compressed mtie e
minimized together. To exactly compute this value, three things must be known:
1) the storage method and size of the tree and its subtrees, 2) the code to be
compressed and 3) the coding method and its compression effect on theltod
these three things were known, the optimal tree could be built. Howevéajrcer
problems may arise.

The way the tree is stored is known and the size of the tree or any of its
subtrees can be exactly computed as long as the tree itself is not compi@ssed
it may happen that the tree itself is also compressed in some way (which is not a
crazy idea in a compressed file system). In this case the compressedfstzes o
subtrees depend on each other and cannot be computed individuadyxodle to
be compressed is known. Each subtree will compress those tokensdhaitlae
training set of one of the subtree leaves. The coding method is also kiodvn,
to compute the exact size of the compressed code, the coding or at ledst a f
coding (that computes only length information) must be done. This means too
much computations, thus we have to make a deal.

From the uncompressed size of the subtree (which is exactly computed) the
size of a subtree and a pre-defineaimpression-multiplieare computed. This
means a few additional computations and approximates the exact final $iZé we
the given multiplier is good). The size of the tokens, compressed by a sulstre
approximated with the sum of the entropies of the training sets, associated avith th
leaves of the subtree. This is also a good approximation if the output of thex co
is close to the entropy.

Thus the building of an ARMIib model for a given token sequence works as
follows. A training set is made from the token sequence, which is not more tha
assigning the predictor value to each token. The tree is built for this traieing s
using the general tree building algorithm. When this is done, the pruningthigor
is invoked for the root with the previously described cost computationsedand
of parallelization of building and pruning is implemented in ARMIib. As soon as a
subtree is built, the pruning method is invoked for its root immediately. This may
reduce the maximal tree size in the memory during the tree building.

4.4, The coder

ARMIib uses arithmetic coder']. The concept of the arithmetic coder is that
it does not assign codewords, but assigns an interval between Otarideltokens.
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It also assigns an interval to the sequence of tokens (this interval is ¢tedipam
the intervals of the tokens). The codeword, assigned to a sequenden§iads a
random number in the final interval, stored with a precision high enougtofoect
decoding.

Arithmetic coder produces a codeword, whose length is very close to the
entropy. Technically the halving of the size of the actual interval meansnuome
bit in the codeword. This allows the arithmetic coder to virtually assign a fraction
of a bit to a token, whose probability is greater than 50% (while Huffmanrcode
assigns at least 1 bit to each token regardless its probability).

5. AN ARMIib IMPLEMENTATION

ARMIib was tested in a real environment, #PAQ machines °]. These
machines havé&trongARMprocessors, 32 MB of memory and 16 MB of flash.
The operating system used weamiliar Linux with a modifiedJFFS2(Journaling
Flash File System 2) file system.

The original JFFS2 file system stores the files logically in fixed size blodks. B
it is able to compress these blocks in a transparent way when they ar isttine
flash, which means that the user of the file system does not see the csimpres
In this way the capacity of the flash is logically increased. The used cosipnes
methods are the methods of zlib (Fig. 3a).

The compression methods of ARMIib were integrated into JFFS2 as can be
seen in Fig. 3b. The two compressors work side by side in the file systenh. Eac
block of the file system stores the information in the form it was encoded; thus
decompression can be done by the appropriate decompressor.

The model generation is done on a host machine. First the files and thedirec
structure of iPAQ are created. Then the files (programs) that contain ¢ A
code are selected, but some of them that have to be compressed by Adnfer

File System Jib Fl ash File System Jlib Fl ash
Cache Devi ce Cache Devi ce
Bl ock 1] Bl ock 1]

zlib ARM i b
Bl ock 2| Bl ock 2|

) zlib ) zlib

File File
Bl ock n Bl ock n
zlib ARM i b
(a)

Fig. 3. JFFS2: (a) original; (b) modified.
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technical issues (e.g. kernel files, ARMIib itself) are excluded from éhection.
The selected programs are split into blocks (as in the file system), and thes bloc
that do not contain ARM code are also dropped. The training set is dréata

the remained blocks. It is possible to classify the blocks by creating manyatistin
training sets and building a separate tree for each such set.

After the model generation has been finished, the models are added to the
directory structure and the binary image is made. During this all blocks are
compressed with both ARMIib and zlib, and the smaller variant is kept. The block
stores the identifier of the model it was compressed with, if necessaryr@ftere
more than one model). Model file blocks can only be compressed with zlib.

After the image is ready, it is uploaded into the iPAQ. The bootloader (which
knows only zlib) loads the kernel modules, including ARMIib. At initialization the
file system reserves some memory. The models, listed in a configuration dile, ar
loaded into this area and the rest of the reserved memory becomes thelidge cac
After this ARMIib is ready to work.

6. RESULTS

Measurements were done in two environments. In the test environment the
modeller, coder and decoder were programs like gzip, and all werermranhost
machine. The second environment was the JFFS2. Here the modeller @od¢he
ran on a host machine, but coder and decoder functions are used @PAD.

This environment was used to test the practical applicability of the method. The
uncompressed size of the image of the iPAQ was 25 MB.

In both cases the compression was block-based. We used 4-KB lorig bloc
Only those blocks were used for training that contained the ARM binarg.cod

6.1. Compressed size

As can be seenin Fig. 4, the larger the input, the better the compression.ratio is
The results were done in the test environment by training a tree for edabjest
and compressing its blocks with the tree trained on it. The test objects contained
1 to 12 blocks. (In real environment we did not make such measuremermat lau
smaller image with about 18 MB uncompressed size ARMIib produced abeut on
percent worse results.)

Different image sizes can be seen in Fig. 5. The size reductions relative to
image, compressed with zlib only, are between 12.6 and 19.3%. Trees witl bina
nodes only are better than trees with multi-value decisions (because multi-value
nodes can be substituted with binary nodes, but the contrary is not &usahall
image size enlargement is observed when one model was replaced by 7 smalle
models (these were trained on 7 randomly separated distinct parts of tiabrig
training set). The results showed that one tree is more effective in cosigmesze
(at least when the split of the data set is random) than the 7 smaller modelstpgeth
but the (de)compression speed is better for 7 models.
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Fig. 5. Compressed sizes.

The same figure shows the sizes of the models in the memory. Binary models
are smaller, and the 7 smaller models together require more memory.

6.2. Speed of the compression

The speed of the compression is worse than the gzip speed. Compreassion a
decompression in ARMlIib requires almost the same amount of time, but this makes
decompression very slow relative to zlib (in zlib, decompression is 10 times fas
than compression). Fortunately, Linux caches the file system. This meamotha
all accesses to the block provoke compression or decompressiofiy(usug the
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Fig. 6. Boot times.

first and the last accesses). This improves the average speed of Bystden and
makes ARMIib slowness almost undetectable to a regular user.

The boot time (from turn-on to the set-up of the system) is 2.3 to 3 times of the
original boot time (Fig. 6), but considering the saving in size (12.6 to 19188%)
seems to be a good deal.

7. CONCLUSION AND FUTURE WORK

Our goal was to create a code-compression method which compresses ARM
binary codes better than current algorithms do. We combined a method that
used decision trees as compression modé&lsapd an efficient tree-building
algorithm P]. In addition, the tree-building and pruning phases were combined
within the method. The method is aimed for the ARM instruction set, but it can be
applied for many instruction sets that satisfy some requirements.

The implementations of the functions of the method were collected in a library
ARMIib. ARMIib uses an arithmetic codef], ARMIlib was used in the JFFS2
file system §] on iPAQ machines. This modified file systefij {ised either zlib or
ARMIib compression on a block. The use of ARMIib reduced the image size by
12.6 to 19.3% depending on the parameters of tree building. The method can be
used in situations when the size is more important than speed.

Possible improvement can be the automatic sorting of the input. The imple-
mented method was tested with one tree built on the full image, and with 7 trees
built on 7 separated parts of the image. But these parts were randomhateepa
A good classification of the image blocks would improve not only the perfocean
but the compression ratio of ARMIib too.

The measurement functions can also be modified to estimate the speed of the
compression (perhaps by utilizing the fact that compression speed rpomal to
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the depth of the tree). The compression ratio and compression speee carida
by changing a parameter.
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Kahendkoodi pakkimine otsustuspuude abil
Tamas Gergely, Ferenc Havasi ja Tibor Gyimothy

Failide pakkimisel kasutatakse reeglina pakkimismeetodit, mis sdltumata
andmete tudbist (kahendandmed, tekst, kahendkood) pakib kdik andmad,
masti sama efektiivsusega. Andmete konkreetse tiibi spetsiaalne pakéija tih
daks andmeesitust failis paremini. Mitme sellise pakkija rakendamine erinevat
thlpi andmeid esitavas failis peaks andma parema pakkimistulemuse. Toodud
ideest lahtudes on seatud eesmargiks kahendkoodi efektiivse pakkihisine
koostamine. Enamik pakkimismeetodeist jaotub kaheks osaks: mudeliks ja kodee
rijaks. Artiklis on esitatud otsustuspuudel pdhinev modelleerimisviis. On katse-
tatud uut mudelit aritmeetilise kodeerijaga paaris failisisteemile JFFS2 ARM-
protsessoriga PDA-seadmete Linuxi distributsioonis. Alguparane fdisiis
kasutab failide pakkimiseks zlib-meetodit, uus sisteem erinevaid tihendamis-
meetodeid. Tulemused on paljulubavad: s6ltuvalt meetodi hadlestamisest saas
tetakse valismalu vahemalt 12,6% rohkem kui sama 13 MB suurust faili zlib-
meetodiga pakkides. Failide paigaldamise kiirus langeb seejuures ainukdtomi
korda.
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