
 223

Proc. Estonian Acad. Sci. Eng., 2002, 8, 4, 223–247 

 
 
 
 
 

Feed-forward  neural  networks  for  smooth  
operation  of  the  high-voltage  power  transmission  

network 
 

Taivo Kangilaski 
 

IT Division, Eesti Energia Ltd, Laki 24, 12915 Tallinn, Estonia; Taivo.Kangilaski@energia.ee 
 
Received 13 June 2001, in revised form 21 June 2002 
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1. INTRODUCTION 
 
Owing to its nature, electricity has to be produced at the time it is being 

consumed. In the operational mode, planning for a definite time period plays an 
important role in the control of a power system. Various software is available for 
calculations of the regimes of power systems. Among them, the Power System 
Simulator for Engineering (PSS/E) [1,2] seems to be the most popular. The 
Supervisory Control And Data Acquisition solftware SCADA has also been 
equipped with regime calculation tools (e.g., Harris SCADA product XA/21 [3], 
ABB SCADA product S.P.I.D.E.R [4], IVO SCADA system [5], and Siemens 
SCADA product SINAUT-SPECTRUM [6]). 

However, in order to calculate regimes for the time ahead, one needs 
consumption projections for that time. As a result, electric utilities and system 
operators face short-term forecasting problems, involving loads during the next 
hour, the next day, and the next week. In terms of regime, it is also important to 
know what should be the quantity of facilities in reserve to guarantee smooth 
operation of the transmission network. This problem is related to fault prediction. 
The aim of this paper is to consider both of these problems. 

The paper is organized as follows. Firstly, the initial data are defined. Secondly, 
existing models that may solve the problem are analysed. Further, new models for 
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fault projection and short-term forecast of the power consumption are presented. In 
case of fault prediction, four different learning rules and four initial data 
combinations are analysed to find out convenient inputs and learning rules. In a 
short-term forecast, we propose the initialization parameters for multi-layer feed-
forward neural networks (FNN). These neural networks are commonly referred to as 
multi-layer perceptrons that represent a generalization of the single-layer perceptrons. 

The study is based on the facilities of 110 kV and more and on the Power 
Plant facilities. We discuss these issues in the context of Eesti Energia’s (EE) 
management system Event Navigator (ENav) that is web-based and made in the 
Oracle environment. 

 
 

2. DATA  AND  CONSTRAINTS 
 
The input data, used for consumption projection, comprised statistical 

consumption data, environmental air temperature, and light intensity. As input 
data, commercial metering data from the CENTRAPULS system was used. In 
case no metering data was received from CENTRAPULS, the telemetering data 
from SCADA of the Control Centre was used, which originated from the same 
metering devices, but were integrated. 

Hourly data as well as the collection of breakdown data of the facilities were 
archived from the beginning of 1993, including all planned and non-planned 
work and extraordinary repairs. 

In data generation, when making a consumption projection for the day 1+x  
on day ,x  data up to the day 1−x  are available. Our maximum projection term 
was 8 days. For the first four days, an average error of ± 3% suggests an accurate 
projection and for the last four days an average error of ± 6% indicates a high 
accuracy of the projection. 

Failure prevention implies a significant saving of financial resources. Fault 
predictions are instrumental when optimal downtime plans and investment plans 
are drawn up. To predict faults, we should use all the information available at 
EE. The existing information can be classified into four groups: 

1) downtime historical data, including facility name, downtime start and stop 
times, and downtime type; 

2) facility passport data and restrictions; 
3) human expert knowledge, including behaviour of the power system; 
4) data of the statistical analysis. 
Only historical data about downtime was used. 
 
 

3. CLASSIFICATION  OF  THE  MODELS 
 
For the short-term projection of consumption five broad classes of discrete-

time models were considered: 
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1) time-series and transfer-function models; 
2) models based on trigonometric functions; 
3) state–space models; 
4) models based on orthogonal transformation; 
5) hierarchical models including the Group Method of Data Handling 

(GMDH) and neural networks. 
These models are similar in terms of their ability to accommodate a certain 

degree of uncertainty, and they can adapt to the dynamics of the time-varying 
process [7]. 

Time-series and transfer-function models. Time series is a sequence of 
observations of a process. It may or may not have a periodic component 
associated with it. Time series may be represented by autoregressive (AR) [8], 
integrated AR (IAR) [9], AR moving average (ARMA) [10,11], and AR with 
integrated moving average (ARIMA) [12] models [13–15], which are based on 
polynomial operators in discrete time. If a time series shows structural features, 
like a trend and periodicity, structural components may be separately modelled. 
Transfer-function models are natural extensions of time-series models. It is 
expected that the process in question is subjected to certain inputs, that influence 
the output of the process. Transfer-function models have additional terms for 
exogenous inputs, as ARMAX (that is ARMA with exogenous inputs) and 
ARIMAX [9,15]. 

Models based on trigonometric functions. Processes with regular or irregular 
periodicity can be analysed in the frequency domain and can be modelled in 
terms of components, expressed as trigonometric functions [16–20]. Besides 
modelling, frequency-domain characterization provides useful information in the 
design of filters as well as in assessing the appropriate rate of sampling of 
continuous-time signals for discrete-time modelling. 

State–space models. These models have the unique feature that along with 
variables that are known or can be measured, the variables that are internal to the 
process and cannot be measured are also incorporated into the model [21–28]. This 
is why a state–space model is also called an internal model, whereas a model 
based on measurable variables is called an external model. Any transfer-function 
or time-series model can have a state–space representation. State–space models 
can model processes with or without periodicity. 

Models based on orthogonal transformation. These are Singular Value 
Decomposition (SVD) based models [29]. SVD [30–32] is an optimal orthogonal 
decomposition, applied in rank determination, matrix inversion, as well as in model-
ling, prediction, filtering, and information compression of data sequences [33]. In 
numerical terms, SVD is extremely robust, and singular values in SVD can be 
computed with greater accuracy than eigenvalues [34]. Models based on SVD are 
particularly suitable for time series that are nearly periodic or quasi-periodic [35–39]. 
The principle of modelling for the nearly periodic series is that the consecutive 
periods are aligned into consecutive matrix rows, which are SV-decomposed. The 
decomposed components are now modelled, typically as time series. 
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A quasi-periodic series [36,37] can be decomposed into components which are 
individually nearly periodic and hence can be modelled as described above. 

The two attractive features of the SVD-based modelling are that a prediction 
of one or multiple periods ahead may be produced, and SVD, which is extremely 
robust numerically, ascribes robustness to the model. 

Hierarchical models and neural networks. These models are primarily 
suitable for time-series and input-output processes with non-linearity; quasi-
periodic processes can also be modelled. Three types of models were considered: 
models based on GMDH [38–42], neural network models [43–51], and models based 
on singular-value decomposition with or without non-linear transformation 
[36,37,42]. All of these models have hierarchical stages or layers where each stage 
incorporates simple non-linear elements. Since most processes contain a certain 
degree of non-linearity, these models are applicable for non-linear as well as 
nearly-linear (and nearly-periodic) processes. 

In all the cases, efforts are made to develop parsimonious models, i.e., only 
essential variables are to be included and the order of the model is kept as low as 
possible. The degree of accuracy of the data should be duly considered. In the 
case of applications, the model needs to be protected against irrelevant 
information influencing it [52–65]. 

 
 

4. SELECTION  OF  MODELS 
 
In our data analysis, for consumption projection we compared consumption 

data of the days 1−K  and 1+K  (Fig. 1) and consumption data dependence on 
the environmental air temperature (Fig. 2) and on the light intensity. 

Analysing Figs. 1 and 2, one can see that the relationships are non-linear. 
Thus our task was reduced to the approximation of a function with multiple 
variables. Since initial data was non-linear and the model was designed to 
approximate both nation-wide and regional power consumption,  with no specific  
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Fig. 1. Day 1−K  and day 1+K  consumption data. 
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Fig. 2. Consumption dependence on the air temperature. 
 
 

information available at the time of the network development, a neural network 
(NN) was chosen [45]. The other reason for selecting NN was that a single hidden 
layer is sufficient to approximate uniformly any continuous function supported in 
a unit hypercube [66]. Two other papers on multi-layer perceptrons as universal 
approximators are [67,68]. 

The feed-forward neural network was selected since it requires less computa-
tion resources [69]. It is also proved that neural network is a very powerful 
abstraction to learn patterns [42,43,47,48]. In our case it means that we may consider 
facility downtimes also as a pattern and use the neural network for fault 
prediction [70–80]. 

 
 

5. FEED-FORWARD  NEURAL  NETWORK 
 
Artificial neural networks, used in forecasting, are flexible non-linear models 

that can approximate a wide range of data-generating processes. 
In a general form, for a single-variable forecasting problem, an artificial 

neural network is .),( uWXFY +=  Most functions in this general form, includ-
ing all functions that are normally used in forecasting, do not qualify as neural 
networks. Although neural networks can take many forms, the most frequently 
used form is very specific (two-layered perceptron) and can be written as 
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Here )(nY  represents neural network output, n  denotes a time variable, k
jiw ,  

is the weight between the thi  neuron in layer k  and thj  neuron in layer 1−k  
(if ,0=j  then it refers to the threshold), )(k

iv  is the net activity of the thi  neuron 
in layer k  and )(k

iy  is the output of the thi  neuron in layer ,k  N  is the number 
of neurons in the hidden layer, M  is the number of external inputs and K  is the 
number of inputs, ou  is the weighted external input, lu  is external input, and lb  
is its weight. 

The function in parentheses in Eq. (1) is repeated N  times exactly in the 
same algebraic form. In network jargon, this equation is called a single-output 
feed-forward neural network with a single hidden layer, with N  nodes and 
logistic activation functions in the hidden layer, and with a linear activation 
function in the output layer. 

This specification is non-linear in the variables and parameters. It is flexible 
in that it allows for a wide variety of non-linearity and interactions among the 
explanatory variables, and the repetitive specification is the cornerstone of the 
flexibility. 

It is easy to understand this non-linear function by considering a simple 
example. Let us take the number of input variables 3=K  and the number of 
nodes 2=N  (Fig. 3). The network function takes the following form: 
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 (4) 
 

Given the values of the explanatory variables and a set of parameter w  
values, one can easily compute the predicted values and residuals for each 
observation. The estimation problem is to find parameters that make the residuals 
as small as possible. 

Although function (4) is clearly non-linear relative to x  and most of the 
parameters, it has linear components. To show this, let us rewrite the network 
function as follows: 
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In network terms, each )1(y  represents a node in the hidden layer. For the 
particular specification used here, the output function, shown in Eq. (5), is linear 
in these values. The output function can be considered non-linear in ,)1(y  but for 
most forecasting problems with continuous dependent variables there will be no 
advantage of this additional non-linearity. A second linear component is found in  
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Fig. 3. Network diagram with three explanatory variables and two nodes. 

 
 
the denominator of .)1(y  Specifically, the exponent is a linear weighted sum of 
the input variables which can be written as 
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After some transformations we obtain 
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From that, we can recognize a binary logic [81]. The linear weighted sum )(v  
is the power on .e  If v  is a large negative number, then )1(y  is close to zero. If 
v  is ,0  then )1(y  is .5.0  And if v  is a large positive number, then )1(y  is close 
to .1  In between, it traces out an S-shaped function. This also means that there is 
an S-shaped relationship between each node value )(v  and each explanatory 
variable )(x  in that node. This S curve may be positively or negatively sloped, 
depending on the sign of the slope coefficient of x  ( )0(

,( ijw  in Eq. (2)). Further, 
the specification is automatically interactive.  

Rewriting the exponential, we obtain: 
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Now each variable x  interacts with all other variables that do not have zero 
slopes in the node. Multiplicative interactions related to the underlying process 
give evidence of the efficiency of the specification. It is true that each x  appears 
several times and, in the case of Eq. (1), they appear in exactly the same 
algebraic form. At first glance, econometricians will not be comfortable with that 
idea. It looks like an extreme form of multi-collinearity. In network language, the 

 
Input layer Hidden layer Output layer 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

x1 

x2 

x3 

 Y )1(
1,1y

)1(
2,1y  

)))()()()()()()((exp(1

1
)(

3
)1(
3,12

)1(
2,11

)1(
1,1

)1(
0,1

)1(
1,1 nxnwnxnwnxnwnw

ny
+++−+

=

 
)))()()()()()()((exp(1

1
)(

3
)1(
3,22

)1(
2,21

)1(
1,2

)1(
0,2

)1(
2,1 nxnwnxnwnxnwnw

ny
+++−+

=  

)()()()()()()( 0
)1(

2
)2(

2,1
)1(

1
)2(

1,1
)2(

0,1 nunynwnynwnwnY +⋅+⋅+=



 230

repetitive specification is called parallelism or massive parallelism, and it is one 
of the strengths of this approach. It could raise some serious issues by parameter 
estimation [45]. With several nodes in the hidden layer, the specification allows 
for a variety of non-linearities and for a range of variable interactions. For 
example, two logistic curves, one positively and the other negatively sloped, can 
be combined to give a U-shaped response over the relevant range of .x  Given 
this flexibility, the estimation problem is to find a set of specific non-linearities 
and interactions that are useful for explaining the history and for forecasting. In 
terms of neural networks, Eqs. (1) to (3) describe a feed-forward neural network 
with a single output which has one hidden layer with one or more nodes, uses 
logistic activation functions in each node of the hidden layer, and uses a linear 
activation function in the output layer. 

Figure 3 shows a neural network described by the function (1), where the 
explanatory variables x  enter the input layer. The logic transforms appear in the 
hidden layer, and the result Y  appears in the output layer. The  idea is that the 
inputs feed the nodes in the hidden layer, and there is no feedback. Further, the 
nodes do not feed sideways into each other. Instead, they feed onwards to the 
output layer. There is no feedback, delayed or otherwise, from the output layer to 
the hidden nodes. The absence of feedbacks or node-level interactions makes it a 
feed-forward system. 

Activation function refers to the S-shaped nature of the function in each node 
and to the fact that boundary values (0 and 1) can be interpreted as “on” and 
“off”. The term “activation function” is taken from the neural sciences and it is 
related to the requirement that a signal must reach a certain level before a neuron 
fires to the next level. It is an adequate description of the forecasting. For most 
forecasting problems, if flexibility is allowed (more than two nodes), some of the 
nodes will end up specializing and will activate (take on a value close to 1.0) 
under specific conditions and take on a value close to zero otherwise. 

For forecasting purposes, the functions of the hidden layer must be logistic 
functions. Any other S-shaped function can be used, such as an arctan or a 
cumulative normal, without a significant change in the model behaviour. It is 
important to use a smooth differentiable function that is easy to work with for 
estimation purposes. 

Further, it is not necessary to use S-shaped curves at all. For example, bell-shaped 
functions, like the derivative of a logistic curve, may be used in some nodes. 
However, moving away from S-shaped curves, the term “activation” becomes less 
descriptive of functional performance, since the alternative functions would no 
longer range between zero at one extreme and one at the other. As a result, activation 
functions of the hidden node are sometimes called neuron-transfer functions [44]. 

Finally, additional non-linearity may be introduced in the output layer. In fact, 
for dependent variables that have discrete outcomes, such as a binary variable, a 
logistic activation function in the output layer would probably be desirable. But 
for most problems with continuous outcomes, there is no real gain from a further 
non-linearity at this level. 
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In the literature on neural networks, the process of parameter estimation is 
called training. The goal of the training process is to find network parameters that 
make the model errors small. The estimation process is more complicated than in 
a regression model because the model is non-linear and because the objective 
function is relatively complicated. Parameter estimation is a simple process for 
most common statistical problems such as finding the solution to a non-linear 
regression model. However, because of the parallelism that reflects the inclusion 
of multiple nodes in the hidden layer, it can be shown that the least squares 
objective function for a neural network is extremely complex with a huge number 
of local optima. 

Owing to this complexity it is necessary to explore a wide region of the 
parameter space to find a relatively good solution. The rule for selecting the final 
model parameters is based on an average of in-sample and out-of-sample error 
statistics. Estimation from each random starting point is based on a subset of the 
sample data. Once a solution is found, these parameters are used to test the power 
of the estimated parameters, based on the observations withheld from the 
estimation process. Usually, solutions that perform well in the sample, perform 
well also out of the sample. Particularly, with a large number of nodes, some 
solutions will be more specialized in specific cases in the sample, and others will 
be more stable and more useful out of the sample. There exist large numbers of 
non-linear specifications that provide similar performance. 

As new data become available, it is natural to re-estimate parameters with the 
extended sample period. In literature, the update process for incorporating new 
data is called learning. 

With linear least squares models, updating the parameters with additional data 
is a full re-estimation of the model and to the new data typically the same weight 
as to the earlier data is given. For non-linear least squares, the re-estimation 
process can begin with the same set of initial guesses that was used to start the 
original estimation process, or it can begin with the solution obtained from that 
estimation. In both cases, for problems with a well-behaved object function, the 
final solution will be a single set of parameters that corresponds to the global 
optimum based on the expanded data set. 

For neural networks that are known to have a large number of local optima, the 
situation is slightly different. In this case, it seems natural to start with the 
parameters from the training process and to re-optimize the solution with the new 
data included. However, starting with the training solution implies starting with the 
specific set of non-linearities and variable interactions represented by that solution. 
From this starting point, re-estimation with the expanded data typically leads to 
minor changes in the estimated parameters. This implies that we are staying at the 
same local optimum at which we started, and that the location of this solution does 
not move much because of the new data. In this sense, the role of the new data is 
smaller than that of the earlier data. Actually, the functional form is determined in 
the training process which looks at many solutions and selects one, and the new 
data is used only to refine the parameters of that functional form. To give the new 
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data the same role as has the earlier data, it would be necessary to repeat the entire 
training process with the expanded data set. 

 
 

6. MODEL  FOR  FAULT  PREDICTION 
 
As described in Section 4, the neural network is a very powerful abstraction 

for pattern recognition. We can consider facility downtimes also as a pattern 
(Fig. 4). 

For fault prediction, the developed network uses planned and non-planned 
facility downtimes to predict faults. Planned downtimes are stops arising from 
annual or monthly plans. Non-planned downtimes are stops that have not been 
planned in annual or monthly plans, but are not faults. 

Thus, the FNN’s objective is to identify a pattern, which is a standard 
identification problem. To describe the network, initial data is analysed, neural 
network inputs are defined as well as layers, activation functions and outputs, and 
the wanted detection probability. The distance forward from the fault is marked 
with the “+” sign and the distance backward from the fault with “–”. In data 
analysis, the facilities are grouped by the type. We found that on average the 
downtime count by type is 20 in a quarter. Thus 20 inputs were selected to our 
FNN to create the input pattern. The idea of selecting the layers is that each next 
layer should simplify the pattern for grouping the data. For example, in a trans-
former, the planned work may be a major overhaul (once in 12 years), current 
maintenance (once in 3 years), transmission checking (once in 2 years), etc. Thus 
the first layer combines transmission checking and current maintenance, the 
second layer – major overhaul and combined transmission checking and current 
maintenance, etc. The neuron selection for hidden layers is based on the intro-
duction of three neurons per each input: “+”, “–”, and “0”. Thus there are 60 
neurons in a layer. 

To select the activation functions, we should take into account that they must 
be monotone and bounded and if they are continuous, they must satisfy the 
Lipschitz condition 

 

,||||||)()(|| 2121 vvCvfvf −≤−                                 (9) 
 

where ()f  is the activation function, v  is net activity, and C  is the Lipschitz 
coefficient. The activation functions are described in Table 1, where h±  denotes 
limits of the activation function (),f  c  is the coefficient which determines the 
rising angle of (),f  and a  is a coefficient that determines the behaviour of FNN 
when v  is about zero. 
 
 
 
 
Fig. 4. Illustration of facility stops: � planned or non-planned facility downtime (NF), 
� emergency downtime fault (FL). 

 
 
 

 
 

+ Time 
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Table 1. Activation functions 
 

Signum function Identity function Delta function 

  1, when a fault exists 1, when a fault exists     ,h  when av ≥  
– 1, when no fault exists 0, when no fault exists   ,cx  when av <||  
  ,h−  when av −≤  

 
 

The signum and identity functions were used to predict only fault existence. 
The delta function was used to obtain the probability of fault existence. 

By constructing the FNN, we experimented with input data as follows (E1 to 
E4 indicate the experiments): 

E1. The middle points in the duration of the NF downtimes were found and 
the distance to the FL start was calculated. 
 

 
 

E2. The finishing points of the NF downtimes were found and the distance to 
the FL start was calculated. 

 

 
 
E3. The starting points of the NF downtimes were found and the distance to 

the fault start was calculated. 
 

 
 

E4. The NF downtime beginning and duration were found and the distance to 
the FL start was calculated. 

 

 
 

To find the most suitable learning method, we investigated and built the 
Hebbian, the Perceptron, the Delta and the Widrow–Hoff Learning Rule in ENav. 
A general learning rule is based on [43]. The weight vector iw  increases in 
proportion to the product of the input x  and the learning signal .ir  The learning 
signal is, in general, a function of ,iw  ,x  and sometimes of the reference or 
desired signal .id  Hence, 
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).,,( iiii dxwrr =                                           (10) 
 

The increment of the weight vector is expressed as 
 

),()](),(),([)( txtdtxtwrtw iiii η=∆                           (11) 
 

where η  is a positive number called the learning constant that determines the 
rate of learning. The weight vector adopted at the time t  becomes at the next 
instant (or learning step) 
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The Hebbian Learning Rule. This rule requires the weight initialization at 
small random values around 0=iw  prior learning. The Hebbian Learning Rule 
represents only feed-forward, unsupervised learning [82]. The rule states that if 
the cross product of output and input or the correlation term jii xsf )(  is positive, 
then it results in an increase in the weight ;ijw  otherwise the weight decreases: 
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Thus, the single weight ijw  is adapted, using 
 

.)( jiii xsfw η=∆                                            (15) 
 

The Perceptron Learning Rule. In this rule, the learning signal is the 
difference between the desired and the actual neuron response 

 

.iii ydr −=                                               (16) 
 

As mentioned, the zero mean threshold activation function is used and 
therefore 
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In this method, weight adjustments are obtained as 
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Since the neuron response is only binary, we have 
 

.2 xwij η±=∆                                               (20) 
 

The plus sign is used if 1=id  and .1)(sgn −=xwT
i  

Using the learning input vectors )1(x  to ),(nx  we calculated constants 
2
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=  where 0ω  is the solution weight vector 
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in our learning process. The Rosenblat theorem [83,84] is applicable here. It says 
that if a solution exists in FNN, then in step 0n  the weight 0ω  is attainable: 
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The energy E  is 
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then 
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N
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where L  is the number of statements in Eq. (23) that are not zero. Therefore E  
is fault probability )( NL  multiplied by four. 

In Eq. (23) the word “catch” is used for describing the following situations: 
1) the event is “caught” when it occurs as projected, 
2) the event is “caught” when it did not occur as projected. 
The word “detect” is used if 
1) the event occurred, but not as projected, or 
2) the event did not occur, although it was projected. 
 
The Delta Learning Rule. This rule is applicable only if an activation function 

is differentiable (in our case the function is monotone and continuos) and in the 
supervised mode [43,84]. The learning signal ir  for this rule is called “delta”, 
defined as 
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T
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This learning rule can be readily derived from the condition of least squared 
error between iy  and .id  The squared error, calculating the gradient vector with 
respect to ,iw  is defined as 
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We obtain the error gradient as 
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Since the minimization of the error requires that the weight changes are in the 
negative gradient direction, we take 
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In our case, .)( xxwfy T
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The Widrow–Hoff Learning Rule. This rule in applicable to the supervised 
training of the neural network [43,84]. It is independent of the activation functions 
of neurons used since it minimizes the squared error between the desired output 
value id  and the neuron’s activation value .is  The learning signal is defined as 

 

.xwdsdr T
iiiii −=−=                                       (31) 

 

Thus the weighting vector increment under this learning rule is 
 

.)( xsdw iii −=∆ η                                           (32) 
 

This rule can be considered as a special case of delta learning rule if the 
activation function is simply an identity function. The speed of convergence and 
the convergence itself of the learning rule depends on the constant .η  To make 
the learning algorithm more reliable and efficient, its adaptive version was 
proposed in [43]. In our case, the constant η  is updated according to the rule 
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and the corresponding weight increment is 
 







=

≠−
=∆

,0if,0

,0if),()(

xx

xxydx
w

T

T
ii

i

ηα
                     (34) 

 

where α  is a constant reduction factor. 
 

 
7. RESULTS  OF  FAULT  PREDICTION 

 
For teaching we have used data from early 1993 until 1997. Testing was 

conducted using data from 1998 and 1999. This chapter provides results for 
transformers, where we used FNN with 20 inputs, 60 neurons in the hidden layer, 
and one output neuron. 
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To compare different methods, we analysed the FNN energy )(E  because it 
represents the learning error 
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where ie  represents the difference between the desired output and the real FNN 
output (Fig. 5). Below, the E  indices refer to experiments E1 to E4 described in 
the previous section. 

Tables 2 to 5 show FNN energy convergence or learning results for different 
learning rules. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. FNN output and error. 
 
 

Table 2. The Hebbian Learning Rule, ,47.0=α  28.0=η  
 

Number of experiments 
1E

E  
E2

E  
E3

E  
E4

E  

  50 0.515 0.460 0.393 0.499 
100 0.447 0.414 0.320 0.421 
150 0.443 0.378 0.242 0.380 
200 0.380 0.351 0.229 0.310 
300 0.343 0.331 0.200 0.288 

 
 

Table 3. The Perceptron Learning Rule (years 1998/1999) 
 

Number of experiments 
1E

E  
E2

E  
E3

E  
E4

E  

200 0.251 0.294 0.307 0.987 
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Table 4. The Delta Learning Rule, ,45.0=α  28.0=η  
 

Number of experiments 
1E

E  
E2

E  
E3

E  
E4

E  

  50 0.413 0.360 0.344 0.416 
100 0.371 0.281 0.229 0.178 
150 0.293 0.178 0.111 0.149 
200 0.212 0.091 0.107 0.148 
300 0.155 0.023 0.103 0.007 
400 0.130 0.019 0.100 0.006 

 
 

Table 5. The Widrow–Hoff Learning Rule, 8.0=α  
 

Number of experiments 
1E

E  
E2

E  
E3

E  
E4

E  

  50 0.317 0.311 0.400 0.287 
100 0.218 0.303 0.220 0.274 
150 0.175 0.212 0.153 0.246 
200 0.126 0.210 0.065 0.250 
300 0.120 0.008 0.100 0.195 
400 0.102 0.006 0.070 0.102 

 
 

From Tables 2 to 5 the following conclusions can be drawn. 
1. The convergence speed of the Hebbian Learning Rule is slow. 
2. In case of the Perceptron Learning Rule the value of η  is not important as 

long as it is positive. After FNN has reached its minimum, it will not get more 
accurate (see the Rosenblat Theorem in Section 6). The speed of convergence 
was not examined. 

3. The Delta as well as the Widrow–Hoff learning rules converge as 
0)]([ 2

→trE  if .∞→t  
In the majority of cases, the Widrow-Hoff Learning Rule is most effective from 

the point of view of the convergence speed. An analysis of EE’s overhaul data proves 
that the number of overhauls and of works performed on the facilities grows with an 
increase of the number of failures. Since 1992, failures account for 4–7% of all 
works performed. This is a rather stable figure. The analysis showed that failures 
depend on the type of the network element. There is no correlation between error 
percentages of different years. This means that depending of the type of the facility, 
only internal failure causes of facilities play a role. External conditions, such as 
weather, are not significant. Therefore, based on the downtime data alone, we can 
predict with high probability whether a certain facility will have a failure at the 
moment defined by the user. The fact that we can predict no failure is of major value. 
Depending on the type of the network element, our average detection percentage of 
emergency events is 71%. With regards to transformers, this figure amounts to 80%, 
which is the highest detection percentage among outdoor facilities. As for indoor 
facilities, our average failure detection percentage is 80 and for some facilities even 
92. Yet for an individual network element within the facility, our average detection 
probability has been 57%. 
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8. A  MODEL  FOR  SHORT-TERM  PROJECTION   
OF  THE  HIGH-VOLTAGE  POWER  CONSUMPTION 

 
For short-time projection of power consumption, we divided the day into  

6-hour periods. Every hour was described by statistical consumption data, 
temperature, and light intensity – all in all 18 inputs. This exercise was based also 
on the assumption that one hidden layer is sufficient besides an input and an 
output layer to approximate a function with multiple variables, provided the net-
work is completely connected and the number of neurons of the hidden layer 
exceeds considerably the number of inputs [45]. In the formation of the hidden 
layer, we used the linear combination of input elements of the input data of one 
hour as a logic, which gave 7 neurons per hour. Thus the number of neurons of 
the entire hidden layer was 42. 

The output layer has only one neuron, and we took the consumption per hour as 
its output. We introduced the sigmoid activation function on both the hidden and 
output layers. Thus every projected hour was supplied with a network of its own, i.e., 
we developed separate networks of projected consumption for all the respective 
hours of the 8 days. We chose the back-propagated learning rule as a training rule, 
because we applied the least squares method to analyse the output error, and we used 
the sigmoid function as an activation function. Had we chosen identity as an 
activation function, we would have used the Widrow–Hoff Learning Rule. In 
practice, a trained neural network is retrained by the software when the difference 
between the actual consumption and projected consumption exceeds 2.5%. 

The following back-propagation learning algorithm [43,84] was applied. 
Initialization. All the synaptic weights and threshold levels of the network 

were set to small random numbers that were uniformly distributed. 
Presentation of training examples. We presented the network with an epoch 

of training examples. For each example in the set ordered in some way, we 
performed the following sequence of forward and backward computations. 

Forward computation. The training example in the epoch was denoted by 
)],(),([ nn dx  with the input vector )(nx  applied to the input layer of sensory 

nodes and the desired response vector )(nd  applied to the output layer of 
computation nodes. We computed the activation potentials and function signals 
of the network by proceeding forward through the network, layer by layer. The 
internal activity level )()( nl

jυ  for the neuron j  in layer l  is 
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where )()1( ny l
i
− is the function signal of the neuron i  in the previous layer 1−l  

on the thn  iteration and )()( nl
jiυ is the synaptic weight of the neuron j  in layer l  

that is fed from neuron i  in layer .1−l  For ,0=i  we have 1)()1(
0 −=

− ny l  and 
),()()(

0 nw l
j

l
j Θ=  where )()( nl

jΘ  is the threshold applied to the neuron j  in layer .l  
Using the sigmoidal non-linearity, the function (output) signal of neuron j  in 
layer l  is  
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.]))(exp(1[)( -1)()( nny l
j

l
j υ−+=                                 (37) 

 

If neuron j  is in the first hidden layer ),1( =l  set ),()()0( nxny jj =  where 
)(nx j  is the thj  element of the input vector ).(nx  If neuron j  is the output 

layer ),( Ll =  set ).()()( nony j
L

j =  Hence, we computed the error signal 
),()()( nondne jjj −=  where )(nd j  is the thj  element of the desired response 

vector ).(nd  
Backward computation. We computed the δ  ’s (i.e., local gradients) of the net-

work by proceeding backward, layer by layer, for neuron j  in the output layer :L  
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and for neuron j  in the hidden layer :l  
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Hence, we adjusted the synaptic weights of the network in layer l  according to 
the generalized delta rule: 
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where µ  is the learning-rate parameter and α  is the momentum constant. 
Iteration. We iterated the computation by presenting new epochs of training 

examples to the network until the free parameters of the network were stabilized 
and the average squared error computed over the entire training set was at a 
minimum or at a sufficiently small value. By that we were guided by the 
following considerations. The order of presentation of training examples should 
be randomized from epoch to epoch. The momentum and the learning-rate 
parameters are typically adjusted (and usually decreased) as the number of 
training iterations increases. 

For the tuning parameters, the leaning rate µ  and the momentum constant ,α  
an algorithm was developed which found the stable-energy case based on the 
existing data; the constants α  and µ  were determined for each separate network 
at every hour. Testing series was started with ,0.1== µα  and software 
performed test series with ;001.0−=αα  around this value the corresponding 
value of 001.0±µ  was looked for. By testing, the lower limit of α  was set at .0  
 

 
9.  RESULTS  FOR  SHORT-TERM  PROJECTION 
OF  HIGH-VOLTAGE  POWER  CONSUMPTION 

 
The method described above was applied to implement a feed-forward neural 

network that allowed a successful real-time projection of power consumption for 
a period of up to 8 days. The tuning parameters found for the networks are shown 
in Table 6 where the tuning parameters α  and µ  were applied to every hour’s 
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network, and energy was stable in the range 21 ααα <<  and .21 µµµ <<  
Number ,N  indicating training samples per epoch, was increased proportionally 
to the projected day. 

Based on the initialization parameters given in Table 6, the learning of each 
network for 600 training samples was performed. Table 7 shows the energies 
found. 

 
 

Table 6. Tuning parameters of networks 
 

Day 1α  2α  α  1µ  2µ  µ  N  

1 0.422 0.510 0.466 0.950 1.010 0.980 120 
2 0.221 0.320 0.270 0.430 0.442 0.439 125 
3 0.471 0.478 0.474 0.021 0.030 0.025 130 
4 0.009 0.010 0.009 0.008 0.010 0.009 135 
5 0.292 0.233 0.212 0.410 0.456 0.433 140 
6 0.443 0.541 0.492 0.021 0.056 0.038 145 
7 0.531 0.544 0.537 0.032 0.098 0.065 150 
8 0.395 0.400 0.397 0.245 0.299 0.272 155 

 
 

Table 7. Post-learning energies 
 

Days Hrs 

1 2 3 4 5 6 7 8 

  0 0.246 0.221 0.221 0.212 0.231 0.221 0.212 0.330 
  1 0.246 0.212 0.232 0.212 0.246 0.200 0.215 0.387 
  2 0.239 0.212 0.211 0.321 0.253 0.201 0.239 0.355 
  3 0.222 0.214 0.211 0.213 0.201 0.211 0.299 0.299 
  4 0.221 0.211 0.245 0.230 0.253 0.231 0.222 0.316 
  5 0.221 0.210 0.211 0.321 0.243 0.213 0.222 0.337 
  6 0.260 0.321 0.298 0.242 0.241 0.323 0.220 0.261 
  7 0.264 0.221 0.244 0.321 0.212 0.321 0.211 0.240 
  8 0.264 0.212 0.262 0.332 0.221 0.312 0.227 0.251 
  9 0.260 0.321 0.221 0.252 0.212 0.221 0.223 0.298 
10 0.252 0.210 0.219 0.221 0.232 0.222 0.232 0.299 
11 0.242 0.211 0.212 0.242 0.213 0.221 0.216 0.241 
12 0.344 0.200 0.291 0.310 0.211 0.228 0.210 0.333 
13 0.311 0.231 0.277 0.319 0.212 0.221 0.200 0.331 
14 0.310 0.242 0.310 0.305 0.211 0.219 0.288 0.349 
15 0.323 0.231 0.200 0.331 0.209 0.219 0.276 0.300 
16 0.324 0.223 0.299 0.322 0.201 0.244 0.231 0.314 
17 0.311 0.222 0.299 0.351 0.200 0.212 0.299 0.344 
18 0.241 0.242 0.321 0.281 0.270 0.331 0.252 0.300 
19 0.229 0.272 0.400 0.221 0.288 0.399 0.288 0.283 
20 0.264 0.261 0.383 0.271 0.203 0.302 0.253 0.299 
21 0.214 0.292 0.313 0.223 0.255 0.319 0.219 0.273 
22 0.221 0.292 0.330 0.332 0.288 0.371 0.297 0.282 
23 0.231 0.214 0.301 0.263 0.271 0.322 0.299 0.293 
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Fig. 6. Actual consumption and consumption projections, where each projected hour has its own FNN. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Projection error over 120 hrs according to Fig. 6. 
 
 

We applied the method to a feed-forward neural network, which allowed a 
successful real-time projection of power consumption for a period of up to 8 
days. Figure 6 shows a 5-day projection where every hour of the day had its own 
network. The average error over the one-year testing period was 2.92%. Figure 7 
shows the projection error of the graph of Fig. 6. 

 
 

10. CONCLUSIONS 
 
The article has analysed two important aspects related to regime planning: 

short-term projection of power consumption at high voltage and fault prediction 
in a power network based on ENav in the National Grid of Eesti Energia Ltd in 
the Oracle DB environment. 
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Various model classes were considered and criteria were proposed for the 
selection of a suitable model – time-series and transfer-function models, models 
based on trigonometric functions, state-spaced models, models based on 
orthogonal transformation, hierarchical models, and neural networks. The last 
one was selected. 

Our models for consumption projection were implemented as a two-layered 
feed-forward neural network with 18 inputs, reflecting data for a period of six 
hours, 42 neurons on the hidden layer, and one neuron as an output that provided 
consumption projection of the respective hour of the day. The projection of every 
hour had a network of its own, which was applied to all the periods. For the first 
four days, an average projection error of ± 3% and for the last four days an 
average projection error of ± 6% was achieved. 

The model for fault prediction was implemented with 20 inputs, 60 neurons 
on the hidden layer and one in the output layer. The paper explains FNN 
topology selection and compares four different learning rules in four types of 
experiments. We found that experiments E1–E3 are quite similar from the point 
of view of the convergence speed of the learning rule. Experiment E4 was not 
efficient as for the convergence speed though we used more data than in other 
experiments. We found that in the majority of cases the Widrow–Hoff Learning 
Rule was the most effective one in terms of the convergence speed of the 
learning rule. We found empirically that an average percentage of facility fault 
prediction is about 70. In the case of a facility located in the building, the 
detected percentage was about 80. Since the percentage of breakdown detection 
is more than 70 when as input data only planned, non-planned facility down-
times, and fault downtime was used, we can assume that the non-planned 
conditions were ignored (weather information, performer qualifications, wrong 
work planning etc.). Further studies should focus on the integration of facility 
passport data and restrictions and statistical analysis of data functions to increase 
the percentage of detection. In the ENav application, the fault prediction 
functionality is under development. 

The software for short-term projection of power consumption has gone 
through two developments since the requirements to accuracy have increased. 
When from preliminary version of the software an average projection error of 
± 3% for the first four days and ± 6% for the last four days was required, then the 
new version gives projections on hourly basis. In order to achieve this goal, the 
following steps were taken. First, we abandoned the FNN structure since our goal 
was to obtain greater temperature sensitivity. The model described in this article 
proved that FNN’s first layer became quite insensitive to inputs, i.e., it achieved 
the local minimum and could not depart from it. In order to avoid this problem, 
the logistic function, acting as an activation function, was replaced with the 
hyperbolic tangent. In addition to temperature, light intensity, power consump-
tion, week day (1–7), month (1–12), and threshold were added as inputs. Six 
neurons were applied to the hidden layer. The first neuron takes into account 
power consumption of the first day, light intensity, and temperature. Second 
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neuron uses only the current day’s current projected temperature. The third 
neuron uses only the day before yesterday’s hourly power consumption. The 
forth neuron uses as its input a specified weekday, and the fifth neuron uses a 
specified month. The sixth neuron uses the threshold. Output layer neuron is tied 
with all the neurons on the hidden layer. Rest of the logic remained unchanged. 
Applying the above logic we were able to achieve the data quality that was 
required. The next step involved developing of an algorithm that synchronizes 
the shape of the function that is based on the results, projected by different neural 
networks, since consumption is projected by different neural networks that are 
autonomous. Thanks to mentioned synchronization, the accuracy of projected 
results further improved, but the speed of the algorithm decreased. For the time 
being an algorithm that increases the levelling engines convergence speed is 
being elaborated. Currently the short-term projection of power consumption is 
again in an experimental state due to just described further developments. 
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Sujuva  töö  tagamine  elektrienergia  ülekandevõrgus  
edasisidestatud  neuronvõrkude  abil 

 
Taivo Kangilaski 

 
Artiklis on kirjeldatud edasisidestatud neuronvõrkude kasutamist elektrienergia 

ülekandevõrku haldavas tarkvaras. On vaadeldud elektrienergia tarbimise prog-
noosi (kõrgepinge osas) ning rikkeliste ja/või avariiliste sündmuste prognoosi algo-
ritme. On põhjendatud algoritmi valikut ning toodud edasisidestatud neuronvõrgu 
erinevate mudelite katseandmed, leidmaks sobivaimat konfiguratsiooni. Uuringu 
aluseks on Eesti Energia AS-i tarkvara “Sündmuste registraator”, mille abil püü-
takse tagada Eesti Vabariigi elektrisüsteemi tõrgeteta tööd põhivõrgus. 


