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Abstract: This paper describes the influence of lathe vibrations on the accuracy and roughness of 
machined parts. The calculation schemes involve systems with one and two degrees of freedom, 
representing vibrations of the blank as a rigid body, hinged in the spindle and elastically supported 
in the tailstock of the lathe. Experimental measurements were performed on lathes of type 1K62 at 
different cutting speeds, feeds and depths of cut. The analysis of roughness measurement data 
confirmed the accuracy of the proposed calculation model. Surface roughness parameters of the 
blank satisfactorily agreed with the corresponding data of the theoretical investigation. To study the 
influence of gyroscopic forces on the surface roughness, the calculation model with two degrees of 
freedom was used. The results of experimental and theoretical investigations coincided 
satisfactorily.  
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1. INTRODUCTION

Dynamic phenomena of vibrations are caused by external factors on the 
strained system of the lathe. In the turning operations, tool vibrations influence 
both product quality and productivity and may also have a negative influence on 
the working environment [1]. During machining of a material, all disturbances 
finally lead to relative displacements of the cutter and the blank. It allows us to 
link the parameters of surface roughness to the relative vibrodisplacements of the 
cutter and the blank [2]. In the calculation of dynamic characteristics, the real 
elastic system of the lathe was replaced by a system with finite degrees of 
freedom. In the case of insufficient accuracy of the underlying data, complicated 
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calculation schemes can lead to significant errors in the calculation [3]. Therefore 
we used simplified schemes, composed on the basis of experimental investi-
gations. 

A system with one degree of freedom, representing the vibration of the blank 
as a rigid body hinged in the spindle and elastically supported in the tailstock of 
the lathe, was used as a basis of the calculation scheme. The exact solution of a 
continuous system, which has an infinite number of degrees of freedom, showed 
that the first natural frequency of the continuous model is represented by the 
natural frequency of the accepted model. That permits to use this calculation 
model for the analysis of vibrations in metal cutting. 

Experimental measurements were performed on the lathes of type 1K62 at 
different cutting speeds, feeds and depths of cut. The experimental results 
satisfactorily coincide with the corresponding theoretical results in an adequate 
frequency range. As the frequency increased, discrepancies between theoretical 
and experimental results widened gradually. As a result, limitations in the use of 
the proposed mathematical model of the blank on lathe vibration were con-
sidered. After every cutting, surface roughness was measured with a profilograph 
“Surftronic 3+”. The analysis of data on roughness measurement confirmed the 
accuracy of the calculation model. Surface roughness parameters of the blank 
satisfactorily agreed with the corresponding data of the theoretical investigation. 
Several studies have been concentrated on cutting tool vibrations during 
machining [4] and investigation of forces and contact area for modelling the 
turning process [5]. Finite element analysis (FEA) is maturing into a promising 
analysis tool to enhance understanding of machining and for prediction of the 
machining process output; however, the accuracy of FEA depends on how 
adequate the selected physical model is [6].  

Modern monitoring and diagnostics methods of technological processes are 
described in [7]. We used a calculation model with two degrees of freedom to 
study the influence of gyroscopic forces on the surface roughness. Such an 
approach to this problem has not been used earlier. The results of experimental 
and theoretical investigations compared favourably. The results enable us to 
increase the accuracy of different conditions of cutting. In the future, calculation 
models with four degrees of freedom will be used. Also, the stability of the blank 
in the action of the moving cutting force is to be investigated. Finally, it is 
necessary to derive theoretical formulas, which could help to determine the 
roughness accurately. The latter would provide a possibility to control and adjust 
surface roughness by processing.  

 
 

2. THEORETICAL  ANALYSIS 
 

To develop a dynamic calculation model, first, we formulated the research 
problem. In order to simplify the dynamic model, we eliminated the factors, 
which have a minor effect on the results of the solution. Actually, these models 
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have a limited area of application [8]. In this article, dynamic models with one 
and two degrees of freedom were investigated.  

 
2.1. Dynamic  model  with  one  degree  of  freedom  

 
By the idling of the lathe (Fig. 1, a), the differential equation of forced vibra-

tions is as follows 
 

tpMlkJ yy sin2
..

0 =+ ϕϕ ,                                     (1) 
 

where 0J  is the  moment of inertia of the blank about the headstock (spindle), ϕ 
is the declination angle of the blank, yk  is the horizontal spring constant of 
elastic support of the blank, l is the length of the blank, mlypmM by ,2/2

=  is 
mass of the blank, ,2 fp π= f  is the frequency of the foundation vibrations in 
Hz and by  is the amplitude of the foundation vibrations. 

We are restricted to steady-state forced vibrations  
 

tp
pJ

M y sin
)( 22

0 −

=

ω
ϕ ,                                        (2) 

 

where 0
2 / Jlky=ω  is the natural frequency of the lathe system. 

From the above, the relative velocity of the forced vibrations of the blank is 
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Fig. 1. Dynamic models with one (a) and two (b) degrees of freedom. 
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Fig. 2. Calculation schema in cutting. 
 

 
The accuracy of the accepted calculation model is verified by comparing 

theoretical and experimental results. In machining of the part on the lathe, the 
cutting force F (Fig. 2) is not constant. It is determined by many factors as the 
change in the thickness of the cut-off chips, the change in the mechanical 
properties of the blank material and the tool wear. The input of the lathe system 
is the cutting force F as a function of time and the output is the displacement of 
the cutter or the blank (Fig. 2). 

The differential equation of forced vibrations caused by the cutting force F is  
 

1
2

..
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where the cutting force F is reproduced as a sum of the following items: the 
constant component rF  determined in practice by a simplified empirical formula 
[2] and the variable component tFa

∗

ωcos  (l1 is the coordinate of the cutting 
force). The amplitude of the variable component of the cutting force is related to 
the roughness and varies in a rather wide range. 

The solution of Eq. (4) can be expressed in the form of the displacement of 
the blank end in relation to initial conditions 0y  and 0v  
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whereas the velocity of motion v is 
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With regard to resistance forces, the solution was obtained in the similar way. 
However, it is not presented here because it is massive. 
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2.2. Dynamic  model  with  two  degrees  of  freedom  
 
Such a model (Figs. 1, b and 3) enables us to take into account the effect of 

the gyroscopic forces, resulting from the rotation of the blank. 
The differential equations of forced vibrations, caused by the cutting force F, 

according to the theorem about the kinetic moment are presented in the following 
form 
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where bω  is the angular velocity of the rotation of the blank, 2/2 lzpmM bz = , 

by  and bz  are an amplitudes of the foundation vibrations, zk  and yk  are spring 
constants, A is the moment of inertia of the blank relative to the axis of rotation. 
The general solution of Eq. (8) represents free vibrations 
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where 121 ,, αaa and 2α  are constants of integration to be determined from the 
initial conditions, 1µ and 2µ  are ratios of the amplitudes of the two principal 
modes of vibrations, 1p  and 2p are the natural frequencies of vibrations with  
gyroscopic forces 
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where  
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Our analysis shows that with an increase in the value of ,bω  the difference 
between the higher and the lower frequencies, 1p  and 2p , is increased (Fig. 4). 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3. Gyroscope system with two degrees of freedom in cutting. 
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Fig. 4. Principal modes of vibration with gyroscopic forces, corresponding to two different natural 
frequencies; a – amplitude of the principal mode of vibration. 

 
 
It was found that for the first mode with the higher frequency 1p , the ratio 1µ  

was positive, i.e., the vibrations 1y  and 1z  were in phase or in the so-called direct 
precession. For the lower frequency 2p , the vibrations 2y  and 2z  were in the 
opposite phase or in the so-called reverse precession. 

In the first mode of vibration, a point of the blank axis moves on the circle in 
the direction of its own rotation, and in the second mode it moves in the opposite 
direction to the rotation (Fig. 4).  

A particular solution of Eqs. (8), depending on the disturbing force, represents 
the forced vibrations of the system, which is expressed as follows: 
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Adding the general (Eq. (9)) and the partial (Eq. (11)) solution, a  

general solution of differential equations (8) for displacements y and z of the 
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blank end was obtained, which allows an easy determination of the velocities  

yv  and zv . 
Usually, in the study of steady-state vibrations the values of the components, 

which determine free damping vibrations, are reduced. However, it is impossible 
to achieve it in this case, because the operating conditions of the cutting are 
changed due to surface roughness. 

 
 

3. EXPERIMENTAL  ANALYSIS 
 

3.1. Experimental  test  of  the  spring  constant  of  the  lathe 
 

The accuracy of the accepted models was tested on the lathe 1K62. 
During the theoretical analysis, calculation accuracy depends on both the 

degree of fitness of the accepted models of the real system and on how accurately 
mechanical characteristics of the lathe are determined. One of these 
characteristics is the spring constant of the lathe. The latter is determined by  
the static loading of its elements, connected with the workpiece and the cutter. 
The direction and points of application of the force are selected according to 
typical situations of the details on the specific lathe. To decrease the influence  
of the resistance force on the test results, static rigidity was measured with  
weak vibrations of the lathe, excited by running the electric motor and  
other mechanisms without a load. Two load positions were involved in the test 
(Fig. 5). 

The system was loaded gradually with a step of 100 N by means of the 
dynamometer, but the displacements with an accuracy of 0.002 µm were 
registered by the indicators at three points: on the tailstock (indicator 1), on the 
spindle (indicator 2) and on the blank (indicator 3). Figure 6 shows the results of 
the statistical analysis of the experiment data in the form of correlation functions, 
where the coefficient of direct regression is the unknown rigidity. 

The coefficient of correlation was obtained close to a unit that indicates a 
linear correlation function between the load and the displacement. 

 
 
 
 
 
 
 
 
 
 

Fig. 5. Schema of vertical and horizontal rigidity measurements of the lathe. 
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     (a)          (b) 
 

Fig. 6. Correlation function between the load and static displacement for horizontal (a) and vertical 
(b) loads. 

 
 
3.2. Experimental  analysis  of  the  vibration  on  idling  of  the  lathe 

 
On the basis of static experiments, it was concluded that the blank can be 

considered an ideal solid body hinged in the headstock and elastically hinged in 
the backstock. Therefore, the system with one degree of freedom for vibration 
analysis in the horizontal plane (Fig. 1, a) and that with two degrees of freedom 
(Fig. 1, b) are admissible. 

The vibration analyser SigLab 20.22A was used for measurements with special 
software in MATLAB, designed for multichannel investigations of vibroacoustic 
signals in the frequency band from 2 Hz to 50 kHz. Piezoelectric accelerometers 
KISTLER 870B10 and KISTLER 8702B50 with a sensitivity of 50 µv/g were used 
as transducers. In addition, a vibrometer, collector data PICOLOG CMVL 10, was 
used for measurements in the frequency band of 30 Hz to 10 kHz. The piezo-
electric accelerometers were installed on the blank and to the lathe base. 

 
3.2.1. Experimental test without rotation of the blank 
 

Figure 7 shows the results of vibration measurements in the horizontal and 
vertical planes; theoretical reference results of vibration velocity according to 
Eq. (3) are also given. 

The experimental results satisfactorily coincide with the theoretical ones in 
certain frequency ranges. However, an increase in the frequency leads to a 
gradual increase in discrepancies between the theoretical and experimental 
results.  

That is explained by a certain inadequacy of the accepted dynamic model with 
one degree of freedom. On the other hand, there were too few accelerometers 
installed onto the blank. The  transducer did not record the vibrations, if it was 
located in a node of normal modes (for example, at horizontal vibrations of 
frequencies 188.75 and 405.00 Hz (Fig. 7, a) and  vertical vibrations with frequencies  
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Fig. 7. Experimental and theoretical results about horizontal (a) and vertical (b) vibrations of the 
blank without rotation. 
 
 
123.75 and 306.00 Hz, were the largest differences between experimental and 
theoretical results, occurred). 
 

 
3.2.2. Experimental test in the case of the blank rotation 
 

A similar experiment was conducted in the case of the rotating blank. Tests 
were carried out at different frequencies of the rotation of the spindle. In contrast 
to the previous test, one of the piezoindicators was installed on the tailstock. That 
slightly distorted the measurement results, but the overall picture remained 
unaltered. It was confirmed by measurements with the vibrometer PICOLOG, 
which was in contact with the surface of the rotating blank. Test results in 
horizontal and vertical planes and the corresponding theoretical results of the 
vibration velocity according to Eqs. (3) and (9–12) with gyroscopic forces are 
shown in Fig. 8. The frequency of the rotation of the spindle was 1600 rpm. As 
can be seen in Fig. 8, the theoretical results, obtained taking into account 
gyroscopic forces, are in agreement with the experimental results. 
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Fig. 8. Experimental and theoretical results about horizontal (a) and vertical (b) vibrations in the 
case of the blank rotation with gyroscopic forces.    
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Fig. 9. Comparative analysis of experimental and theoretical results about horizontal (a) and 
vertical (b) vibrations by cutting.   

 
 

3.3. Measuring  of  vibrations  by  cutting 
 

Experimental measurements were performed at different cutting speeds, feeds 
and depths of the cut. Test results and results of the calculation using Eqs. (6)–(7) 
and (11)–(13), taking into account gyroscopic forces, are presented in Fig. 9. After 
every cutting, surface roughness was measured with the profilograph Surftronic 3+. 
The amplitude aF  of the variable component of the cutting force in Eq. (4) was 
taken according to the experimentally measured roughness. The analysis of the 
roughness measurement data confirmed the accuracy of the calculation model. 
Surface roughness parameters of the blank quite satisfactorily agree with the data 
of the theoretical investigation. Like in the previous case, the results of calculation 
with gyroscopic forces according to Eqs. (11)–(13) are in better agreement with the 
experimental results. 
 
 

4. CONCLUSIONS 
 

The analysis of the roughness measurement data confirms the accuracy of the 
dynamic calculation model. Surface roughness parameters of the blank quite 
satisfactorily agree with the corresponding data of the theoretical investigation. 
The calculation model with two degrees of freedom was used to analyse the 
influence of gyroscopic forces on surface roughness. The results of experimental 
and theoretical investigations show that this model is adequate. 
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Artiklis kirjeldatakse treipingis tekkivate vibratsioonide mõju töötlustäpsusele 

ja töödeldud detailide pinnakaredusele. Esitatakse ühe ja kahe vabadusastmega 
arvutusskeemid, kus töödeldava tooriku vibratsioone on kirjeldatud spindlisse 
šarniirselt kinnitatud ja tagapukist elastselt toetatud jäiga keha võnkumistena. 
Eksperimentaalsete tulemuste saamiseks viidi mõõtmised läbi universaaltrei-
pinkides erinevatel lõikekiirustel, ettenihetel ja lõikesügavustel. Profilograafiga 
registreeritud mõõtmistulemuste analüüs kinnitab töös esitatud arvutusmudeli 
täpsust ning toorikul mõõdetud pinnakareduse parameetrid langesid rahuldavalt 
kokku teoreetiliste tulemustega. Güroskoopiliste jõudude mõju uurimiseks 
pinnakaredusele kasutati kahe vabadusastmega arvutusmudelit. Eksperimentaal-
sete ja arvutuslike tulemuste võrdlus kinnitab mudeli adekvaatsust. 

 


