
 211

Proc. Estonian Acad. Sci. Eng., 2002, 8, 4, 211–222

Solving line balancing problems with model
checking

Jüri Vain, Ingmar Randvee, Tiit Riismaa, and Juhan Ernits

Institute of Cybernetics at Tallinn Technical University, Akadeemia tee 21, 12618 Tallinn, Estonia;
vain@ioc.ee

Received 14 June 2002

Abstract. A two-step technique for solving large-scale assembly line balancing problems is
proposed. In the first step, an approximate global solution is found to the task assignment problem
using the algorithmic branch-and-bound method. In the second step, the workstations with critical
workload are selected and their load recalculated using local models of finer granularity. The
workstation models in the second step are defined as parallel compositions of timed automata to
which the parametric model checking procedure can be efficiently applied. An illustrative example
is given.

Key words: flexible manufacturing, behavioural modelling, timed automata, line balancing, model
checking.

1. INTRODUCTION

An extensive research in structuring methods of flexible manufacturing systems

(FMS) has been carried out in recent years [1,2]. One basic group of problems to be
repeatedly solved for production systems is related to the workflow structuring and
line balancing. Solutions to these problems and efficiency of the applied methods
depend on the granularity level of the model, constraints and implementation
details to be taken into account. For instance, the SALOME technique as reported
in [3,4] can arrange hundreds of tasks to the best logical structure of workstations
(WS) using only task level estimated characteristics. On the other hand, the work-
station time, i.e., the time needed to accomplish all tasks of the workstation, may
depend on the given task assignment, machining modes, priorities, and other
criteria. Thus the actual workstation time may differ from the simple sum of the
roughly estimated task times.

 212

In this paper, a two-step technique for solving assembly line balancing
problems is proposed. In the first step, an approximate global solution to the task
assignment problem is found using structural optimization algorithms [4–6]. In the
detailed level, the model checking technique [7,8] is applied to distinct work-
station models in order to get more accurate estimates of the workstation time.
Since the global cycle time is defined by the maximum over workstation times,
the whole production rate depends on the quality of this estimate. As a result of
finer grain analysis, the optimal assignment of assembly line tasks, prescribed by
the upper level solution, can be further improved, or on the contrary, denied if
precise workstation time estimates exceed rough estimates of the cycle time.

It is supposed that each workstation model can be represented as a composi-
tion of timed automata [7,9,10], constructed on the basis of fine grain task models.
Concentrating many implementation details into the workstation model has also
some drawbacks considering the complexity of model checking. Model checking
as a finite state assessment method suffers from inefficiency in case of a large
number of parallel automata models. Still, since the efficiency depends on the
balance between the size and the granularity of the models, efficient solution can
generally be achieved in such cases when there are tens of tasks and few parallel
machines in the workstation.

Our technique is demonstrated on the simple assembly line balancing problem
(SALBP) using the benchmark data sets in the program SALOME-1 [11]. The
construction of timed automata and the model checking procedure is illustrated
using the workstation of an educational FMS. It is also assumed that the proposed
modelling technique can be implemented for several types of FMS other than
assembly lines [12–14].

The paper is organized as follows. First, in Section 2 the two-step modelling
framework based on a SALBP is discussed. Section 3 exposes the main contribu-
tion of the paper, the methodology of constructing timed automata representing
operation-level models. The model checking technique is briefly described in
Section 4. An illustrative example of the operation-level model together with
corresponding timed automata is exposed in Section 5. The paper ends with
concluding remarks.

2. MODELLING FRAMEWORK FOR THE ASSEMBLY LINE
BALANCING PROBLEM

For solving a SALBP by using the two-step technique we need two models.

The first one, the line model (L-model), is given in terms of line tasks [3]. The
second one, the operation-level model (O-model), describes every line task in
terms of operations. An operation represents a subtask or its component up to the
elementary activity of a machine. The line model is given by the list of tasks, task
precedence graph, and estimated execution time for each task.

 213

Classical SALBP is stated as follows: minimize the balance delay time,
provided that the cycle time, task times, and the line model are given. The
balance delay time characterizes capacity utilization of the line and is calculated
as

,sumtTBD −=

where T is capacity supply of the line ,(cmT = m is number of workstations,
and c is cycle time) and sumt denotes the sum of task times.

The solution of SALBP consists of a minimal number of workstations,
assignment of tasks to workstations, minimal balance delay time, and minimal
cycle time (for given minimal number of workstations).

Considering the L-level problem, we rely on a bidirectional branch-and-bound
procedure SALOME-1 [4] under the following general assumptions:

– any task of the line can be performed on any workstation;
– the task time does not depend on the number of tasks assigned to a station;
– any workstation can perform at most one task at a time;
– any task can be performed at most in one workstation at a time.
The O-model (tuned to the analysis of a single workstation load) is based on

the precedence graph of operations, operation times, and syncronization
constraints between concurrent tasks.

The O-level analysis problem is stated as follows: ensure that the workstation
time is less or equal to the cycle time, provided the L-level task assignments and
refined constraints on task execution are given.

The modelling assumptions of O-level analysis problems are usually stronger
than those of the L-level analysis. For instance, the workstation can handle more
than one operation at a time, the processing rate depends on the number of tasks
assigned to the station, splitting of tasks may be allowed (in the case of parallel
tasks), etc.

Evidently, if the workstation time of all stations with critical load can be
reduced, then the cycle time can also be reduced when preserving optimal
assignment. On the other hand, if the workstation time estimate exceeds the given
cycle time, then the L-level analysis has to be repeated with new data based on
the O-level analysis.

As it follows from optimal solutions for 282 assembly line balancing cases,
using test data sets for the program SALOME-1 [11], only a few workstations
with minimal and near-minimal idle times are to be checked. Also, the number of
tasks in these workstations may not be very large. The number of tasks in a
workstation (taken over 6019 stations) was distributed as follows: from 1 to 5
tasks – 74%, from 6 to 10 tasks – 22%, from 11 to 15 tasks – 3%.

As an illustrative example we consider the data set BOWMAN8.in2 with
cycle time 20 s and precedence graph as depicted in Fig. 1.

The algorithm gives two optimal assignments with equal balance delay times.
Assignment 1: ,s)9,(WS 1

idl11 =tT ,s)3,(WS 2
idl22 =tT ,s)6,,(WS 3

idl433 =tTT
,)0,,(WS 4

idl654 =tTT s)7,,(WS 5
idl875 =tTT .

 214

Fig. 1. Task precedence graph of the case study BOWMAN8.in2.

Assignment 2: ,s)9,(WS 1
idl11 =tT ,s)3,(WS 2

idl22 =tT ,s)3,,(WS 3
idl533 =tTT

,)0,,,(WS 4
idl8644 =tTTT s).10,(WS 5

idl75 =tT
Here),,(WS idl

i
kji tTT K denotes assignment of tasks kj TT K, to the thi

workstation with idle time .idl
it Comparing the idle time of stations it is easy to

see that only station 4 in both cases)0,,((WS 4
idl654 =tTT and

)0,,,(WS 4
idl8644 =tTTT must be studied in detail by the O-level analysis.

3. CONSTRUCTING O-LEVEL TIMED AUTOMATA

This section describes the construction of operation-level workstation models

that are compositions of detailed task models, and a workstation configuration
model.

By the thi workstation’s iWS configuration model iM we mean the
composition of machine models lMM l

i ||= , where each lM performs the tasks
sequentially l(|| – denotes parallel composition of models). Machine models are
synchronized through processes iP that represent the result of certain task
scheduling strategy. (To avoid modelling process schedulers we assume for
simplicity that processes are given by a L-level solution. For more details of
modelling schedulers we refer to [10]).

1. Operation models. A machine lM is characterized by a set of its operations
lOp and operational modes M

l. The attributes of an operation lOp∈jop may

be priority, cost, time, pre- and postconditions, etc. For simplicity, we further
consider only the execution time and cost. To construct a model lM of a
machine lM we use the following definitions:

– a set of states S }{]}||,1[:{)(idlesjs j ∪==
l

l OpM so that for each
operation lOp∈jop there is a state ,js and idles is a special state that models
the idle state of the machine ;M l

– a set of transitions T)};,(),,{()(idleidle]||,1[jjl ssssOpllM
=

∪=
– the duration jd of operation jop is modelled using the state invariant

jdcls ≤≡)(Inv j and the guard G ,),(idle jj dclss =≡ where cl is a clock
variable of the machine model :lM

– the cost of operation jop is modelled as an assignment Asgn ≡),(idle jss
=:_ costa),(_ jopCostcosta + where costa _ denotes the accumulated cost of

 215

performing the operation .jop Alternatively costa _ may model common cost
for all operations of the machine or even of the workstation. If the accumulated
cost is limited by some value Limit, it is represented as an operation guard

G .))(_(),(idle LimitopCostcostass jj <+≡

2. Operational modes. Generally, operations of a machine lM may be
grouped into modes M

l ⊆ 2Opl (Fig. 2). Being in the mode M

l
k ∈ M

l, the
machine is able to perform only operations ∈iop M

l
k . To perform an operation

∉jop M

l
k the machine should switch over to the mode M

l
r ∈jop(M

l
r).

Switching takes time and costs and may be constrained so that only specified
switching sequences are legal. That needs extension of the machine model lM
by introducing a mode switching fragment. Assume that each thk mode M

l
k is

modelled separately as described above and has its idle state .idle
ks Then the mode

switching fragment consists of a set of transitions between the idle states ksidle
and states that model switching operations (switch states in Fig. 2) exactly in the
same way as other machining operations (see step 1 above).

3. Synchronizing processes and machine operations. The workstation
processes iP define the ordering of tasks. Each task is implemented as a
sequence of operations. The workstation planner iA makes planning, choosing
appropriate operation sequences to execute the tasks on the given workstation
configuration. Machine operations define the proper timing of operation
sequences. Therefore, to model the cooperative behaviour of processes, planner
and machines, initiations and terminations of tasks and individual operations
must be synchronized.

Fig. 2. Synchronization of workstation component models.

 216

Synchronization is modelled using two types of synchronizing channels: start
and stop between transitions of the process, task, and machine automata. Channel
start synchronizes initiation and channel stop the completion of the task and
operation executions in the models of processes, tasks, and machines. Start
channels are directed from process models to task models and further from task
models to machine models. Stop channels, on the contrary, are directed from the
machine to the task and from the task to process models. Figure 2 depicts the
synchronization mechanism between models of different levels.

4. MODEL CHECKING OF TIMED AUTOMATA

By model checking we generally mean an algorithmic method by which a

desired behavioural property of a system is verified over the model through
exhaustive enumeration of all states, reachables by the system, and the
behaviours that traverse through them [8,15]. We formulate the model checking
problem as a satisfiability problem M|=? ϕ, where ϕ denotes a behavioural
property to be checked and M the model representing the behaviour to be
checked.

The properties that the model must satisfy are given in timed modal logic Ls
studied in [7] and used currently in the verifier of UPPAAL2k. We give a BNF-
grammar of Ls:

ϕ ::= A� Ps | E◊ Ps | E� Ps | A◊ Ps
Ps ::= AP | ¬ Ps | (Ps) | Ps ∨ Ps | Ps ∧ Ps | Ps ⇒ Ps
AP ::= Id1.Id2 | CGuard | IGuard
CGuard ::= Id ∼ n | Id ∼ Id | Id ∼ Id + n | Id ∼ Id – n, where n∈ N
IGuard ::= IExpr ∼ IExpr | IExpr ≠ IExpr
IExpr ::= Id | Id[IExpr] | n | -IExpr | (IExpr) | IExpr Op IExpr
∼ ::= < | ≤ | ≥ | > | =
Op ::= + | – | * | /,

where Ps is a state formula, AP is the atomic state formula, CGuard and IGuard
are the guards over clocks and integer variables, respectively, Id is the identifier
name, Id1.Id2 is an identifier in the form “automaton_name.state_name”, n is a
natural number (including 0), and temporal modalities are: A – always, E –
sometimes, � – globally, ◊ – eventually.

Given a timed transition system S = 〈S, s0, R, L〉, described by a network of
timed automata, the Ls formulas are interpreted in terms of an extended state
s = 〈s, u〉 where s ∈ S is a state of a timed transition system and u is an
assignment to formula clocks K; R ⊆ S × S is a precedence relation; L: S → 2AP is
a labeling function that assigns to each state a set of atomic propositions holding
in that state.

A path on a transition system S is a (possibly infinite) sequence of states
π = s 0, s 1, ..., where ∀i ≥ 0, (s i, s i+1) ∈ R; π i is suffix of the path π that begins
from the ith state s i. Let ϕ be a formula to be model checked. The satisfaction

 217

relation |= between extended states (paths) and formulas is defined as the largest
relation satisfying the following equivalences:

 1) S,s |= p ⇔ p∈ L(s)
 2) S,s |= ¬ϕ ⇔ S,s |≠ ϕ
 3) S,s |= ϕ1 ∨ ϕ2 ⇔ S,s |= ϕ1 or S,s |= ϕ2

 4) S,s |= ϕ1 ∧ ϕ2 ⇔ S,s |= ϕ1 and S,s |= ϕ2
 5) S,s |= E ϕ ⇔ there is a path π from state s, so that S,π |= ϕ

 6) S,s |= A ϕ ⇔ for all paths π from state s S,π |= ϕ

 7) S,π |= ϕ ⇔ s is the first state of π and S,s |= ϕ

 8) S,π |= ¬ϕ ⇔ S,π |≠ ϕ
 9) S,π |= ϕ1 ∨ ϕ2 ⇔ S,π |= ϕ1 or S,π |= ϕ2

10) S,π |= ϕ1 ∧ ϕ2 ⇔ S,π |= ϕ1 and S,π |= ϕ2

11) S,π |= ◊ ϕ ⇔ exists k ≥ 0, so that S,π k |= ϕ

12) S,π |= � ϕ ⇔ for all i ≥ 0 S,π i |= ϕ

We write S,s |= ϕ to express that the formula ϕ holds in a state s of a transition
system S, and S,π |= ϕ to express that the formula ϕ holds on a path π of S.

For example, the formula A � (v1 < v2) says that invariantly v1 < v2 holds, and
the formula E◊(A1.si ∧ A2.si) is true if the system can reach a global state where
both automata A1 and A2 are in their states si.

5. MODELLING EXAMPLE

As an illustrative example, consider the educational FMS as a workstation

with critical load to which five tasks are assigned. The IDEF0 diagram of that
WS is given in Fig. 3.

The workstation process consists of the following sequence of tasks prescribed by
the L-level precedence graph. The blank is placed on the conveyor1 (task 1). The
conveyor1 transports the blank to the robot Mentor (task 2) that picks it from
conveyor1 and places to conveyor2 (task 3). On the conveyor2 the blank is
measured, classified and transported to a certain position (task 4) where the Serpent
robot and CNC mill work it into the finished part (task 5). Task 5 in detail is: robot
Serpent takes the good blank and places it to the CNC Mill worktable (operations
1–5, mode 2) where the blank is processed by one of four programs (modes 1–4).
After completion of milling, the robot Serpent removes the item from CNC Mill and
places it into the box (operations 1–5, mode 3) that is positioned under Serpent by the
indexing table. If the new arrived blank is not good, robot Serpent removes it from
the conveyor2 (operations 1–5 of mode 1). The indexing table turns to the right
position after the blank is picked from the conveyor2. Only the initiation of this task
is synchronized with the milling task since milling takes always longer time and
continuation of the process depends on the latter.

The O-level model of the workstation is composed of separate task models
according to the rules given in Section 3. As an example, the model of the task 5
with the process scheduler is depicted in Fig. 4.

Fig. 3. IDEF0 representation of the load-critical workstation.

218

Fig. 4. Timed automata model of the task 5. 219

 220

The model checking task to be solved to achieve more exact time estimates in
comparison with the L-model can be expressed now using a Ls formula
A�(PLANNER.CL ≤ WSTIMe), where PLANNER.CL denotes a clock in the
automaton “Planner” that is reset each time when the processing of a detail in the
workstation is completed, and WSTIMe denotes the hypothetical workstation
time towards which the O-model time estimate is checked. The initial value of
WSTIMe is naturally the L-level workshop time.

The results of checking the workstation time show that it is possible to reduce
the cycle time from 200 to164–168 s depending on the milling mode, meanwhile
preserving the L-level optimal solution of the assembly line structure. The
reduction is mainly due to the partial overlapping of task operations inside the
station. In case of the task 5, milling, indexing table, and bad blank removing
operations can be performed in parallel.

6. CONCLUDING REMARKS

A typical line balancing problem involves hundreds of tasks. Due to the

complexity of analysis, the used model and the set of modelling assumptions
must be of a high level of abstraction. At the same time, separate workstations
with prescribed task assignments can be easily modelled at a detailed level of
granularity and under more sophisticated assumptions.

In this paper, a two-step technique for solving assembly line balancing
problems as well as other resource assignment problems for FMS was introduced.
It was shown that the technique combines the advantages of efficient coarse level
algorithms and fine-grain model checking procedures.

The main result of the paper is the parametric model checking methodology that
guides model construction and property specification for estimating workstation
load and timing parameters in the presence of operational and timing constraints.
The first step of the technique is demonstrated on the classical SALBP example
using the benchmark test data sets for the line balancing program SALOME-1. The
second step, construction of operation-level timed automata and the model
checking procedure, was illustrated on the representative workstation of an
educational FMS.

ACKNOWLEDGEMENTS

This work was partly supported by the Estonian Science Foundation under

grants Nos. 4156 and 5086. The authors would like to acknowledge Prof.
A. Scholl from the Darmstadt Technical University for SALBP-1 data sets, and
Prof. R. Küttner and T. Otto from the Tallinn Technical University for the data of
FMS workcell.

 221

REFERENCES

 1. Berio, G. and Vernadat F. B. New developments in enterprise modelling using CIM OSA.
Comput. Ind., 1999, 40, 99–114.

 2. Wieringa, R. A surwey of structured and object-oriented software specification methods and
techniques. ACM Comput. Surveys, 1998, 30, 459–527.

 3. Scholl, A. Balancing and Sequencing of Assembly Lines. Physica-Verlag, Heidelberg, 1999.
 4. Scholl, A. and Klein, R. SALOME: A bidirectional branch and bound procedure for assembly

line balancing. INFORMS J. Comput., 1997, 9, 319–334.
 5. Hoffmann, T. R. EUREKA: A hybrid system for assembly line balancing. Manag. Sci., 1992,

38, 39–47.
 6. Johnson, R. V. Optimally balancing large assembly lines with FABLE. Manag. Sci., 1988, 34,

240–253.
 7. Larsen, K., Pettersson, P., and Yi, W. UPPAAL in a nutschell. Int. J. Softw. Tools Technol.

Transf., 1997, 1, 134–152.
 8. Alur, R. and Dill, D. Automata for modelling real-time systems. Theor. Comput. Sci., 1994,

126, 183–236.
 9. Hune, T., Larsen, K., and Pettersson, P. Guided synthesis of control programs using UPPAAL.

Nordic J. Comput., 2001, 8, 43–64.
10. Vain, J. and Küttner, R. Model checking – a new challenge for design of complex computer-

controlled systems. In Proc. 5th International Conference on Engineering Design and
Automation. Las Vegas, 2001 (Parsaei, H. R., Gen, M., Leep, H. R., and Wong, J. P., eds.).
CRC Press, CD-ROM, 593–598.

11. Scholl, A. and Klein, R. Assembly line balancing. Technical University of Darmstadt, 1996.
http://www.bwl.tu-darmstadt.de/bwl3/forsch/projekte/alb/.

12. Lawler, E. I., Lenstra, J. K., and Rinnooy Kan, A. H. G. Recent developments in deterministic
sequencing and scheduling: A survey. In Deterministic and Stochastic Scheduling. NATO
Advanced Study Institutes Series. Series C: Mathematical and Physical Sciences
(Dempster, M. A. H., Lenstra, J. K., and Rinnooy Kan, A. H. G., eds.). Reidel, 1982, 35–
73.

13. Randvee, I., Riismaa, T., and Vain, J. Optimization of holonic structures. In Proc. Workshop on
Production Planning and Control WPPC'2000. Mons, 2000. Ateliers de la FUCaM, Mons,
2000, 61–66.

14. Littover, M., Randvee, I., Riismaa, T., and Vain, J. Optimization of the structure of multi-
parameter multi-level selection. In Proc. 17th International Conference on CAD/CAM,
Robotics and Factories of the Future, CARS&FOF 2001. Durban, 2001 (Bright, G. and
Janssens, W., eds.). University of Natal, Durban, 2001, 317–322.

15. Clarke, E. M., Grumberg, O., and Peled, D. A. Model Checking. MIT Press, Cambridge, MA,
1999.

Mudelkontrolli kasutamine koosteliini
tasakaalustusülesande lahendamisel

Jüri Vain, Ingmar Randvee, Tiit Riismaa ja Juhan Ernits

Tüüpiline koosteliini tasakaalustusülesanne haarab sadu toiminguid. Et üles-

anne oleks praktiliselt lahendatav, esitatakse nii kasutatav mudel kui ka piiravad
tingimused tugevasti üldistatud kujul. Teiselt poolt on võimalik tööjaamade tege-
likku keerukust paremini arvestada, kui kasutada tasakaalustusülesande lahendina

 222

leitud toimingute jaotust üksikute tööjaamade vahel koos koormuskriitiliste töö-
jaamade täpsustatud mudelitega.

Käesolevas töös on esitatud kaheetapiline lahendusskeem toimingute opti-
maalseks jaotamiseks tööjaamade vahel. See ühildab tuntud tasakaalustusmeeto-
dite ja üksiku tööjaama detailse mudelkontrolli eelised. Esitatu uudsus seisneb
mudelkontrolli metodoloogia integreerimises koosteliini tasakaalustusülesande
lahendusskeemi. Meetodi demonstreerimiseks on kasutatud Tallinna Tehnikaüli-
kooli paindtootmissõlme maketti, mis on kirjeldatud ajaga automaatide forma-
lismis, ning koosteliinide tasakaalustusülesande lahendusmeetodite testimiseks
koostatud avalikku lähteandmete kogu.

