
 223

Proc. Estonian Acad. Sci. Eng., 2002, 8, 4, 223–247

Feed-forward neural networks for smooth
operation of the high-voltage power transmission

network

Taivo Kangilaski

IT Division, Eesti Energia Ltd, Laki 24, 12915 Tallinn, Estonia; Taivo.Kangilaski@energia.ee

Received 13 June 2001, in revised form 21 June 2002

Abstract. The article describes algorithms based on feed-forward neural networks for short-term
forecast of high-voltage power consumption and fault prediction, implemented in the software
“Event Navigator” of Eesti Energia AS.

Key words: high-voltage power transmission, fault prediction, short-term forecast.

1. INTRODUCTION

Owing to its nature, electricity has to be produced at the time it is being

consumed. In the operational mode, planning for a definite time period plays an
important role in the control of a power system. Various software is available for
calculations of the regimes of power systems. Among them, the Power System
Simulator for Engineering (PSS/E) [1,2] seems to be the most popular. The
Supervisory Control And Data Acquisition solftware SCADA has also been
equipped with regime calculation tools (e.g., Harris SCADA product XA/21 [3],
ABB SCADA product S.P.I.D.E.R [4], IVO SCADA system [5], and Siemens
SCADA product SINAUT-SPECTRUM [6]).

However, in order to calculate regimes for the time ahead, one needs
consumption projections for that time. As a result, electric utilities and system
operators face short-term forecasting problems, involving loads during the next
hour, the next day, and the next week. In terms of regime, it is also important to
know what should be the quantity of facilities in reserve to guarantee smooth
operation of the transmission network. This problem is related to fault prediction.
The aim of this paper is to consider both of these problems.

The paper is organized as follows. Firstly, the initial data are defined. Secondly,
existing models that may solve the problem are analysed. Further, new models for

 224

fault projection and short-term forecast of the power consumption are presented. In
case of fault prediction, four different learning rules and four initial data
combinations are analysed to find out convenient inputs and learning rules. In a
short-term forecast, we propose the initialization parameters for multi-layer feed-
forward neural networks (FNN). These neural networks are commonly referred to as
multi-layer perceptrons that represent a generalization of the single-layer perceptrons.

The study is based on the facilities of 110 kV and more and on the Power
Plant facilities. We discuss these issues in the context of Eesti Energia’s (EE)
management system Event Navigator (ENav) that is web-based and made in the
Oracle environment.

2. DATA AND CONSTRAINTS

The input data, used for consumption projection, comprised statistical

consumption data, environmental air temperature, and light intensity. As input
data, commercial metering data from the CENTRAPULS system was used. In
case no metering data was received from CENTRAPULS, the telemetering data
from SCADA of the Control Centre was used, which originated from the same
metering devices, but were integrated.

Hourly data as well as the collection of breakdown data of the facilities were
archived from the beginning of 1993, including all planned and non-planned
work and extraordinary repairs.

In data generation, when making a consumption projection for the day 1+x
on day ,x data up to the day 1−x are available. Our maximum projection term
was 8 days. For the first four days, an average error of ± 3% suggests an accurate
projection and for the last four days an average error of ± 6% indicates a high
accuracy of the projection.

Failure prevention implies a significant saving of financial resources. Fault
predictions are instrumental when optimal downtime plans and investment plans
are drawn up. To predict faults, we should use all the information available at
EE. The existing information can be classified into four groups:

1) downtime historical data, including facility name, downtime start and stop
times, and downtime type;

2) facility passport data and restrictions;
3) human expert knowledge, including behaviour of the power system;
4) data of the statistical analysis.
Only historical data about downtime was used.

3. CLASSIFICATION OF THE MODELS

For the short-term projection of consumption five broad classes of discrete-

time models were considered:

 225

1) time-series and transfer-function models;
2) models based on trigonometric functions;
3) state–space models;
4) models based on orthogonal transformation;
5) hierarchical models including the Group Method of Data Handling

(GMDH) and neural networks.
These models are similar in terms of their ability to accommodate a certain

degree of uncertainty, and they can adapt to the dynamics of the time-varying
process [7].

Time-series and transfer-function models. Time series is a sequence of
observations of a process. It may or may not have a periodic component
associated with it. Time series may be represented by autoregressive (AR) [8],
integrated AR (IAR) [9], AR moving average (ARMA) [10,11], and AR with
integrated moving average (ARIMA) [12] models [13–15], which are based on
polynomial operators in discrete time. If a time series shows structural features,
like a trend and periodicity, structural components may be separately modelled.
Transfer-function models are natural extensions of time-series models. It is
expected that the process in question is subjected to certain inputs, that influence
the output of the process. Transfer-function models have additional terms for
exogenous inputs, as ARMAX (that is ARMA with exogenous inputs) and
ARIMAX [9,15].

Models based on trigonometric functions. Processes with regular or irregular
periodicity can be analysed in the frequency domain and can be modelled in
terms of components, expressed as trigonometric functions [16–20]. Besides
modelling, frequency-domain characterization provides useful information in the
design of filters as well as in assessing the appropriate rate of sampling of
continuous-time signals for discrete-time modelling.

State–space models. These models have the unique feature that along with
variables that are known or can be measured, the variables that are internal to the
process and cannot be measured are also incorporated into the model [21–28]. This
is why a state–space model is also called an internal model, whereas a model
based on measurable variables is called an external model. Any transfer-function
or time-series model can have a state–space representation. State–space models
can model processes with or without periodicity.

Models based on orthogonal transformation. These are Singular Value
Decomposition (SVD) based models [29]. SVD [30–32] is an optimal orthogonal
decomposition, applied in rank determination, matrix inversion, as well as in model-
ling, prediction, filtering, and information compression of data sequences [33]. In
numerical terms, SVD is extremely robust, and singular values in SVD can be
computed with greater accuracy than eigenvalues [34]. Models based on SVD are
particularly suitable for time series that are nearly periodic or quasi-periodic [35–39].
The principle of modelling for the nearly periodic series is that the consecutive
periods are aligned into consecutive matrix rows, which are SV-decomposed. The
decomposed components are now modelled, typically as time series.

 226

A quasi-periodic series [36,37] can be decomposed into components which are
individually nearly periodic and hence can be modelled as described above.

The two attractive features of the SVD-based modelling are that a prediction
of one or multiple periods ahead may be produced, and SVD, which is extremely
robust numerically, ascribes robustness to the model.

Hierarchical models and neural networks. These models are primarily
suitable for time-series and input-output processes with non-linearity; quasi-
periodic processes can also be modelled. Three types of models were considered:
models based on GMDH [38–42], neural network models [43–51], and models based
on singular-value decomposition with or without non-linear transformation
[36,37,42]. All of these models have hierarchical stages or layers where each stage
incorporates simple non-linear elements. Since most processes contain a certain
degree of non-linearity, these models are applicable for non-linear as well as
nearly-linear (and nearly-periodic) processes.

In all the cases, efforts are made to develop parsimonious models, i.e., only
essential variables are to be included and the order of the model is kept as low as
possible. The degree of accuracy of the data should be duly considered. In the
case of applications, the model needs to be protected against irrelevant
information influencing it [52–65].

4. SELECTION OF MODELS

In our data analysis, for consumption projection we compared consumption

data of the days 1−K and 1+K (Fig. 1) and consumption data dependence on
the environmental air temperature (Fig. 2) and on the light intensity.

Analysing Figs. 1 and 2, one can see that the relationships are non-linear.
Thus our task was reduced to the approximation of a function with multiple
variables. Since initial data was non-linear and the model was designed to
approximate both nation-wide and regional power consumption, with no specific

200
300
400
500
600
700
800
900

1000

200 400 600 800 1000

Consumption in day K+1, MW

C
o

n
su

m
p

ti
o

n
 in

 d
ay

 K
-1

,
M

W

Fig. 1. Day 1−K and day 1+K consumption data.

 227

200
300
400
500
600
700
800
900

1000

-15 -5 5 15 25

Temperature, deg

C
o

n
su

m
p

ti
o

n
, M

W

Fig. 2. Consumption dependence on the air temperature.

information available at the time of the network development, a neural network
(NN) was chosen [45]. The other reason for selecting NN was that a single hidden
layer is sufficient to approximate uniformly any continuous function supported in
a unit hypercube [66]. Two other papers on multi-layer perceptrons as universal
approximators are [67,68].

The feed-forward neural network was selected since it requires less computa-
tion resources [69]. It is also proved that neural network is a very powerful
abstraction to learn patterns [42,43,47,48]. In our case it means that we may consider
facility downtimes also as a pattern and use the neural network for fault
prediction [70–80].

5. FEED-FORWARD NEURAL NETWORK

Artificial neural networks, used in forecasting, are flexible non-linear models

that can approximate a wide range of data-generating processes.
In a general form, for a single-variable forecasting problem, an artificial

neural network is .),(uWXFY += Most functions in this general form, includ-
ing all functions that are normally used in forecasting, do not qualify as neural
networks. Although neural networks can take many forms, the most frequently
used form is very specific (two-layered perceptron) and can be written as

),())()(()()(0
)1()2(

,1
1

)2(
0,1 nunynwnwnY jj

N

j

+⋅+= ∑
=

 (1)

where

]))()()(([exp1

1

)]([exp1

1
)(

1

)1(
,

)1(
0,

)1(
)1(

∑
=

+−−

=

−−

=
K

i
iijj

j
j

nxnwnw
nv

ny (2)

and

 228

.)()()(
1

0 ∑
=

=

M

l
ll nunbnu (3)

Here)(nY represents neural network output, n denotes a time variable, k
jiw ,

is the weight between the thi neuron in layer k and thj neuron in layer 1−k
(if ,0=j then it refers to the threshold),)(k

iv is the net activity of the thi neuron
in layer k and)(k

iy is the output of the thi neuron in layer ,k N is the number
of neurons in the hidden layer, M is the number of external inputs and K is the
number of inputs, ou is the weighted external input, lu is external input, and lb
is its weight.

The function in parentheses in Eq. (1) is repeated N times exactly in the
same algebraic form. In network jargon, this equation is called a single-output
feed-forward neural network with a single hidden layer, with N nodes and
logistic activation functions in the hidden layer, and with a linear activation
function in the output layer.

This specification is non-linear in the variables and parameters. It is flexible
in that it allows for a wide variety of non-linearity and interactions among the
explanatory variables, and the repetitive specification is the cornerstone of the
flexibility.

It is easy to understand this non-linear function by considering a simple
example. Let us take the number of input variables 3=K and the number of
nodes 2=N (Fig. 3). The network function takes the following form:

).(
))]()()()()()()(([exp1

1
)(

))]()()()()()()(([exp1

1
)()()(

0
3

)1(
3,22

)1(
2,21

)1(
1,2

)1(
0,2

)2(
2,1

3
)1(
3,12

)1(
2,11

)1(
1,1

)1(
0,1

)2(
1,1

)2(
0,1

nu
nxnwnxnwnxnwnw

nw

nxnwnxnwnxnwnw
nwnwnY

+

+++−+

⋅+

+++−+

⋅+=

 (4)

Given the values of the explanatory variables and a set of parameter w
values, one can easily compute the predicted values and residuals for each
observation. The estimation problem is to find parameters that make the residuals
as small as possible.

Although function (4) is clearly non-linear relative to x and most of the
parameters, it has linear components. To show this, let us rewrite the network
function as follows:

).()()()()()()(0
)1(

2
)2(

2,1
)1(

1
)2(

1,1
)2(

0,1 nunynwnynwnwnY +⋅+⋅+= (5)

In network terms, each)1(y represents a node in the hidden layer. For the
particular specification used here, the output function, shown in Eq. (5), is linear
in these values. The output function can be considered non-linear in ,)1(y but for
most forecasting problems with continuous dependent variables there will be no
advantage of this additional non-linearity. A second linear component is found in

 229

Fig. 3. Network diagram with three explanatory variables and two nodes.

the denominator of .)1(y Specifically, the exponent is a linear weighted sum of
the input variables which can be written as

),()()()()()()()(3
)1(
3,12

)1(
2,11

)1(
1,1

)1(
0,1

)1(
1 nxnwnxnwnxnwnwnv ⋅+⋅+⋅+= (6)

After some transformations we obtain

)]([exp1

)]([exp

)]([exp1

1
)(

)1(
1

)1(
1

)1(
1

)1(
1

nv

nv

nv
ny

+

=

−+

= . (7)

From that, we can recognize a binary logic [81]. The linear weighted sum)(v
is the power on .e If v is a large negative number, then)1(y is close to zero. If
v is ,0 then)1(y is .5.0 And if v is a large positive number, then)1(y is close
to .1 In between, it traces out an S-shaped function. This also means that there is
an S-shaped relationship between each node value)(v and each explanatory
variable)(x in that node. This S curve may be positively or negatively sloped,
depending on the sign of the slope coefficient of x ()0(

,(ijw in Eq. (2)). Further,
the specification is automatically interactive.

Rewriting the exponential, we obtain:

.)]()([exp)]()([exp)]()([exp)]([exp

)]()()()()()()([exp

3
)1(
3,12

)1(
2,11

)1(
1,1

)1(
0,1

3
)1(
3,12

)1(
2,11

)1(
1,1

)1(
0,1

nxnwnxnwnxnwnw

nxnwnxnwnxnwnw

⋅⋅⋅⋅⋅⋅=

⋅+⋅+⋅+

(8)

Now each variable x interacts with all other variables that do not have zero
slopes in the node. Multiplicative interactions related to the underlying process
give evidence of the efficiency of the specification. It is true that each x appears
several times and, in the case of Eq. (1), they appear in exactly the same
algebraic form. At first glance, econometricians will not be comfortable with that
idea. It looks like an extreme form of multi-collinearity. In network language, the

Input layer Hidden layer Output layer

x1

x2

x3

 Y)1(
1,1y

)1(
2,1y

)))()()()()()()((exp(1

1
)(

3
)1(
3,12

)1(
2,11

)1(
1,1

)1(
0,1

)1(
1,1 nxnwnxnwnxnwnw

ny
+++−+

=

)))()()()()()()((exp(1

1
)(

3
)1(
3,22

)1(
2,21

)1(
1,2

)1(
0,2

)1(
2,1 nxnwnxnwnxnwnw

ny
+++−+

=

)()()()()()()(0
)1(

2
)2(

2,1
)1(

1
)2(

1,1
)2(

0,1 nunynwnynwnwnY +⋅+⋅+=

 230

repetitive specification is called parallelism or massive parallelism, and it is one
of the strengths of this approach. It could raise some serious issues by parameter
estimation [45]. With several nodes in the hidden layer, the specification allows
for a variety of non-linearities and for a range of variable interactions. For
example, two logistic curves, one positively and the other negatively sloped, can
be combined to give a U-shaped response over the relevant range of .x Given
this flexibility, the estimation problem is to find a set of specific non-linearities
and interactions that are useful for explaining the history and for forecasting. In
terms of neural networks, Eqs. (1) to (3) describe a feed-forward neural network
with a single output which has one hidden layer with one or more nodes, uses
logistic activation functions in each node of the hidden layer, and uses a linear
activation function in the output layer.

Figure 3 shows a neural network described by the function (1), where the
explanatory variables x enter the input layer. The logic transforms appear in the
hidden layer, and the result Y appears in the output layer. The idea is that the
inputs feed the nodes in the hidden layer, and there is no feedback. Further, the
nodes do not feed sideways into each other. Instead, they feed onwards to the
output layer. There is no feedback, delayed or otherwise, from the output layer to
the hidden nodes. The absence of feedbacks or node-level interactions makes it a
feed-forward system.

Activation function refers to the S-shaped nature of the function in each node
and to the fact that boundary values (0 and 1) can be interpreted as “on” and
“off”. The term “activation function” is taken from the neural sciences and it is
related to the requirement that a signal must reach a certain level before a neuron
fires to the next level. It is an adequate description of the forecasting. For most
forecasting problems, if flexibility is allowed (more than two nodes), some of the
nodes will end up specializing and will activate (take on a value close to 1.0)
under specific conditions and take on a value close to zero otherwise.

For forecasting purposes, the functions of the hidden layer must be logistic
functions. Any other S-shaped function can be used, such as an arctan or a
cumulative normal, without a significant change in the model behaviour. It is
important to use a smooth differentiable function that is easy to work with for
estimation purposes.

Further, it is not necessary to use S-shaped curves at all. For example, bell-shaped
functions, like the derivative of a logistic curve, may be used in some nodes.
However, moving away from S-shaped curves, the term “activation” becomes less
descriptive of functional performance, since the alternative functions would no
longer range between zero at one extreme and one at the other. As a result, activation
functions of the hidden node are sometimes called neuron-transfer functions [44].

Finally, additional non-linearity may be introduced in the output layer. In fact,
for dependent variables that have discrete outcomes, such as a binary variable, a
logistic activation function in the output layer would probably be desirable. But
for most problems with continuous outcomes, there is no real gain from a further
non-linearity at this level.

 231

In the literature on neural networks, the process of parameter estimation is
called training. The goal of the training process is to find network parameters that
make the model errors small. The estimation process is more complicated than in
a regression model because the model is non-linear and because the objective
function is relatively complicated. Parameter estimation is a simple process for
most common statistical problems such as finding the solution to a non-linear
regression model. However, because of the parallelism that reflects the inclusion
of multiple nodes in the hidden layer, it can be shown that the least squares
objective function for a neural network is extremely complex with a huge number
of local optima.

Owing to this complexity it is necessary to explore a wide region of the
parameter space to find a relatively good solution. The rule for selecting the final
model parameters is based on an average of in-sample and out-of-sample error
statistics. Estimation from each random starting point is based on a subset of the
sample data. Once a solution is found, these parameters are used to test the power
of the estimated parameters, based on the observations withheld from the
estimation process. Usually, solutions that perform well in the sample, perform
well also out of the sample. Particularly, with a large number of nodes, some
solutions will be more specialized in specific cases in the sample, and others will
be more stable and more useful out of the sample. There exist large numbers of
non-linear specifications that provide similar performance.

As new data become available, it is natural to re-estimate parameters with the
extended sample period. In literature, the update process for incorporating new
data is called learning.

With linear least squares models, updating the parameters with additional data
is a full re-estimation of the model and to the new data typically the same weight
as to the earlier data is given. For non-linear least squares, the re-estimation
process can begin with the same set of initial guesses that was used to start the
original estimation process, or it can begin with the solution obtained from that
estimation. In both cases, for problems with a well-behaved object function, the
final solution will be a single set of parameters that corresponds to the global
optimum based on the expanded data set.

For neural networks that are known to have a large number of local optima, the
situation is slightly different. In this case, it seems natural to start with the
parameters from the training process and to re-optimize the solution with the new
data included. However, starting with the training solution implies starting with the
specific set of non-linearities and variable interactions represented by that solution.
From this starting point, re-estimation with the expanded data typically leads to
minor changes in the estimated parameters. This implies that we are staying at the
same local optimum at which we started, and that the location of this solution does
not move much because of the new data. In this sense, the role of the new data is
smaller than that of the earlier data. Actually, the functional form is determined in
the training process which looks at many solutions and selects one, and the new
data is used only to refine the parameters of that functional form. To give the new

 232

data the same role as has the earlier data, it would be necessary to repeat the entire
training process with the expanded data set.

6. MODEL FOR FAULT PREDICTION

As described in Section 4, the neural network is a very powerful abstraction

for pattern recognition. We can consider facility downtimes also as a pattern
(Fig. 4).

For fault prediction, the developed network uses planned and non-planned
facility downtimes to predict faults. Planned downtimes are stops arising from
annual or monthly plans. Non-planned downtimes are stops that have not been
planned in annual or monthly plans, but are not faults.

Thus, the FNN’s objective is to identify a pattern, which is a standard
identification problem. To describe the network, initial data is analysed, neural
network inputs are defined as well as layers, activation functions and outputs, and
the wanted detection probability. The distance forward from the fault is marked
with the “+” sign and the distance backward from the fault with “–”. In data
analysis, the facilities are grouped by the type. We found that on average the
downtime count by type is 20 in a quarter. Thus 20 inputs were selected to our
FNN to create the input pattern. The idea of selecting the layers is that each next
layer should simplify the pattern for grouping the data. For example, in a trans-
former, the planned work may be a major overhaul (once in 12 years), current
maintenance (once in 3 years), transmission checking (once in 2 years), etc. Thus
the first layer combines transmission checking and current maintenance, the
second layer – major overhaul and combined transmission checking and current
maintenance, etc. The neuron selection for hidden layers is based on the intro-
duction of three neurons per each input: “+”, “–”, and “0”. Thus there are 60
neurons in a layer.

To select the activation functions, we should take into account that they must
be monotone and bounded and if they are continuous, they must satisfy the
Lipschitz condition

,||||||)()(|| 2121 vvCvfvf −≤− (9)

where ()f is the activation function, v is net activity, and C is the Lipschitz
coefficient. The activation functions are described in Table 1, where h± denotes
limits of the activation function (),f c is the coefficient which determines the
rising angle of (),f and a is a coefficient that determines the behaviour of FNN
when v is about zero.

Fig. 4. Illustration of facility stops: � planned or non-planned facility downtime (NF),
� emergency downtime fault (FL).

+ Time

 233

Table 1. Activation functions

Signum function Identity function Delta function

 1, when a fault exists 1, when a fault exists ,h when av ≥
– 1, when no fault exists 0, when no fault exists ,cx when av <||
 ,h− when av −≤

The signum and identity functions were used to predict only fault existence.
The delta function was used to obtain the probability of fault existence.

By constructing the FNN, we experimented with input data as follows (E1 to
E4 indicate the experiments):

E1. The middle points in the duration of the NF downtimes were found and
the distance to the FL start was calculated.

E2. The finishing points of the NF downtimes were found and the distance to
the FL start was calculated.

E3. The starting points of the NF downtimes were found and the distance to

the fault start was calculated.

E4. The NF downtime beginning and duration were found and the distance to
the FL start was calculated.

To find the most suitable learning method, we investigated and built the
Hebbian, the Perceptron, the Delta and the Widrow–Hoff Learning Rule in ENav.
A general learning rule is based on [43]. The weight vector iw increases in
proportion to the product of the input x and the learning signal .ir The learning
signal is, in general, a function of ,iw ,x and sometimes of the reference or
desired signal .id Hence,

 234

).,,(iiii dxwrr = (10)

The increment of the weight vector is expressed as

),()](),(),([)(txtdtxtwrtw iiii η=∆ (11)

where η is a positive number called the learning constant that determines the
rate of learning. The weight vector adopted at the time t becomes at the next
instant (or learning step)

).()()1(twtwtw iii ∆+=+ (12)

The Hebbian Learning Rule. This rule requires the weight initialization at
small random values around 0=iw prior learning. The Hebbian Learning Rule
represents only feed-forward, unsupervised learning [82]. The rule states that if
the cross product of output and input or the correlation term jii xsf)(is positive,
then it results in an increase in the weight ;ijw otherwise the weight decreases:

),()(ii
T
ii sfxwfr =≡ (13)

.)(jiiij xsfw η=∆ (14)

Thus, the single weight ijw is adapted, using

.)(jiii xsfw η=∆ (15)

The Perceptron Learning Rule. In this rule, the learning signal is the
difference between the desired and the actual neuron response

.iii ydr −= (16)

As mentioned, the zero mean threshold activation function is used and
therefore

).(sgn)(sgn xwsy T
iii == (17)

In this method, weight adjustments are obtained as

,)](sgn[xxwdw T
iii −=∆ η (18)

.)](sgn[j
T
iiij xxwdw −=∆ η (19)

Since the neuron response is only binary, we have

.2 xwij η±=∆ (20)

The plus sign is used if 1=id and .1)(sgn −=xwT
i

Using the learning input vectors)1(x to),(nx we calculated constants
2

1
||)(||max ix

ni K=
=β and ,|)(|min 0

1
ixa T

ni
ω

K=

= where 0ω is the solution weight vector

 235

in our learning process. The Rosenblat theorem [83,84] is applicable here. It says
that if a solution exists in FNN, then in step 0n the weight 0ω is attainable:

.|| 2
00

−

≤= an Tωβ (21)

The energy E is

.)()(
1

1

2
∑
=

−=

N

n

nynd
N

E (22)

Since





=−
detects,when4,

catch,when,0
)()(

2
nynd (23)

then

,4
1

L
N

E = (24)

where L is the number of statements in Eq. (23) that are not zero. Therefore E
is fault probability)(NL multiplied by four.

In Eq. (23) the word “catch” is used for describing the following situations:
1) the event is “caught” when it occurs as projected,
2) the event is “caught” when it did not occur as projected.
The word “detect” is used if
1) the event occurred, but not as projected, or
2) the event did not occur, although it was projected.

The Delta Learning Rule. This rule is applicable only if an activation function

is differentiable (in our case the function is monotone and continuos) and in the
supervised mode [43,84]. The learning signal ir for this rule is called “delta”,
defined as

.)()]([xwfxwfdr T
ii

T
iiii

′

−= (25)

This learning rule can be readily derived from the condition of least squared
error between iy and .id The squared error, calculating the gradient vector with
respect to ,iw is defined as

.2))((2)(22 xwfdydE T
iiiii −=−= (26)

We obtain the error gradient as

.)()(xxwfyd T
iiii

′

−−=∇E (27)

Since the minimization of the error requires that the weight changes are in the
negative gradient direction, we take

 236

.)()(xsfydw iiiii
′

−=∇=∆ ηη E (28)

In our case, .)(xxwfy T
iii

′′

= It means that if ,|| axwT
i < then ,cyi =

′ and if
,|| axwT

i ≥ then 0=′

iy (Table 1). Thus







≥

<−
=′

,||if,0

,||if,)(

axw

axwcxyd
E

T
i

T
iii

w (29)







≥

<−
=∆

.||if,0

,||if,)(

axw

axwcxyd
w

T
i

T
iiiη

 (30)

The Widrow–Hoff Learning Rule. This rule in applicable to the supervised
training of the neural network [43,84]. It is independent of the activation functions
of neurons used since it minimizes the squared error between the desired output
value id and the neuron’s activation value .is The learning signal is defined as

.xwdsdr T
iiiii −=−= (31)

Thus the weighting vector increment under this learning rule is

.)(xsdw iii −=∆ η (32)

This rule can be considered as a special case of delta learning rule if the
activation function is simply an identity function. The speed of convergence and
the convergence itself of the learning rule depends on the constant .η To make
the learning algorithm more reliable and efficient, its adaptive version was
proposed in [43]. In our case, the constant η is updated according to the rule







=

≠
=

,0if,0

,0if),(1
)(

xx

xxxx
x

T

TT

η (33)

and the corresponding weight increment is







=

≠−
=∆

,0if,0

,0if),()(

xx

xxydx
w

T

T
ii

i

ηα
 (34)

where α is a constant reduction factor.

7. RESULTS OF FAULT PREDICTION

For teaching we have used data from early 1993 until 1997. Testing was

conducted using data from 1998 and 1999. This chapter provides results for
transformers, where we used FNN with 20 inputs, 60 neurons in the hidden layer,
and one output neuron.

 237

To compare different methods, we analysed the FNN energy)(E because it
represents the learning error

,
1

1

2
∑
=

=

N

i
ie

N
E (35)

where ie represents the difference between the desired output and the real FNN
output (Fig. 5). Below, the E indices refer to experiments E1 to E4 described in
the previous section.

Tables 2 to 5 show FNN energy convergence or learning results for different
learning rules.

Fig. 5. FNN output and error.

Table 2. The Hebbian Learning Rule, ,47.0=α 28.0=η

Number of experiments
1E

E
E2

E
E3

E
E4

E

 50 0.515 0.460 0.393 0.499
100 0.447 0.414 0.320 0.421
150 0.443 0.378 0.242 0.380
200 0.380 0.351 0.229 0.310
300 0.343 0.331 0.200 0.288

Table 3. The Perceptron Learning Rule (years 1998/1999)

Number of experiments
1E

E
E2

E
E3

E
E4

E

200 0.251 0.294 0.307 0.987

Net activity

FNN output

Ideal FNN output

planned and non-planned
facility downtime
patterns

Fault patterns

error

 Ideal FNN output

FNN real
output

 238

Table 4. The Delta Learning Rule, ,45.0=α 28.0=η

Number of experiments
1E

E
E2

E
E3

E
E4

E

 50 0.413 0.360 0.344 0.416
100 0.371 0.281 0.229 0.178
150 0.293 0.178 0.111 0.149
200 0.212 0.091 0.107 0.148
300 0.155 0.023 0.103 0.007
400 0.130 0.019 0.100 0.006

Table 5. The Widrow–Hoff Learning Rule, 8.0=α

Number of experiments
1E

E
E2

E
E3

E
E4

E

 50 0.317 0.311 0.400 0.287
100 0.218 0.303 0.220 0.274
150 0.175 0.212 0.153 0.246
200 0.126 0.210 0.065 0.250
300 0.120 0.008 0.100 0.195
400 0.102 0.006 0.070 0.102

From Tables 2 to 5 the following conclusions can be drawn.
1. The convergence speed of the Hebbian Learning Rule is slow.
2. In case of the Perceptron Learning Rule the value of η is not important as

long as it is positive. After FNN has reached its minimum, it will not get more
accurate (see the Rosenblat Theorem in Section 6). The speed of convergence
was not examined.

3. The Delta as well as the Widrow–Hoff learning rules converge as
0)]([2

→trE if .∞→t
In the majority of cases, the Widrow-Hoff Learning Rule is most effective from

the point of view of the convergence speed. An analysis of EE’s overhaul data proves
that the number of overhauls and of works performed on the facilities grows with an
increase of the number of failures. Since 1992, failures account for 4–7% of all
works performed. This is a rather stable figure. The analysis showed that failures
depend on the type of the network element. There is no correlation between error
percentages of different years. This means that depending of the type of the facility,
only internal failure causes of facilities play a role. External conditions, such as
weather, are not significant. Therefore, based on the downtime data alone, we can
predict with high probability whether a certain facility will have a failure at the
moment defined by the user. The fact that we can predict no failure is of major value.
Depending on the type of the network element, our average detection percentage of
emergency events is 71%. With regards to transformers, this figure amounts to 80%,
which is the highest detection percentage among outdoor facilities. As for indoor
facilities, our average failure detection percentage is 80 and for some facilities even
92. Yet for an individual network element within the facility, our average detection
probability has been 57%.

 239

8. A MODEL FOR SHORT-TERM PROJECTION
OF THE HIGH-VOLTAGE POWER CONSUMPTION

For short-time projection of power consumption, we divided the day into

6-hour periods. Every hour was described by statistical consumption data,
temperature, and light intensity – all in all 18 inputs. This exercise was based also
on the assumption that one hidden layer is sufficient besides an input and an
output layer to approximate a function with multiple variables, provided the net-
work is completely connected and the number of neurons of the hidden layer
exceeds considerably the number of inputs [45]. In the formation of the hidden
layer, we used the linear combination of input elements of the input data of one
hour as a logic, which gave 7 neurons per hour. Thus the number of neurons of
the entire hidden layer was 42.

The output layer has only one neuron, and we took the consumption per hour as
its output. We introduced the sigmoid activation function on both the hidden and
output layers. Thus every projected hour was supplied with a network of its own, i.e.,
we developed separate networks of projected consumption for all the respective
hours of the 8 days. We chose the back-propagated learning rule as a training rule,
because we applied the least squares method to analyse the output error, and we used
the sigmoid function as an activation function. Had we chosen identity as an
activation function, we would have used the Widrow–Hoff Learning Rule. In
practice, a trained neural network is retrained by the software when the difference
between the actual consumption and projected consumption exceeds 2.5%.

The following back-propagation learning algorithm [43,84] was applied.
Initialization. All the synaptic weights and threshold levels of the network

were set to small random numbers that were uniformly distributed.
Presentation of training examples. We presented the network with an epoch

of training examples. For each example in the set ordered in some way, we
performed the following sequence of forward and backward computations.

Forward computation. The training example in the epoch was denoted by
)],(),([nn dx with the input vector)(nx applied to the input layer of sensory

nodes and the desired response vector)(nd applied to the output layer of
computation nodes. We computed the activation potentials and function signals
of the network by proceeding forward through the network, layer by layer. The
internal activity level)()(nl

jυ for the neuron j in layer l is

,)()()(
0

)1()()(
∑
=

−

=

p

i

l
i

l
ji

l
j nynwnυ (36)

where)()1(ny l
i
− is the function signal of the neuron i in the previous layer 1−l

on the thn iteration and)()(nl
jiυ is the synaptic weight of the neuron j in layer l

that is fed from neuron i in layer .1−l For ,0=i we have 1)()1(
0 −=

− ny l and
),()()(

0 nw l
j

l
j Θ= where)()(nl

jΘ is the threshold applied to the neuron j in layer .l
Using the sigmoidal non-linearity, the function (output) signal of neuron j in
layer l is

 240

.]))(exp(1[)(-1)()(nny l
j

l
j υ−+= (37)

If neuron j is in the first hidden layer),1(=l set),()()0(nxny jj = where
)(nx j is the thj element of the input vector).(nx If neuron j is the output

layer),(Ll = set).()()(nony j
L

j = Hence, we computed the error signal
),()()(nondne jjj −= where)(nd j is the thj element of the desired response

vector).(nd
Backward computation. We computed the δ ’s (i.e., local gradients) of the net-

work by proceeding backward, layer by layer, for neuron j in the output layer :L

)],(1)[()()()()(nononen jj
L

j
L

j −=δ (38)

and for neuron j in the hidden layer :l

.)()(]1)[()()1()1()()()(
∑

++

−=

k

l
kj

l
k

l
j

l
j

l
j nwnynyn δδ (39)

Hence, we adjusted the synaptic weights of the network in layer l according to
the generalized delta rule:

),()()]1()([)()1(1)()()()()(nynnwnwnwnw l
i

l
j

l
ji

l
ji

l
ji

l
ji

−

+−−+=+ µδα (40)

where µ is the learning-rate parameter and α is the momentum constant.
Iteration. We iterated the computation by presenting new epochs of training

examples to the network until the free parameters of the network were stabilized
and the average squared error computed over the entire training set was at a
minimum or at a sufficiently small value. By that we were guided by the
following considerations. The order of presentation of training examples should
be randomized from epoch to epoch. The momentum and the learning-rate
parameters are typically adjusted (and usually decreased) as the number of
training iterations increases.

For the tuning parameters, the leaning rate µ and the momentum constant ,α
an algorithm was developed which found the stable-energy case based on the
existing data; the constants α and µ were determined for each separate network
at every hour. Testing series was started with ,0.1== µα and software
performed test series with ;001.0−=αα around this value the corresponding
value of 001.0±µ was looked for. By testing, the lower limit of α was set at .0

9. RESULTS FOR SHORT-TERM PROJECTION
OF HIGH-VOLTAGE POWER CONSUMPTION

The method described above was applied to implement a feed-forward neural

network that allowed a successful real-time projection of power consumption for
a period of up to 8 days. The tuning parameters found for the networks are shown
in Table 6 where the tuning parameters α and µ were applied to every hour’s

 241

network, and energy was stable in the range 21 ααα << and .21 µµµ <<
Number ,N indicating training samples per epoch, was increased proportionally
to the projected day.

Based on the initialization parameters given in Table 6, the learning of each
network for 600 training samples was performed. Table 7 shows the energies
found.

Table 6. Tuning parameters of networks

Day 1α 2α α 1µ 2µ µ N

1 0.422 0.510 0.466 0.950 1.010 0.980 120
2 0.221 0.320 0.270 0.430 0.442 0.439 125
3 0.471 0.478 0.474 0.021 0.030 0.025 130
4 0.009 0.010 0.009 0.008 0.010 0.009 135
5 0.292 0.233 0.212 0.410 0.456 0.433 140
6 0.443 0.541 0.492 0.021 0.056 0.038 145
7 0.531 0.544 0.537 0.032 0.098 0.065 150
8 0.395 0.400 0.397 0.245 0.299 0.272 155

Table 7. Post-learning energies

Days Hrs

1 2 3 4 5 6 7 8

 0 0.246 0.221 0.221 0.212 0.231 0.221 0.212 0.330
 1 0.246 0.212 0.232 0.212 0.246 0.200 0.215 0.387
 2 0.239 0.212 0.211 0.321 0.253 0.201 0.239 0.355
 3 0.222 0.214 0.211 0.213 0.201 0.211 0.299 0.299
 4 0.221 0.211 0.245 0.230 0.253 0.231 0.222 0.316
 5 0.221 0.210 0.211 0.321 0.243 0.213 0.222 0.337
 6 0.260 0.321 0.298 0.242 0.241 0.323 0.220 0.261
 7 0.264 0.221 0.244 0.321 0.212 0.321 0.211 0.240
 8 0.264 0.212 0.262 0.332 0.221 0.312 0.227 0.251
 9 0.260 0.321 0.221 0.252 0.212 0.221 0.223 0.298
10 0.252 0.210 0.219 0.221 0.232 0.222 0.232 0.299
11 0.242 0.211 0.212 0.242 0.213 0.221 0.216 0.241
12 0.344 0.200 0.291 0.310 0.211 0.228 0.210 0.333
13 0.311 0.231 0.277 0.319 0.212 0.221 0.200 0.331
14 0.310 0.242 0.310 0.305 0.211 0.219 0.288 0.349
15 0.323 0.231 0.200 0.331 0.209 0.219 0.276 0.300
16 0.324 0.223 0.299 0.322 0.201 0.244 0.231 0.314
17 0.311 0.222 0.299 0.351 0.200 0.212 0.299 0.344
18 0.241 0.242 0.321 0.281 0.270 0.331 0.252 0.300
19 0.229 0.272 0.400 0.221 0.288 0.399 0.288 0.283
20 0.264 0.261 0.383 0.271 0.203 0.302 0.253 0.299
21 0.214 0.292 0.313 0.223 0.255 0.319 0.219 0.273
22 0.221 0.292 0.330 0.332 0.288 0.371 0.297 0.282
23 0.231 0.214 0.301 0.263 0.271 0.322 0.299 0.293

 242

-4

-2

0

2

4

6

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

Hours

E
rr

o
r,

 %

500

600

700

800

900

1000

1100

1200

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

Hours

M
W Actual consumption

Projections

Fig. 6. Actual consumption and consumption projections, where each projected hour has its own FNN.

Fig. 7. Projection error over 120 hrs according to Fig. 6.

We applied the method to a feed-forward neural network, which allowed a
successful real-time projection of power consumption for a period of up to 8
days. Figure 6 shows a 5-day projection where every hour of the day had its own
network. The average error over the one-year testing period was 2.92%. Figure 7
shows the projection error of the graph of Fig. 6.

10. CONCLUSIONS

The article has analysed two important aspects related to regime planning:

short-term projection of power consumption at high voltage and fault prediction
in a power network based on ENav in the National Grid of Eesti Energia Ltd in
the Oracle DB environment.

 243

Various model classes were considered and criteria were proposed for the
selection of a suitable model – time-series and transfer-function models, models
based on trigonometric functions, state-spaced models, models based on
orthogonal transformation, hierarchical models, and neural networks. The last
one was selected.

Our models for consumption projection were implemented as a two-layered
feed-forward neural network with 18 inputs, reflecting data for a period of six
hours, 42 neurons on the hidden layer, and one neuron as an output that provided
consumption projection of the respective hour of the day. The projection of every
hour had a network of its own, which was applied to all the periods. For the first
four days, an average projection error of ± 3% and for the last four days an
average projection error of ± 6% was achieved.

The model for fault prediction was implemented with 20 inputs, 60 neurons
on the hidden layer and one in the output layer. The paper explains FNN
topology selection and compares four different learning rules in four types of
experiments. We found that experiments E1–E3 are quite similar from the point
of view of the convergence speed of the learning rule. Experiment E4 was not
efficient as for the convergence speed though we used more data than in other
experiments. We found that in the majority of cases the Widrow–Hoff Learning
Rule was the most effective one in terms of the convergence speed of the
learning rule. We found empirically that an average percentage of facility fault
prediction is about 70. In the case of a facility located in the building, the
detected percentage was about 80. Since the percentage of breakdown detection
is more than 70 when as input data only planned, non-planned facility down-
times, and fault downtime was used, we can assume that the non-planned
conditions were ignored (weather information, performer qualifications, wrong
work planning etc.). Further studies should focus on the integration of facility
passport data and restrictions and statistical analysis of data functions to increase
the percentage of detection. In the ENav application, the fault prediction
functionality is under development.

The software for short-term projection of power consumption has gone
through two developments since the requirements to accuracy have increased.
When from preliminary version of the software an average projection error of
± 3% for the first four days and ± 6% for the last four days was required, then the
new version gives projections on hourly basis. In order to achieve this goal, the
following steps were taken. First, we abandoned the FNN structure since our goal
was to obtain greater temperature sensitivity. The model described in this article
proved that FNN’s first layer became quite insensitive to inputs, i.e., it achieved
the local minimum and could not depart from it. In order to avoid this problem,
the logistic function, acting as an activation function, was replaced with the
hyperbolic tangent. In addition to temperature, light intensity, power consump-
tion, week day (1–7), month (1–12), and threshold were added as inputs. Six
neurons were applied to the hidden layer. The first neuron takes into account
power consumption of the first day, light intensity, and temperature. Second

 244

neuron uses only the current day’s current projected temperature. The third
neuron uses only the day before yesterday’s hourly power consumption. The
forth neuron uses as its input a specified weekday, and the fifth neuron uses a
specified month. The sixth neuron uses the threshold. Output layer neuron is tied
with all the neurons on the hidden layer. Rest of the logic remained unchanged.
Applying the above logic we were able to achieve the data quality that was
required. The next step involved developing of an algorithm that synchronizes
the shape of the function that is based on the results, projected by different neural
networks, since consumption is projected by different neural networks that are
autonomous. Thanks to mentioned synchronization, the accuracy of projected
results further improved, but the speed of the algorithm decreased. For the time
being an algorithm that increases the levelling engines convergence speed is
being elaborated. Currently the short-term projection of power consumption is
again in an experimental state due to just described further developments.

REFERENCES

 1. Program Application Guide, PSS/E 25. 1, 2, Power Technologies Inc., Schenectady, New York,
1997.

 2. Power System Simulator for Engineering – PSS/E. http://www.pti-us.com/pti/software/psse/
psse.htm. Accessed 01 March 1999.

 3. Estonian Power System, Tallinn, Estonia, National Dispatch Center for SE Eesti Energia.
Vol. 2: SCADA/EMS Functionality, Vol. 3: Appendixes. Harris Energy Control Systems.
Melbourne, Florida, 1997, Oct. 15, ref: 8020-49.

 4. Estonian Power System, Eesti Energia, Bidding Documents. Procurement of Dispatch Center
and Remote Terminal Units. Supply & Installation. Vol. 2. Prepared by Eesti Energia,
Electrotek Concepts and EPIC Engineering under contract with the United States Trade and
Development Agency, 1997, Oct. 14, ref: ME 7 3O5 0005.

 5. Proposal for Procurement of Dispatch Center and Remote Terminal Units. Vol. 2. IVO Power
Engineering Ltd, Vantaa, 1997, Oct. 14, ref: PSC/EST-A2-375.

 6. SINAUT Spectrum System Description. SIEMENS, 1997, Oct. 7, ref: U3452-O-U000-053500.
 7. Bunn, D. W. and Farmer, E. D. Comparative models for electrical load forecasting. J. Wiley,

Belfast, 1985.
 8. AR Model. http://www-ssc.igpp.ucla.edu/personnel/russell/ESS265/Ch9/autoreg/ node9.html.

Accessed 10 October 2000.
 9. Draper, N. and Smith, H. Applied Regression Analysis, 2nd ed., J. Wiley, New York, 1981.
10. Tiao, G. C. Autoregressive moving average models, intervention problems and outlier detection

in time series. In Handbook of Statistics, Elsevier Science, Amsterdam, 1985, 5, 85–118.
11. Berger, J. O., Fienberg, S. E., and Olkin, I. ARMA Model Identification. Springer-Verlag, New

York, 1992.
12. ARIMA. http://www.geocities.com/Colosseum/5585/mprev.html. Accessed 10 October 2000.
13. Box, G. E. P. and Jenkins, G. M. Time Series Analysis Forcasting and Control. Holden-Day,

San Francisco, 1976.
14. To, F. W. and Tsang, K. M. Three-dimensional Object Recognition Using an Orthogonal

Complex AR Model Approach. http://ejournals.wspc.com.sg/ijprai/14/preserved-docs/
1402/S021800140000009X.pdf. Accessed 10 October 2000.

15. Freund, R. J. and Minton, P. D. Regression Methods. Marcel Dekker, New York, 1979.
16. Pentland, A. and Sclaroff, S. Closed-form solutions for physically based modelling and recogni-

tion. IEEE Trans. Pattern Anal. Mach. Intelligence, 1991, 13, 715–729.

 245

17. Shibata, R. Various model estimation techniques in time series analyses. In Handbook of
Statistics, Elsevier Science, Amsterdam, 1985, 5, 179–187.

18. Lanitis, A., Taylor, C. J., and Cootes, T. F. A Generic system for classifying variable objects
using flexible template matching. In Proc. British Machine Vision Conference. BMVA
Press, 1993, 329–338.

19. Sozou, P. D., Cootes, T. F., and Taylor, C. J. A non-linear generalisation of point distribution
models using polynomial regression. In Proc. British Machine Vision Conference. BMVA
Press, 1994, 397–406.

20. Bodger, P. S., Brooks, D. R. D., and Moutter, S. P. Spectral decomposition of variations in
electricity loading using mixed radix fast Fourier transform. IEE Proc., 1987, 134, 197–
202.

21. Harvey, A. C. Forecasting, Structural Time Series Model and the Kalman Filter. Cambridge
Univ. Press, Cambridge, 1990.

22. Kangilaski, T. The Kalman filter for numerical processing of radar data. In 6th Biennial on
Electronics and Microsystem Technology, Baltic Electronics Conference, BEC 1998,
Tallinn, 1998, 123–126.

23. Mendel, J. M. Lessons in Digital Estimation Theory. Prentice-Hall, Engelwood Cliffs, N.J.,
1987.

24. Szelag, C. R. A short term forecasting algorithm for trunk demand servicing. Bell System Tech.
J., 1994, 61, 67–77.

25. Young, P. Recursive extrapolation, intrapolation and smoothing of non-stationary time-series.
In Identification and System Parameter Estimation (Chen, H. F., ed.). Pergamon, Oxford,
1988.

26. Mehra, R. K. Kalman filters and their applications to forecasting. Manage. Sci., 1979, 12, 75–94.
27. Ethier, S. N. and Kurtz, T. G. Markov Processes: Characterisation and Convergence. J. Wiley,

New York, 1987.
28. Sastri, T. A state-space modelling approach for time series forecasting. Manage. Sci., 1985, 31,

1451–1470.
29. Singular Value Decomposition. http://www.cs.ut.ee/~toomas_l/linalg/lin2/node11.html.

Accessed 14 August 2001.
30. Kanjila, P. P. and Palit, S. The singular value decomposition – applied in the modelling and

prediction of quasiperiodic processes. Signal Process., 1994, 35, 257–267.
31. Kanjila, P. P. and Palit, S. On the singular value decomposition, applied in the analysis and

prediction of almost periodic signals. Signal Process., 1994, 40, 269–285.
32. Klema, V. C. and Laub, A. J. The singular value decomposition: its computation and some

applications. IEEE Trans. Autom. Control, 1980, AC-25, 164–176.
33. Golub, G. H. Matrix Computations, 2nd ed. The Johns Hopkins Univ. Pr., Baltimore, 1989.
34. Eigenvalues and Eigenvectors Technique. http://www.sosmath.com/diffeq/system/linear/

eigenvalue/eigenvalue.html. Accessed 14 August 2001.
35. Deprette, F. SVD and Signal Processing: Algorithms, Applications and Architectures, North-

Holland, Amsterdam, 1988.
36. Kanjilal, P. P., Palit, S., and Rao, G. P. On the modelling and prediction of quasiperiodic

signals using SVD and neural networks. In IFAC Symposium on System Identification,
SYSID’94. Copenhagen, 1994, 1536–1540.

37. Malliopoulos, C., Bakamidis, C., and Carayannis, G. Order determination and optimum harmonic
reconstruction of quasi-periodic signals in noise. Signal Process., 1999, 79, 161–173.

38. Bhattacharya, T. K. and Basu, T. K. Medium range forecasting of hourly power system load by
time series analysis using Walsh transform. Electr. Power Energy Syst., 1991, 13, 193–200.

39. Farlow, S. J. Self-Organizing Methods in Modelling: GMDH Type Algorithms. Marcel Dekker,
New York, 1988.

40. Ikeda, S., Ochiai, M., and Sawaragi, Y. Sequential GMDH algorithm and its application to river
flow prediction. IEEE Trans. Syst. Man and Cybern., 1976, SMC-6, 473–479.

 246

41. Kortmann, M. and Unbehauen, H. Two algorithms for model structure determination of
nonlinear dynamic systems with applications to industrial process. In Preprints 8th IFAC
Symposium on Identification and System Parameter Estimation. Beijing, 1988, 2, 939–946.

42. Kanjilal, P. P. Adaptive Prediction and Predictive Control. Peter Peregrinus, London, 1995.
43. Amari, S. Mathematical foundations of neurocomputing. IEE Proc., 1990, 78, 1443–1463.
44. Azoff, E. Neural Network Time Series Forecasting of Financial Markets. J. Wiley, Chichester,

1994.
45. Haykin, S. Neural Networks. A comprehensive Foundation. Macmillan, New York, 1994.
46. Isermann, R. and Balle, P. Trends in the application of model based fault detection and

diagnosis of technical processes. In Proc. IFAC World Congress, San Francisco, 1996.
47. Muresanu, S. Neural Networks Based Image Recognition. Technical Report, Katholieke

Hogeschool Sint-Lieven, Ghenth, Belgium, May, 2000.
48. Gori, M. and Scarselli, F. Are multilayer preceptrons adequate for pattern recognition and

verification? IEEE Trans. Pattern Anal. Mach. Intelligence, 1998, 20, 1121–1132.
49. Ontanu, D.-M. Learning by evolution. A new class of general classifier neural networks and

their training algorithm. Adv. Model. Anal., 1993, 26, 27–30.
50. Weigend, A. S. and Gershenfeld, N. A. Time Series Prediction: Forecasting the Future and

Understanding the Past. Addison Wesley, Santa Fe, 1994.
51. Franses, P. Time Series Models for Business and Economic Forecasting. Cambridge Univ. Pr.,

Cambridge, 1998.
52. Holton, W. J. and Keating, B. Business Forecasting, 3rd ed., Irvin/Mc Graw-Hill, Boston, 1998.
53. Makridakis, S. Forecasting, Planning and Strategy for the 21st Century. Free Press, Collier

MacMillan, New York, 1990.
54. Riddington, G. L. Time varying coefficient models and their forecasting performance. Omega,

1993, 21, 573–583.
55. Tashman, L. J. and Leach, M. L. Automatic forecasting software: A survey and evaluation. Int.

J. Forecast., 1991, 7, 209–230.
56. Collopy, F., Adya, M., and Armstrong, J. S. Expert systems for forecasting. In Principles of

Forecasting (Armstrong, J. S., ed.). Kluwer, Norwell, MA, 2001.
57. MacGregor, D. G. Decomposition in judgmental forecasting and estimation. In Principles of

Forecasting (Armstrong, J. S., ed.). Kluwer, Norwell, MA, 2001.
58. Mentzer, J. T. and Kahn, K. B. Forecasting technique familiarity, satisfaction, usage, and

application. J. Forecast., 1995, 14, 465–476.
59. Willemain, T. R., Smart, C. N., Schockor, J. H., and DeSautels, P. A. Forecasting intermittent

demand in manufacturing: A comparative evaluation of Croston’s method. Int. J. Forecast.,
1994, 10, 529–538.

60. Wittink, D. R. and Bergestuen, T. Forecasting with conjoint analysis. In Principles of
Forecasting (Armstrong, J. S., ed.). Kluwer, Norwell, MA, 2001.

61. Cancelo, J. R. and Espasa, A. Forecasting Daily Demand for Electricity with Multiple Intput
Nonlinear Transfer Function Models: a Case Study, Departamento de Economía,
Universidad Carlos III de Madrid. Working paper 91, 21 July, 1991.

62. Chishti, S. Recursively bootstrapped probability distribution of electricity demand forecast in
Pakistan. J. Energy Develop., Spring 1993, 223–231.

63. Carlin, J. B. and Dempster, A. P. Sensitivity analysis of seasonal adjustments: empirical case
studies (with discussion). J. Am. Statist. Assoc., 1989, 84, 6–32.

64. Lamedica, R., Prudenzi, A., Sforna, M., Caciotta, M., and Cencelli, V. O. A neural network
based technique for short-term forecasting of anomalous load periods. IEEE Trans. Power
Syst., 1996, 11, 1749–1756.

65. Seppälä, A. Load Research and Load Estimation in Electricity Distribution. Dissertation,
Technical Research Center of Finland, VTT Publications 289, Espoo, 1996.

66. Cybenco, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals
Syst., 1989, 2, 303–314.

67. Funahashi, K. On the approximate realization of continuous mappings by neural networks.
Neural Netw., 1989, 2, 183–192.

 247

68. Hornik, K., Stinchomber, M., and White, H. Multilayer feedforward network are universal
approximators. Neural Netw., 1989, 2, 359–366.

69. Daugherty, E. L. and Bartlett, E. B. Short-term electric load forecasting using neural networks.
In Proc. Iowa State University Electric Power Research Center Power Affiliate Research
Program. Iowa State University, Ames, Iowa, 1993, 291–302.

70. Doraiswami, R. Performance monitoring and fault prediction using a linear predictive coding
algorithm. Automatica, 1993, 29, 4.

71. Bartlett, E. B. Analysis of chaotic population dynamics using artifical neural networks. Chaos,
Solitons, Fractals, 1992, 1, 413–421.

72. Basu, A. and Bartlett, E. B. Detecting faults in nuclear power plants by using dynamic node
architecture artificial neural networks. Nucl. Sci. Eng., 1994, 116, 313–325.

73. Bartlett, E. B. Self determination of input variable importance by neural networks. Neural
Parallel Sci. Comput., 1994, 2, 103–114.

74. Kim, K. and Bartlett, E. B. Error prediction for a nuclear power plant fault-diagnostic advisor
using neural networks. Nucl. Technol., 1994, 108, 283–297.

75. Kim, K. and Bartlett, E. B. Nuclear power plant fault diagnosis using neural networks with
error estimation by series association. IEEE Trans. Nucl. Sci., 1996, 43, 2372–2388.

76. Reinschmidt, K. F. and Ling, B. Neural networks for plant simulation and control. In Proc.
American Power Conference. Illinois Institute of Technology, Chicago, IL, 1994, 2, 796–801.

77. Moechtar, M., Farag, A. S., Hu, L., and Cheng, T. C. Combined genetic algorithms and neural-
network approach for power-system transient stability evaluation. Eur. Trans. Electr.
Power, 1999, 9, 115–122.

78. Rebizant, W. and Szafran, J. Power system fault detection and classification using probabilistic
approach. Eur. Trans. Electr. Power, 1999, 9, 183–191.

79. Rebizant, W. and Szafran, J. Power system fault detection and classification using probabilistic
approach. Eur. Trans. Electr. Power, 1999, 9, 247–253.

80. Oswald, B. R. Generalized method for fault simulations in power systems. Eur. Trans. Electr.
Power, 2000, 10, 59–62.

81. Log-Linear, Logit, and Probit Models. http://www2.chass.ncsu.edu/garson/pa765/logit.htm.
Accessed 14 August 2001.

82. Moscinski, J. Advanced Control with Matlab and Simulink. Ellis Horwood, London, 1995.
83. Priestly, M. B. Nonlinear and Nonstationary Time Series Analysis. Academic Press, London,

1992.
84. Pineda, F. J. Generalization of back-propagation to recurrent and higher order neural networks.

In Neural Information Processing Systems. American Institute of Physics, New York, 1988,
602–611.

Sujuva töö tagamine elektrienergia ülekandevõrgus
edasisidestatud neuronvõrkude abil

Taivo Kangilaski

Artiklis on kirjeldatud edasisidestatud neuronvõrkude kasutamist elektrienergia

ülekandevõrku haldavas tarkvaras. On vaadeldud elektrienergia tarbimise prog-
noosi (kõrgepinge osas) ning rikkeliste ja/või avariiliste sündmuste prognoosi algo-
ritme. On põhjendatud algoritmi valikut ning toodud edasisidestatud neuronvõrgu
erinevate mudelite katseandmed, leidmaks sobivaimat konfiguratsiooni. Uuringu
aluseks on Eesti Energia AS-i tarkvara “Sündmuste registraator”, mille abil püü-
takse tagada Eesti Vabariigi elektrisüsteemi tõrgeteta tööd põhivõrgus.

