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Abstract. This paper presents finite element based numerical stability analysis of thin-walled beam 
structures. Using the linearized virtual work principle with the assumption of large displacements, 
large rotations but small strains, a finite element equation is derived. Effects of cross-sectional 
shear deformations are also taken into account. To include large rotation effects, non-linear 
displacement field of the cross-section is used. A new two-node shear-flexible finite element with 
seven degrees of freedom per node is developed. Complete exact 14×14 elastic and geometric 
stiffness matrices are evaluated. An original computer program THINWALL-SHEAR is developed. 
Obtained results are compared with analytical and numerical results of other authors. 
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1. INTRODUCTION  
 
Tendency to optimize constructions and to reduce the production costs 

appeals for using thin-walled structures because they offer a high performance 
for a minimum weight. Complexity of their behaviour, especially from the point 
of view of the loss of stability, imposes numerical modelling because theoretical 
solutions are limited with cases of simple geometry.  

Linear analysis treats stability as an eigenvalue problem and determines the 
critical load in a direct manner without calculating the deformations. The critical 
buckling load corresponds to the lowest eigenvalue and the corresponding eigen-
vector represents the buckling mode. Such an analysis supposes an ideal structure 
and loading conditions, ignoring deformations before reaching the buckling load. 
Buckling load is considered to determine the load-carrying capacity.  

Stability analysis, concerning large spatial rotation, is very complicated 
because of the non-vectorial nature of large rotations. Using standard linear 
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displacement field, torsional moment is of semitangential and bending moments 
are of quasitangential character; thus they induce non-compatible moments 
during large spatial rotations. In this work, non-linear displacement field is used 
which include large rotation effects. The derived geometric stiffness matrix of the 
finite element of the thin-walled beam includes all internal moments of 
semitangential character.  

This work also assumes that the beam member is prismatic and straight, 
material is isotropic, cross-section is non-deformable in his own plane but it can 
warp, external loads are conservative and constitutive equations are linear.  

 
 

2. BASIC  CONSIDERATIONS  
 

2.1. Non-linear  displacement  field  
 
Cross-section displacements consist of seven components: three translational 

components ,,, sso vuw  three rotational components zyx ϕϕϕ ,,  and cross-sectional 
warping θ . In the right-handed Cartesian coordinate system (z, x, y), axis z 
coincides with the beam axis passing through the centroids O of the cross-
sections. Coordinate axes x and y are the principal axes of inertia of the cross-
section (Fig. 1).  

Total displacement field is 
 

{ },~~~T vvuuwwuk +++=U                                     (1) 
 

where w, u and v are linear displacement field components:  
 

,ωθϕϕ −−−= yxo xyww       ,)( zss yyuu ϕ−−=      ,)( zss xxvv ϕ−+=      (2) 
 

and uw ~,~  and ,~v are second-order components: 
 

[ ])()(
2
1~

syzsxz yyxxw −+−= ϕϕϕϕ , 

[ ]xyxu yzyxsz )(
2
1~ 222

ϕϕϕϕϕ +−+= ,                                 (3) 

[ ]yxyv xzyxsz )(
2
1~ 222

ϕϕϕϕϕ +−+= .      

 

Using non-linear displacement field, the corresponding Green–Lagrange 
strain tensor is 

ijijijij ee ~
++≅ ηε                                                (4) 

 

with components defined as [1]: 
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Fig. 1. Shear deformation in x-z plane. 

 
 

Cross-sectional stress resultants generally consist of the axial force =zF  
A

A zd∫ σ , shear forces AF
A zxx d∫= τ  and ,dAF

A zyy ∫= τ  torsional moment  
=zM ,d])()([ Ayyxx

A szxszy∫ −−− ττ  bending moments AyM
A zx d∫= σ  and 

=yM  Ax
A z d∫− σ  and bimoment AM

A z dωσ
ω ∫= . The torsional moment is the 

sum of St.Venant’s or uniform torsional moment SVT  and warping (or nonuniform) 
torsional moment T

ω
. Due to restricted cross-sectional warping, an additional 

component, known as Wagner coefficient [2], appears. It can be expressed as 
 

[ ] AyyxxK
A ssz d)()( 22
∫ −+−= σ    or   

ωω
αααα MMMFK yyxxzz +++= .   (6) 

 

Detailed expressions of the coefficients yxz ααα ,,  and 
ω

α can be found in [3]. 
When shear deformations due to ,x yF F andT

ω
are taken into account, we have 
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In the plane x-z, according to Fig. 1, we have 
 

,
d

d

,
d

d
,

d

d

d

d









−===

==−=−

y
s

x
xxzxzxx

y
yyxzy

s
y

s

z

u

k

GA
AGAF

z
EIM

z

u

z

u

ϕγτ

ϕ
γϕβ

                (8) 

 

and analogously for bending in z-y plane follows: 
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and for torsion: 
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In relations above, zyxz γγ ,  and 
ω

γ  are average values of shear deformations, 

xzτ  and zyτ  are average values of shear stresses, yx AA ,  and 
ω

J  are shear areas 
with respect to x, y and ω, and yx kk ,  and 

ω
k  are flexible shear coefficients.  

Flexible shear coefficients can be evaluated as 
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where xC , yC and C
ω

are first moments of the cross-section with respect to x, y 
and ω, defined as 
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2.2. The  principle  of  virtual  work 

 
From the equilibrium between internal and external forces follows [4,5]:  
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Equation (14) is known as linearized principle of virtual work and it can be 
rewritten as [6]: 

 

,0UU =Π=−+ δδδδ WGE                                (14) 
 

where EUδ  is the elastic potential energy of internal forces, GUδ  is the 
geometric potential of initial forces, Wδ  is the virtual work of external forces 
and Π  is total potential energy: 
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Introducing (1)–(6) into equations for UEδ and UGδ gives 
 

∫ 



+++=

1

0 d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d
U

zz
EI

zz
EI

zz
EI

z

w

z

w
EA yy

y
xx

x
oo

E

θ
δ

θϕ
δ

ϕϕ
δ

ϕ
δδ

ω
           

                                   
22

d

d

d

d

d

d

d

d








++








−++ y

s

x
x

s

y

zz

z

u

k

GA

z

v

k

GA

zz
GJ ϕϕ

ϕ
δ

ϕ
 

,d
d

d
2

z
zk

GJ z
















++ θ

ϕ

ω

                                              (15)  

 

=GUδ  













−








+








+















+












∫ zz

v
x

zz

u
y

z

u

z

v

z

w
F zs

s
zs

s
s

l
so

z d

d

d

d
2

d

d

d

d
2

d

d

d

d

d

d

2

1
2

0

22

0 ϕϕ
δδδδ

δ
 




















−










+








−








++ y

x
sy

y
sy

o
z

s
zxx z

y
z

x
z

w

z

v
F ϕ

ϕ
δϕ

ϕ
δϕδϕδϕϕδ

d

d
2

d

d
2

d

d
2

d

d
2)(0  




















−










−








+








−+ x

x
sx

y
sx

o
z

s
zyy z

y
z

x
z

w

z

u
F ϕ

ϕ
δϕ

ϕ
δϕδϕδϕϕδ

d

d
2

d

d
2

d

d
2

d

d
2)(0  




















+








−








+










+

zz

w

zz

u

zz
M xozs

y
z

z
y

x d

d

d

d
2

d

d

d

d
2

d

d

d

d0 ϕ
δ

ϕ
δϕ

ϕ
δϕ

ϕ
δ  






















+








−








−








−+

zz

w

zz

v

zz
M yozs

x
z

z
x

y d

d

d

d
2

d

d

d

d
2

d

d

d

d0 ϕ
δ

ϕ
δϕ

ϕ
δϕ

ϕ
δ  

.d
d

d

d

d

d

d

d

d

d

d 0
2

00 z
zz

w
M

z
K

zz
M oz

x
y

y
x

z






















+








+






















−








+

θ
δ

ϕ
δϕ

ϕ
δϕ

ϕ
δ

ω
    (16) 

 
 

3. FINITE  ELEMENT  OF  THE  THIN-WALLED  BEAM  
 
In Fig. 2 the finite element of the thin-walled beam with 14 degrees of 

freedom is shown [7,8]. The nodal displacement vector eu and force vector ef of 
an arbitrary eth element are: 

 

}{)(,}{)( iyixiziyixizi
Te

iyixizisisioi
Te MMMMFFFvuw

ω
θϕϕϕ == fu .   (17) 

 

For the finite element the equilibrium equation holds 
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e
E fukk =+                                             (18) 
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Fig. 2. Finite element of the thin-walled beam.  
 
 
where e

Ek  and e
Gk  are elastic and geometric parts of the stiffness matrix in local 

coordinate system, which are obtained by solving integrals for UEδ  and UGδ  
[9]. Interpolation functions for displacement components w are linear and for u, v 
and φ cubic interpolation is used. For the whole construction, equilibrium 
equation (assuming proportionality of loading) is 

 

,)ˆ( FUKK =+ GE λ                                        (19) 
 

where KE is the elastic stiffness matrix of the construction, KG is geometric 
stiffness matrix of the construction, U and F are vectors of incremental nodal 
displacements and nodal forces and λ  is load parameter. Assuming that the 
external load does not change during the losing of stability )0( =F , Eq. (19) 
becomes 

 

.0)ˆ( =+ UKK GE λ                                        (20) 
 

Solving Eq. (20) for eigenvalues is called linear stability analysis [1] and 
eigenvalues nλλ ,,1 K  represent critical buckling loads. Only the first value 1λ   
is of practical interest [10]. 
 
 

4. EXAMPLE 
 
Computer program THINWALL-SHEAR, developed on the basis of the 

presented theory, is tested on a two examples. 
 

4.1. Torsional-flexural  buckling  of  a  cantilever 
 
A cantilever of unsymmetrical cross-section, loaded with axial force at the 

centroid, is shown in Fig. 3.  
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Fig. 3. Axially compressed cantilever of unsymmetrical cross-section (example 4.1). 
 
 

Table 1. Values of Fcr(N) for the cantilever (example 4.1) 
 

Number of elements This paper Kim et. al. [3] ABAQUS [11] 

1 13.9958 
2 13.8986 
4 13.8930 

13.9017 14.0230 

 
 
Material and geometrical parameters are the following: l = 200 cm, E = 

30000 Ncm–2, G = 11500 Ncm–2; shear centre coordinates: xs =1.58943 cm,  
ys = –2.57228 cm; moments of inertia: Ix = 114.812 cm4, Iy = 7.6048 cm4; 
warping moment of inertia Iω = 70.9687 cm6; torsional moment of inertia J = 
0.666667 cm4; shear factors: kx =5.2339, ky =1.794438, kω = 0.01699; Wagner 
coefficients: αx =5.66166 cm, αy =11.0599cm, αz =24.445 cm2, αω = –0.558603. 
Values for critical buckling load Fcr, evaluated by program THINWALL-SHEAR 
are compared with the finite element results from [3], and with the results 
obtained with ABAQUS [11] (where an idealized cantilever with 1600 shell finite 
elements was used. Table 1 shows very good accuracy of the results obtained 
with ABAQUS. 

 
4.2. Flexural  buckling  of  a  simply  supported  beam 

 
The simply supported beam in Fig. 4 has doubly symmetric cross-section. The 

beam is axially loaded with compression force F . Due to double symmetry of the 
cross-section, the only possible buckling mode is flexural.  

The relevant material and geometrical properties of the beam are: l = 100 cm, 
E = 2.1 × 107 Ncm–2, G = 80.77 × 105 Ncm–2; moments of inertia: Ix = Iy = 
50 cm4; cross-section area A = 5 cm2. In Table 2, results obtained with program 
THINWALL-SHEAR are compared with numerical results and Timoshenko’s 
analytical results, given in [3] for different values of the shear coefficient k =  
kx = ky. Table 2 shows very good coincidence of the results.  
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Fig. 4. Axially compressed simply supported beam of doubly symmetrical cross-section  
(example 4.2). 
 
 

Table 2. Values of Fcr (×10–6N) for flexural buckling of the beam under axial load  
 

THINWALL-SHEAR 

Number of elements 
cr

F
GA

k
 

2 4 

Analytical 
(Timoshenko) 

Kim et al. [3] 

0    1.04410 1.03684 1.03630 1.03641 
0.5 0.71541 0.69059 0.69087 0.69440 
1    0.53516 0.51548 0.51815 0.52112 
5    0.17193 0.16879 0.17272 0.17326 

10    0.09254 0.09156 0.09421 0.09439 
100    0.00992 0.00999 0.01026 0.01026 

10 000    0.00010 0.00010 0.00010 0.00010 
 
 

5. CONCLUSIONS  
 
Numerical models are efficient alternatives for analytical modelling, which is 

applicable only in the case of very simple geometry of the structure. Presented 
numerical algorithm, based on the finite element method, includes large displace-
ments and large rotations and also cross-sectional deformation effects. 
Coincidence of the results, obtained with the program THINWALL-SHEAR for 
two typical examples, with the results of other authors available from literature, 
encourages application of numerical models to problems of more complex 
constructions. 
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Õhukeseseinaliste  talade  nihkedeformeerumise   
lineaarne  stabiilsusanalüüs 

 
Domagoj Lanc, Goran Turkalj ja Josip Brnić 

 
Töös käsitletakse analüütiliselt ja lõplike elementide meetodil õhukeseseina-

liste talade stabiilsust nihkedeformeerumisel. Viimase arvutamiseks on välja 
töötatud programm. 


