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Abstract. This paper presents a brief overview and a comparison of global optimization methods 
and their software. By solving a set of recognized test problems, the reliability of obtaining the 
global extremums is compared. It is shown that the Edaopt algorithm, developed formerly by the 
authors, is more efficient than modern genetic algorithms. In most cases the Edaopt algorithm takes 
also noticeably less computation time. 
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1. INTRODUCTION

The development of competitive engineering systems is unimaginable without 
their optimization. In the development stages of various machines, constructions 
and complex mechatronic systems, computer modelling with the aim of detailed 
investigation and improvement of their properties is becoming more and more 
widespread. In the field of mechanical engineering, the so-called virtual proto-
typing tools, that is software [1,2] that allows to create automatically mathematical 
models of mechanical systems to estimate their dynamic and strength properties 
and carry out their parametrical optimization, are widely used. By that, one is 
frequently faced with the global optimization task. 

From the mathematical point of view, if the optimization criterion does not 
satisfy the Lipschitz conditions and the search region is not limited, then 
factually it is incorrectly formulated in the sense that the global optimum cannot 
be located with a given accuracy after a limited number of calculations of the 
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criterion function. In the case of the general “black box” model, the global 
optimization is carried out without a priori knowledge about the surface of the 
criterion function, which is defined by the criterion and the constraints. The 
domain of attraction is defined as a region of this surface where a local minimum 
exists and the constraints are satisfied. The method of global optimization must 
have a mechanism that allows to leave local minimums, while local optimization 
methods have not such a mechanism and therefore attraction regions “catch” the 
local search methods. For this reason, global search algorithms employ heuristic 
methods to search for new attraction regions. 

The minimums of limited regions are often located using gradient descent, 
Newton, quasi-Newton and other methods. It must be noted that in many practical 
tasks finding of the global optimum is incommensurably costly and sub-optimal 
solutions must suffice. Therefore various possibilities of obtaining the global 
optimum are sought for. One of the approaches is building and optimization of the 
so-called metamodels. 
 

 
2. THE  RESPONSE  SURFACE  METHOD   

OF  SYSTEM  OPTIMIZATION 
 
Optimal design is based on a mathematical model of the object. The level of 

complexity of practical systems is frequently very high and their models are 
complicated non-linear high-order systems of equations (differential, integral, 
algebraic and others), the parameters of which are not precisely known. Their 
parametric and structural identification and solution demands very large computing 
resources. In such cases, to carry out optimization, the response surface method 
(RSM) [3–5] or the neural network approach [6] is usually used. The development of 
metamodels (surrogate models) on the basis of a small number of very time-
consuming calculations, mathematical or natural experiments, is often applied to 
find the global optimum. 

In the construction of metamodels, polynomial functions, stochastic kriging 
models [7], radial basis functions [8] or adaptive regression splines [9] are most 
often employed. Polynomial functions stand out with the simplicity of their 
construction and calculation speed that is very important for carrying out global 
optimization. Using RSM, the acceptable number of criterion and constraint 
calculations may be significant and reach hundreds of thousands and even millions 
of tries, since its calculation requires a significantly smaller amount of time than 
the criterion calculation of the initial model. 
 

 
3. A  SHORT  REVIEW  OF  THE  GLOBAL   

OPTIMIZATION  METHODS 
 
In the solution of engineering problems, one is frequently faced with mixed 

non-linear programming problems with constraints, where optimization para-
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meters are both discrete and continuous variables. In many cases, it is possible to 
interpret discrete variables as the continuous ones. The constraints are most often 
taken into account by the transformation of the original problem into a problem 
without constraints, using penalty functions, barrier methods and Lagrange 
multipliers. Here we will discuss in greater detail the methods used especially in 
the case of continuous variables. The global search methods [10] can be divided 
into deterministic and stochastic ones. Deterministic methods employ such a 
heuristic as modification of search trajectories in the trace-based methods, as well 
as introduction of penalties to avoid regions where no optimal solutions exist. 
Covering methods [11] isolate a region that does not contain a global optimum 
and discard it, not searching there any further. Thus the search region is reduced. 
Obtaining the solution requires a very thorough search of the space, that is, these 
methods are very time-consuming if the size of the problem is large. Branch-and-
bound and interval methods recursively divide the search region into smaller sub-
regions and exclude the regions that do not contain the optimal solution. They are 
covering methods that estimate the criterion function’s lower boundaries in the 
search sub-regions, allowing to estimate the quality of the local minimum. 
Combining this with numerically verifiable optimality conditions, they allow to 
confirm the global optimality of the best obtained solution. However, in order to 
guarantee the quality of the solution, the problem must satisfy the Lipschitz 
conditions. In the worst case, they demand exponentially increasing computa-
tional resources and therefore are very time-consuming. In general, this branch-
and-bound principle may be successfully employed in other heuristical methods. 
However, if the search region is large, these methods are not efficient. 

Generalized descent methods [12] continue the search trajectory after a local 
minimum is found. In the first approach, the trajectory methods modify the 
differential equation that describes the local descent trajectory in such a way that 
the local minimum can be left. Their weakness is a large number of calculations 
that must be carried out in regions that are not promising. In the second approach, 
the criterion function is modified by imposing a penalty so that the algorithm 
would not return to an already found local minimum. The weakness consists in 
the fact that the more local minimums are found, the more difficult it becomes to 
minimize the modified criterion function. 

Thus deterministic methods may be divided into point-based methods that 
calculate the function at discrete points (for example, the generalized descent 
methods) and region-based methods that calculate the function constraints in 
compact sets (for example, the covering methods). The point-based methods are 
unreliable but require less calculation. 

The stochastic global optimization methods rely on probabilities by making 
decisions in searching for extremums. Random search methods include pure 
random search with single or multiple starts, random search along a line, adaptive 
random search, partitioning into subsets, substitution of the worst point, evolu-
tionary algorithms and simulated annealing [10]. The simplest way of getting out 
of a local minimum is to restart. The cluster or grouping methods [13] employ 
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cluster analysis to avoid the already found local minimums. There are two 
strategies for grouping points around local minimums: 1) retaining only points 
with relatively small function values, and 2) transferring every point to the local 
minimum, making only few local search steps. They work badly if the surface of 
the function is very rough or if the search is captured in a deep ravine surface of 
local optimums. Methods that are based on stochastic models employ random 
variables to simulate the unknown values of the criterion function. The Bayesian 
method [14] is based on a random function and minimizes the expected deviations 
from the global minimum estimation. Its efficiency is not high. 

Simulated annealing [15] uses an analogy with physical phenomena that occur 
by heating and then slowly cooling metallic objects; a more homogenous 
crystalline state is obtained, in which the free energy of the base substance has a 
global minimum. The role of temperature is important, since it allows the system 
to reach its lowest energy state with a probability according to Boltzmann’s 
exponential law. In such a way it is possible to step over the energy sub-barriers, 
which otherwise would have forced the system to remain at the local minimum. 
Similarly to physical annealing, convergence in simulated annealing may be 
slow. Therefore many improvements are used to speed up the process. 

Genetic algorithms (GA) [16–18] use an analogy to biological evolution, allowing 
mutations and crossovers between good local optimum candidates in the hope that 
ever better optimums will be found. In each search stage a configuration of all 
populations is maintained. Mutations are carried out locally, while crossover 
operators ensure the possibility to leave the region of the local minimum. The 
crossover laws have a large probability of creating an offspring of similar or better 
fitness. The efficiency of GAs depends on correct conditions of selection and 
crossovers. Interchanging of the coordinates is sufficiently good if the coordinates 
have a nearly independent influence on the fitness, but if the influence is strongly 
correlated (as it is with functions with deep narrow ravine surfaces that are not 
parallel to coordinate axes) then GAs have great difficulties. A successful con-
figuration of a GA demands a thorough investigation of the actual problem. 

Taboo search [19] introduces a taboo list that contains information on the 
search history. In each iteration a local improvement is made. However, thanks to 
the taboo list, movement towards already located solutions is forbidden, that is, a 
taboo has been placed. The taboo list protects from returning to the local 
optimum which the search has recently left. Taboo search gives good results in 
the solution of large discrete optimization problems. 

Stochastic methods are classified as unreliable. However, these methods are 
often the only ones that allow the solution of large-scale problems with an 
acceptable computer time. Currently, in engineering practice namely the stochastic 
methods are most frequently applied. Therefore the Edaopt optimization algorithm 
[1,20,21] is compared only with these methods. 
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4. TEST  FUNCTIONS 
 
We try to preserve the names of the test functions as they are indicated in 

initially sources [16,20]. 
 

1. Goldstein Price function 
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has 4 local minimums and the global minimum 3)1,0(1 =−f  in the domain 
,22 ≤≤− ix  .2,1=i  

 

2. Griewank2 function 
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has approximately 500 local minimums and the global minimum 0)0,0(2 =f  in 
the domain ,100100 ≤≤− ix  .2,1=i  

 

3. Griewank10 function 
 

1cos
4000

)(
10

1

10

1

2

3 +−= ∏∑
== i

i

i

i

i

xx
xf                                     (3) 

 

has approximately several thousand local minimums and the global minimum 
0)0,0,0,0,0,0,0,0,0,0(3 =f  in the domain ,600600 ≤≤− ix  .10,,1K=i  

 

4. Hartman3 function 
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with coefficients 
 

i αij ci pij 

1 (3.0, 10.0, 30.0) 1.0 (0.36890, 0.11700, 0.26730) 
2 (0.1, 10.0, 35.0) 1.2 (0.46990, 0.43870, 0.74700) 
3 (3.0, 10.0, 35.0) 3.0 (0.10910, 0.87320, 0.55470) 
4 (0.1, 10.0, 35.0) 3.2 (0.03815, 0.57430, 0.88280) 

 

is analysed in the domain ,10 ≤≤ ix  .3,,1K=i  The global minimum is 
3.86278.– )0.852547 0.555649, 0.114614,(4 =f  
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5. Hartman6 function 
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with coefficients 
 

i αij ci pij 

1 (10, 3, 17, 3.5, 1.7, 8)     1.0 (0.1312, 0.1696, 0.5569, 0.0124, 0.8283, 0.5886) 
2 (0.05, 10, 17, 0.1, 8, 14) 1.2 (0.2329, 0.4135, 0.8307, 0.3736, 0.1004, 0.9991) 
3 (3, 3.5, 1.7, 10, 17, 8)     3.0 (0.2348, 0.1451, 0.3522, 0.2883, 0.3047, 0.6650) 
4 (17, 8, 0.05, 10, 0.1, 14) 3.2 (0.4047, 0.8828, 0.8732, 0.5743, 0.1091, 0.0381) 

 

has an unknown number of local minimums in the domain ,10 ≤≤ ix  .6,,1K=i  
The global minimum is 0.311652, 0.275332, 0.476874, 0.150011, 0.201690,(5f  

3.32237.– )0.657300 =  
 

6. Branin function 
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has 3 global minimums =.27500)123.14159,–(6f =.27500)23.14159,(6f  
397887.0.47500)2.42478,9(6 =f  in the domain ;105 1 ≤≤− x  .150 2 ≤≤ x  

 

7. Camel Back function 
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has 4 local minimums and 2 global minimums =− .712656)0.0898400,0(7f  
0316285.1.712656)00.0898400,(7 −=−f  in the domain ,55 ≤≤− ix  .2,1=i  

 

8. F8 function 
 

125.0)4.05sin()75.0(2)( 2
8 −−+−= ππxxxf                      (8) 

 

has global minimum 12323.1.712656)00.0898400,(8 −=−f  in the domain 
.10 ≤≤ x  

 

9. F9 function 
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has global minimum 03125.12.712656)00.0898400,(9 −=−f  in the domain 
.1010 ≤≤− x  
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10. Hosc45 function 
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has global minimum 1)10,9,8,7,6,5,4,3,2,1(10 =f  in the domain ,0 ixi ≤≤  
.10,,1K=i  

 

11. Pshubert1 function 
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has global minimum 73091.186.8003)0.4251,1(11 −=−−f  in the domain 
,1010 ≤≤− ix  .2,1=i  By changing in (11) the coefficient from 0.5 to 1.0, this 

function is named Pshubert2 function. 
 

12. Quartic function 
 

21024
)(

2
21

2
1

4
1

12
xxxx

xf ++−=                                     (12) 

 

has global minimum 35239.00).04668,1(12 −=−f  in the domain ,1010 ≤≤− ix  
.2,1=i  

 

13. Leonard Rastrigin [22] function 
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has about 50 local minimums and the global minimum 20),0(13 −=f  in the 
domain ,11 ≤≤− ix  .2,1=i  

 

14. Shekel5 function 
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with coefficients 
 

i αi ci 

1 (4.0, 4.0, 4.0, 4.0) 0.1 
2 (1.0, 1.0, 1.0, 1.0) 0.2 
3 (8.0, 8.0, 8.0, 8.0) 0.2 
4 (6.0, 6.0, 6.0, 6.0) 0.4 
5 (3.0, 7.0, 3.0, 7.0) 0.4 
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has 5 local minimums at ii cf 1)(14 −≈α  and the global minimum 
1532.10)00013.4,00004.4,00013.4.00004,4(14 −=f  in the domain ,100 ≤≤ ix  

.4,,1K=i  
 

15. Shekel7 function 
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with coefficients 
 

i αi ci 

1 (4.0, 4.0, 4.0, 4.0) 0.1 
2 (1.0, 1.0, 1.0, 1.0) 0.2 
3 (8.0, 8.0, 8.0, 8.0) 0.2 
4 (6.0, 6.0, 6.0, 6.0) 0.4 
5 (3.0, 7.0, 3.0, 7.0) 0.4 
6 (2.0, 9.0, 2.0, 9.0) 0.6 
7 (5.0, 5.0, 3.0, 3.0) 0.3 

 

has 7 local minimums at ii cf 1)(15 −≈α  and the global minimum 
4029.10)99961.3,99949.3,00069.4.00057,4(15 −=f  in the domain ,100 ≤≤ ix  

.4,,1K=i  
 

16. Shekel10 function 
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with coefficients 
 

i αi ci 

  1 (4.0, 4.0, 4.0, 4.0) 0.1 
  2 (1.0, 1.0, 1.0, 1.0) 0.2 
  3 (8.0, 8.0, 8.0, 8.0) 0.2 
  4 (6.0, 6.0, 6.0, 6.0) 0.4 
  5 (3.0, 7.0, 3.0, 7.0) 0.4 
  6 (2.0, 9.0, 2.0, 9.0) 0.6 
  7 (5.0, 5.0, 3.0, 3.0) 0.3 
  8 (8.0, 1.0, 8.0, 1.0) 0.7 
  9 (6.0, 2.0, 6.0, 2.0) 0.5 
10 (7.0, 3.6, 7.0, 3.6) 0.5 

 

has 10 local minimums at ii cf 1)(16 −≈α  and the global minimum 
5364.10)99951.3,99966.3,00059.4.00075,4(16 −=f  in the domain ,100 ≤≤ ix  
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17. Function used by Vilnis Eglajs [20] 
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There is a great number of local minimums in the domain ,5050 ≤≤− ix  
.4,,1K=i  The global minimum is ,567407.1,543479.171979,4.1(17 −−f  
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5. ANALYSIS  OF  OBTAINED  RESULTS 
 
To evaluate the efficiency of the random search two-phase multistart 

optimization algorithm Edaopt [1,21], it was tested by solving a set of test 
problems. Figures 1–3 show the test functions or their characteristic sections with 
the global minimums found with Edaopt. They were found with a practically 
100% success in all cases. In solving some of the problems (for example, 
Griewank10, which contains several thousands of local minimums in a 10 para-
meter space), the algorithm occasionally converged to extremes close to the 
global optimum rather than to the global optimum itself. In this way in all cases 
the most promising optimum region was found. This has a great significance, 
since in practical problems it is very important not to miss these regions. 

Table 1 shows results obtained with Edaopt, standard (GA) and improved 
(GA+) genetic algorithms. To make objective comparison possible, it was 
necessary to adhere to the calculation conditions given in literature [16]. Since 
stochastic methods were evaluated, the minimum of each function was found 100 
times. The search was considered successful if the global minimum was found 
with the given  accuracy.  Table 1  shows  that,  standard GA  guarantees a  100%  

 
 

 

  
 

   F8 (8)             F9 (9) 
 

Fig. 1. Minimums of the test functions, found with Edaopt. 
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Fig. 2. Minimums of test functions, found with Edaopt. 
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Shekel10 (16) 
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Rastrigin (13) 

 
 

Eglajs (17) 

 

 
 

Griewank10 (3) 

 
Fig. 3. Minimums of test functions, found with Edaopt. 
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Table 1. Characteristics of optimization algorithms (GA and GA+ results taken from [16]; success 
of Edaopt in all cases is 100%) 
 

Function Number of calculations Absolute error Success % 

No Name GA GA+ Edaopt GA GA+ Edaopt GA GA+ 

  1 Goldstein Price   8 185     4 632        816 0.229 0.013 0.0127   59 100 
  4 Hartman3   1 993     1 680     1 150 0.025 0.020 0.0197   94 100 
  5 Hartman6 19 452   53 792 650 475 0.144 0.033 0.0118   23   92 
  6 Branin   8 125     2 040        593 0.003 0.002 0.0018   81 100 
  7 Camel Back   1 316     1 316        346 0.005 0.005 0.0048   98 100 
  8 F8   5 566        784        156 0.000 0.000 0.0000 100 100 
  9 F9   5 347        744        131 0.001 0.014 0.0002 100 100 
10 Hosc45 11 140 126 139   14 020 1.000 0.392 0.0000     0     2 
11 PShubert1   7 192     8 853   32 849 4.563 0.983 0.4467   63 100 
11 PShubert2   7 303     4 116     1 430 4.772 0.986 0.8593   59 100 
12 Quartic   8 181     3 168     1 134 0.003 0.002 0.0018   83 100 
14 Shekel5   7 495   36 388 500 187 6.067 0.072 0.0521     1   97 
15 Shekel7   8 452   36 774 390 185 4.856 0.165 0.0939     0   98 
16 Shekel10   8 521   36 772 390 175 5.126 0.074 0.0950     0 100 

 
 

success (global minimum found in all 100 attempts) only with one-dimensional 
functions F8 and F9, while with other functions the success is modest and in 
some cases GA is entirely unable to find the global minimum. 

Significantly better results are obtained with GA+, the “heuristic coefficients” 
of which have been improved. From practice it is known that for specific test 
problems these coefficients may be fitted in such a way that global extremums 
for these functions can be found with only a few iterations, while for the 
optimization of other functions the algorithm becomes practically useless. 
Nevertheless, the Edaopt algorithm is exactly compared with GA+. The table 
shows data only for the functions with a number of parameters up to 10, for 
which paper [16] gives data for GA+. By optimizing F8, F9, Branin, Camel Back, 
Goldstein Price, PShubert2 and Quartic functions, the accuracy of finding the 
global minimum is higher and simultaneously the number of function calcula-
tions is 3 to 5.5 times lower with Edaopt than with GA+. Thus the efficiency of 
Edaopt is definitely higher. This is especially obvious by optimization of the 
function Hosc45, where the location of the global minimum with Edaopt requires 
9 times less points (function calculations), and the percentage of success is 100% 
as compared to 2% for GA+. That shows high reliability of Edaopt, at the same 
time signifying rather unsuccessful fit of coefficients with the GA+ method.  

The obtained results do not, however, show that GA is not suitable for global 
search procedures. On the contrary, GA, simulated annealing and taboo search 
are among the most effective methods, since finding of a practical solution is 
never limited with a few search series. It is always connected with a thorough 
and detailed investigation, namely, building of sensitivity curves and evaluation 
of functioning stability in optimality regions, etc. 
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It should be noted that it is hard to achieve a 100% success rate with stochastic 
search methods, since there is always a probability of carrying out an inefficient 
search with a limited number of points. For example, when attempting to find 
global minimums for the Hartman6 and Shekel functions with 5 and 7 local 
minimums in a 4 parameter space with 100% success, it turned out that the number 
of points necessary using Edaopt is about ten times greater than using the GA+ 
method with a corresponding 92%, 97% and 98% success. This fact does not 
indicate the superiority of one or another method, but it shows that in order to 
achieve reliability close to 100%, the minimal number of points must be suitable. 
To achieve a more or less objective comparison, it would be necessary to ensure a 
precise coincidence of absolute errors and percentage of successes. Since the aim 
was to obtain not a formal numerical evaluation, but a qualitative evaluation of the 
algorithms, such a comparison was not carried out. Moreover, with the Edaopt 
standard interface the search is not terminated on a given precision, but on the 
computer precision (10-byte float point calculation), and the only parameter 
necessary to provide is the maximal number of iterations (no other parameters like 
“heuristic coefficients” are required). It must be noted that with some test problems 
we had to carry out the comparison with high relative error level 1%, when the 
deviation of the parameters from their optimal values may be significant. Manipu-
lation with precision may bring a great amount of subjectivity into the evaluation. 

Finally, it should be noted that the global minimums for the Griewank2, 
Rastrigin and Eglajs functions were located with Edaopt without difficulty. 
Searching for minimums for the Branin function, each of the 3 global minimums 
was found with a 1/3 probability, while for the Camel Back function both global 
minimums were found with a 1/2 probability. 

 
 

5. CONCLUSIONS 
 
The solution of a wide scope of test problems has shown that the Edaopt 

algorithm gives a significantly higher reliability in searching for global optimums 
in comparison with traditional standard stochastic search algorithms. In most 
cases high reliability is obtained with a noticeably smaller amount of computa-
tion. However, that is less important when the metamodel approach is applied. In 
cases when the RSM is used, the reliability of the optimum finding is the most 
important characteristic of the optimization algorithm. Besides, the Edaopt soft-
ware allows the user to orientate himself visually in the seemingly endless 
optimization jungle. 
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Globaalsete  optimeerimisprotseduuride  võrdlev  analüüs 
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Esitatakse lühike ülevaade globaalsetest optimeerimismeetoditest ja nende 

tarkvarast. Erinevaid meetodeid kasutades on lahendatud rida standardseid üles-
andeid ning on võrreldud saadud globaalsete ekstreemväärtuste usaldatavust. 
Tulemused näitavad autorite poolt loodud optimeerimisalgoritmi Edaopt kõrget 
efektiivsust teiste kaasaegsete algoritmidega võrreldes. Seejuures on enamikul 
vaadeldud juhtudest globaalne optimum saavutatud tunduvalt väiksema arvuti-
ajaga. 

 


