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Abstract. A two-step technique for solving large-scale assembly line balancing problems is 
proposed. In the first step, an approximate global solution is found to the task assignment problem 
using the algorithmic branch-and-bound method. In the second step, the workstations with critical 
workload are selected and their load recalculated using local models of finer granularity. The 
workstation models in the second step are defined as parallel compositions of timed automata to 
which the parametric model checking procedure can be efficiently applied. An illustrative example 
is given. 
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1. INTRODUCTION 
 
An extensive research in structuring methods of flexible manufacturing systems 

(FMS) has been carried out in recent years [1,2]. One basic group of problems to be 
repeatedly solved for production systems is related to the workflow structuring and 
line balancing. Solutions to these problems and efficiency of the applied methods 
depend on the granularity level of the model, constraints and implementation 
details to be taken into account. For instance, the SALOME technique as reported 
in [3,4] can arrange hundreds of tasks to the best logical structure of workstations 
(WS) using only task level estimated characteristics. On the other hand, the work-
station time, i.e., the time needed to accomplish all tasks of the workstation, may 
depend on the given task assignment, machining modes, priorities, and other 
criteria. Thus the actual workstation time may differ from the simple sum of the 
roughly estimated task times. 
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In this paper, a two-step technique for solving assembly line balancing 
problems is proposed. In the first step, an approximate global solution to the task 
assignment problem is found using structural optimization algorithms [4–6]. In the 
detailed level, the model checking technique [7,8] is applied to distinct work-
station models in order to get more accurate estimates of the workstation time. 
Since the global cycle time is defined by the maximum over workstation times, 
the whole production rate depends on the quality of this estimate. As a result of 
finer grain analysis, the optimal assignment of assembly line tasks, prescribed by 
the upper level solution, can be further improved, or on the contrary, denied if 
precise workstation time estimates exceed rough estimates of the cycle time. 

It is supposed that each workstation model can be represented as a composi-
tion of timed automata [7,9,10], constructed on the basis of fine grain task models. 
Concentrating many implementation details into the workstation model has also 
some drawbacks considering the complexity of model checking. Model checking 
as a finite state assessment method suffers from inefficiency in case of a large 
number of parallel automata models. Still, since the efficiency depends on the 
balance between the size and the granularity of the models, efficient solution can 
generally be achieved in such cases when there are tens of tasks and few parallel 
machines in the workstation. 

Our technique is demonstrated on the simple assembly line balancing problem 
(SALBP) using the benchmark data sets in the program SALOME-1 [11]. The 
construction of timed automata and the model checking procedure is illustrated 
using the workstation of an educational FMS. It is also assumed that the proposed 
modelling technique can be implemented for several types of FMS other than 
assembly lines [12–14]. 

The paper is organized as follows. First, in Section 2 the two-step modelling 
framework based on a SALBP is discussed. Section 3 exposes the main contribu-
tion of the paper, the methodology of constructing timed automata representing 
operation-level models. The model checking technique is briefly described in 
Section 4. An illustrative example of the operation-level model together with 
corresponding timed automata is exposed in Section 5. The paper ends with 
concluding remarks. 

 
 

2. MODELLING  FRAMEWORK  FOR  THE  ASSEMBLY  LINE  
BALANCING  PROBLEM 

 
For solving a SALBP by using the two-step technique we need two models. 

The first one, the line model (L-model), is given in terms of line tasks [3]. The 
second one, the operation-level model (O-model), describes every line task in 
terms of operations. An operation represents a subtask or its component up to the 
elementary activity of a machine. The line model is given by the list of tasks, task 
precedence graph, and estimated execution time for each task. 



 213

Classical SALBP is stated as follows: minimize the balance delay time, 
provided that the cycle time, task times, and the line model are given. The 
balance delay time characterizes capacity utilization of the line and is calculated 
as 

 

,sumtTBD −=  
 

where T  is capacity supply of the line ,( cmT =  m  is number of workstations, 
and c  is cycle time) and sumt  denotes the sum of task times. 

The solution of SALBP consists of a minimal number of workstations, 
assignment of tasks to workstations, minimal balance delay time, and minimal 
cycle time (for given minimal number of workstations). 

Considering the L-level problem, we rely on a bidirectional branch-and-bound 
procedure SALOME-1 [4] under the following general assumptions: 

– any task of the line can be performed on any workstation; 
– the task time does not depend on the number of tasks assigned to a station; 
– any workstation can perform at most one task at a time; 
– any task can be performed at most in one workstation at a time. 
The O-model (tuned to the analysis of a single workstation load) is based on 

the precedence graph of operations, operation times, and syncronization 
constraints between concurrent tasks. 

The O-level analysis problem is stated as follows: ensure that the workstation 
time is less or equal to the cycle time, provided the L-level task assignments and 
refined constraints on task execution are given. 

The modelling assumptions of O-level analysis problems are usually stronger 
than those of the L-level analysis. For instance, the workstation can handle more 
than one operation at a time, the processing rate depends on the number of tasks 
assigned to the station, splitting of tasks may be allowed (in the case of parallel 
tasks), etc. 

Evidently, if the workstation time of all stations with critical load can be 
reduced, then the cycle time can also be reduced when preserving optimal 
assignment. On the other hand, if the workstation time estimate exceeds the given 
cycle time, then the L-level analysis has to be repeated with new data based on 
the O-level analysis. 

As it follows from optimal solutions for 282 assembly line balancing cases, 
using test data sets for the program SALOME-1 [11], only a few workstations 
with minimal and near-minimal idle times are to be checked. Also, the number of 
tasks in these workstations may not be very large. The number of tasks in a 
workstation (taken over 6019 stations) was distributed as follows: from 1 to 5 
tasks – 74%, from 6 to 10 tasks – 22%, from 11 to 15 tasks – 3%. 

As an illustrative example we consider the data set BOWMAN8.in2 with 
cycle time 20 s and precedence graph as depicted in Fig. 1. 

The algorithm gives two optimal assignments with equal balance delay times.  
Assignment 1: ,s)9,(WS 1

idl11 =tT  ,s)3,(WS 2
idl22 =tT  ,s)6,,(WS 3

idl433 =tTT  
,)0,,(WS 4

idl654 =tTT  s)7,,(WS 5
idl875 =tTT . 
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Fig. 1. Task precedence graph of the case study BOWMAN8.in2. 
 
 

Assignment 2: ,s)9,(WS 1
idl11 =tT  ,s)3,(WS 2

idl22 =tT  ,s)3,,(WS 3
idl533 =tTT  

,)0,,,(WS 4
idl8644 =tTTT  s).10,(WS 5

idl75 =tT  
Here ),,(WS idl

i
kji tTT K  denotes assignment of tasks kj TT K,  to the thi  

workstation with idle time .idl
it  Comparing the idle time of stations it is easy to 

see that only station 4 in both cases )0,,((WS 4
idl654 =tTT  and 

)0,,,(WS 4
idl8644 =tTTT  must be studied in detail by the O-level analysis. 

 
 

3. CONSTRUCTING  O-LEVEL  TIMED  AUTOMATA 
 
This section describes the construction of operation-level workstation models 

that are compositions of detailed task models, and a workstation configuration 
model. 

By the thi  workstation’s iWS  configuration model iM  we mean the 
composition of machine models lMM l

i ||= , where each lM  performs the tasks 
sequentially l(||  – denotes parallel composition of models). Machine models are 
synchronized through processes iP  that represent the result of certain task 
scheduling strategy. (To avoid modelling process schedulers we assume for 
simplicity that processes are given by a L-level solution. For more details of 
modelling schedulers we refer to [10]). 

1. Operation models. A machine lM  is characterized by a set of its operations 
lOp  and operational modes M 

 
l. The attributes of an operation lOp∈jop  may 

be priority, cost, time, pre- and postconditions, etc. For simplicity, we further 
consider only the execution time and cost. To construct a model lM  of a 
machine lM  we use the following definitions: 

– a set of states S }{]}||,1[:{)( idlesjs j ∪==
l

l OpM  so that for each 
operation lOp∈jop  there is a state ,js  and idles  is a special state that models 
the idle state of the machine ;M l  

– a set of transitions T )};,(),,{()( idleidle]||,1[ jjl ssssOpllM
=

∪=  
– the duration jd  of operation jop  is modelled using the state invariant 

jdcls ≤≡)(Inv j  and the guard G ,),( idle jj dclss =≡  where cl  is a clock 
variable of the machine model :lM  

– the cost of operation jop  is modelled as an assignment Asgn ≡),( idle jss  
=:_ costa ),(_ jopCostcosta +  where costa _  denotes the accumulated cost of 
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performing the operation .jop  Alternatively costa _  may model common cost 
for all operations of the machine or even of the workstation. If the accumulated 
cost is limited by some value Limit, it is represented as an operation guard 

 

G .))(_(),( idle LimitopCostcostass jj <+≡  
 

2. Operational modes. Generally, operations of a machine lM  may be 
grouped into modes M 

 

l ⊆ 2Opl (Fig. 2). Being in the mode M 
 

l
k ∈ M  

l, the 
machine is able to perform only operations ∈iop M  

l
k . To perform an operation 

∉jop M  

l
k the machine should switch over to the mode M 

 

l
r ∈jop( M 

 

l
r). 

Switching takes time and costs and may be constrained so that only specified 
switching sequences are legal. That needs extension of the machine model lM  
by introducing a mode switching fragment. Assume that each thk  mode M 

 

l
k is 

modelled separately as described above and has its idle state .idle
ks  Then the mode 

switching fragment consists of a set of transitions between the idle states ksidle  
and states that model switching operations (switch states in Fig. 2) exactly in the 
same way as other machining operations (see step 1 above). 

3. Synchronizing processes and machine operations. The workstation 
processes iP  define the ordering of tasks. Each task is implemented as a 
sequence of operations. The workstation planner iA  makes planning, choosing 
appropriate operation sequences to execute the tasks on the given workstation 
configuration. Machine operations define the proper timing of operation 
sequences. Therefore, to model the cooperative behaviour of processes, planner 
and machines, initiations and terminations of tasks and individual operations 
must be synchronized. 
 

 

 
 

Fig. 2. Synchronization of workstation component models. 
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Synchronization is modelled using two types of synchronizing channels: start 
and stop between transitions of the process, task, and machine automata. Channel 
start synchronizes initiation and channel stop the completion of the task and 
operation executions in the models of processes, tasks, and machines. Start 
channels are directed from process models to task models and further from task 
models to machine models. Stop channels, on the contrary, are directed from the 
machine to the task and from the task to process models. Figure 2 depicts the 
synchronization mechanism between models of different levels. 

 
 

4. MODEL  CHECKING  OF  TIMED  AUTOMATA 
 
By model checking we generally mean an algorithmic method by which a 

desired behavioural property of a system is verified over the model through 
exhaustive enumeration of all states, reachables by the system, and the 
behaviours that traverse through them [8,15]. We formulate the model checking 
problem as a satisfiability problem M|=? ϕ, where ϕ denotes a behavioural 
property to be checked and M the model representing the behaviour to be 
checked. 

The properties that the model must satisfy are given in timed modal logic Ls 
studied in [7] and used currently in the verifier of UPPAAL2k. We give a BNF-
grammar of Ls: 
 

ϕ ::= A� Ps | E◊ Ps | E� Ps | A◊ Ps  
Ps ::= AP | ¬ Ps | (Ps ) | Ps ∨ Ps | Ps ∧ Ps | Ps ⇒ Ps  
AP ::= Id1.Id2 | CGuard | IGuard 
CGuard ::= Id ∼ n | Id ∼ Id | Id ∼ Id + n | Id ∼ Id – n,  where n∈ N 
IGuard ::= IExpr ∼ IExpr  | IExpr ≠ IExpr 
IExpr ::= Id | Id[IExpr] | n | -IExpr  | (IExpr) | IExpr Op IExpr 
∼ ::= < | ≤ | ≥ | > | = 
Op ::= + | – | * | /, 

 

where Ps is a state formula, AP is the atomic state formula, CGuard and IGuard 
are the guards over clocks and integer variables, respectively, Id is the identifier 
name, Id1.Id2 is an identifier in the form “automaton_name.state_name”, n is a 
natural number (including 0), and temporal modalities are: A – always, E – 
sometimes, � – globally, ◊ – eventually. 

Given a timed transition system S = 〈S, s0, R, L〉, described by a network of 
timed automata, the Ls formulas are interpreted in terms of an extended state 
s = 〈s, u〉 where s ∈ S is a state of a timed transition system and u is an 
assignment to formula clocks K; R ⊆ S × S is a precedence relation; L: S → 2AP is 
a labeling function that assigns to each state a set of atomic propositions holding 
in that state. 

A path on a transition system S is a (possibly infinite) sequence of states 
π = s 0, s 1, ..., where ∀i ≥ 0, (s i, s i+1) ∈ R; π i is suffix of the path π that begins 
from the ith state s i. Let ϕ be a formula to be model checked. The satisfaction 
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relation |= between extended states (paths) and formulas is defined as the largest 
relation satisfying the following equivalences: 

 

  1) S,s |= p  ⇔ p∈ L(s) 
  2) S,s |= ¬ϕ ⇔ S,s |≠ ϕ 
  3) S,s |= ϕ1 ∨ ϕ2 ⇔ S,s |= ϕ1 or  S,s |= ϕ2 

  4) S,s |=  ϕ1 ∧ ϕ2 ⇔ S,s |= ϕ1 and S,s |= ϕ2 
  5) S,s |= E ϕ            ⇔ there is a path π from state s, so that S,π |= ϕ 

  6) S,s |= A ϕ ⇔ for all paths π from state s  S,π |= ϕ 

  7) S,π |= ϕ  ⇔ s is the first state of π and S,s |= ϕ 

  8) S,π |= ¬ϕ ⇔ S,π  |≠ ϕ 
  9) S,π |= ϕ1 ∨ ϕ2 ⇔ S,π  |= ϕ1  or  S,π  |= ϕ2 

10) S,π |= ϕ1 ∧ ϕ2 ⇔ S,π  |= ϕ1  and  S,π   |= ϕ2 

11) S,π |= ◊ ϕ ⇔ exists k ≥ 0, so that S,π k  |= ϕ 

12) S,π |= � ϕ ⇔ for all i ≥ 0  S,π i  |= ϕ 
 

We write S,s |= ϕ  to express that the formula ϕ  holds in a state s of a transition 
system S, and S,π |= ϕ  to express that the formula ϕ holds on a path π of S. 

For example, the formula A � (v1 < v2) says that invariantly v1 < v2 holds, and 
the formula E◊( A1.si ∧ A2.si) is true if the system can reach a global state where 
both automata A1 and A2 are in their states si. 
 
 

5. MODELLING  EXAMPLE 
 
As an illustrative example, consider the educational FMS as a workstation 

with critical load to which five tasks are assigned. The IDEF0 diagram of that 
WS is given in Fig. 3. 

The workstation process consists of the following sequence of tasks prescribed by 
the L-level precedence graph. The blank is placed on the conveyor1 (task 1). The 
conveyor1 transports the blank to the robot Mentor (task 2) that picks it from 
conveyor1 and places to conveyor2 (task 3). On the conveyor2 the blank is 
measured, classified and transported to a certain position (task 4) where the Serpent 
robot and CNC mill work it into the finished part (task 5). Task 5 in detail is: robot 
Serpent takes the good blank and places it to the CNC Mill worktable (operations  
1–5, mode 2) where the blank is processed by one of four programs (modes 1–4). 
After completion of milling, the robot Serpent removes the item from CNC Mill and 
places it into the box (operations 1–5, mode 3) that is positioned under Serpent by the 
indexing table. If the new arrived blank is not good, robot Serpent removes it from 
the conveyor2 (operations 1–5 of mode 1). The indexing table turns to the right 
position after the blank is picked from the conveyor2. Only the initiation of this task 
is synchronized with the milling task since milling takes always longer time and 
continuation of the process depends on the latter. 

The O-level model of the workstation is composed of separate task models 
according to the rules given in Section 3. As an example, the model of the task 5 
with the process scheduler is depicted in Fig. 4. 



 

 
 
 

Fig. 3. IDEF0 representation of the load-critical workstation. 
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Fig. 4. Timed automata model of the task 5. 219 
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The model checking task to be solved to achieve more exact time estimates in 
comparison with the L-model can be expressed now using a Ls formula 
A�(PLANNER.CL ≤ WSTIMe), where PLANNER.CL denotes a clock in the 
automaton “Planner” that is reset each time when the processing of a detail in the 
workstation is completed, and WSTIMe denotes the hypothetical workstation 
time towards which the O-model time estimate is checked. The initial value of 
WSTIMe is naturally the L-level workshop time. 

The results of checking the workstation time show that it is possible to reduce 
the cycle time from 200 to164–168 s depending on the milling mode, meanwhile 
preserving the L-level optimal solution of the assembly line structure. The 
reduction is mainly due to the partial overlapping of task operations inside the 
station. In case of the task 5, milling, indexing table, and bad blank removing 
operations can be performed in parallel. 

 
 

6. CONCLUDING  REMARKS 
 
A typical line balancing problem involves hundreds of tasks. Due to the 

complexity of analysis, the used model and the set of modelling assumptions 
must be of a high level of abstraction. At the same time, separate workstations 
with prescribed task assignments can be easily modelled at a detailed level of 
granularity and under more sophisticated assumptions. 

In this paper, a two-step technique for solving assembly line balancing 
problems as well as other resource assignment problems for FMS was introduced. 
It was shown that the technique combines the advantages of efficient coarse level 
algorithms and fine-grain model checking procedures. 

The main result of the paper is the parametric model checking methodology that 
guides model construction and property specification for estimating workstation 
load and timing parameters in the presence of operational and timing constraints. 
The first step of the technique is demonstrated on the classical SALBP example 
using the benchmark test data sets for the line balancing program SALOME-1. The 
second step, construction of operation-level timed automata and the model 
checking procedure, was illustrated on the representative workstation of an 
educational FMS. 
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Mudelkontrolli  kasutamine  koosteliini  
tasakaalustusülesande  lahendamisel 

 
Jüri Vain, Ingmar Randvee, Tiit Riismaa ja Juhan Ernits 

 
Tüüpiline koosteliini tasakaalustusülesanne haarab sadu toiminguid. Et üles-

anne oleks praktiliselt lahendatav, esitatakse nii kasutatav mudel kui ka piiravad 
tingimused tugevasti üldistatud kujul. Teiselt poolt on võimalik tööjaamade tege-
likku keerukust paremini arvestada, kui kasutada tasakaalustusülesande lahendina 



 222

leitud toimingute jaotust üksikute tööjaamade vahel koos koormuskriitiliste töö-
jaamade täpsustatud mudelitega. 

Käesolevas töös on esitatud kaheetapiline lahendusskeem toimingute opti-
maalseks jaotamiseks tööjaamade vahel. See ühildab tuntud tasakaalustusmeeto-
dite ja üksiku tööjaama detailse mudelkontrolli eelised. Esitatu uudsus seisneb 
mudelkontrolli metodoloogia integreerimises koosteliini tasakaalustusülesande 
lahendusskeemi. Meetodi demonstreerimiseks on kasutatud Tallinna Tehnikaüli-
kooli paindtootmissõlme maketti, mis on kirjeldatud ajaga automaatide forma-
lismis, ning koosteliinide tasakaalustusülesande lahendusmeetodite testimiseks 
koostatud avalikku lähteandmete kogu. 

 


