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Abstract. The aim of this work is to form a basis for developing an efficient adaptive multi-
frequency adaptation algorithm for an extended block-adaptive Fourier analyser (EBAFA), which 
performs simultaneously separation and analysis of its input signal’s periodic components of 
different frequencies and waveforms. A brief description of EBAFA is given and several 
possibilities to improve estimation of differences between fundamental frequencies of signal’s 
periodic components and corresponding resonator groups of EBAFA are considered. 
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1. INTRODUCTION

In several experiments the measurement signal contains non-harmonic periodic 
components of different frequencies and waveforms. Often such components carry 
information about different processes and one should analyse them separately, 
sometimes in real time. Besides, these components can be non-stationary (of 
varying frequency and harmonic content) and a noise may be added to them (as it 
is, for example, in a hand-to-hand bio-impedance signal containing heartbeat and 
breathing components [1]). Traditional filtering is not suited for solving such tasks 
but adaptive filtering is often applicable [2], if one can use additional information 
(for example, in the form of a reference signal) that permits suppression of the 
signal’s undesired components. On the other hand, phase-locked loop based 
systems [3] can be used to separate the 1st and also higher harmonics of the useful 
component from the composite measurement signal, if the fundamental frequency 
of this component is known precisely enough. 
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In [4], an alternative to the above was proposed in the form of an extended 
block-adaptive Fourier analyser (EBAFA). It was developed mostly on the basis 
of works by Hostetter, Péceli, Nagy and Simon [5–8], devoted to the algorithms 
for recursive discrete Fourier transform that can be considered as observers [9]. 
EBAFA is a tool for processing band-limited discrete-time signals )(kx  that can 
be presented in the form 
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are periodic components. In Eq. (2) nqA ,  is the thn  complex Fourier coefficient 
of the signal’s thq  component, which has a fundamental frequency qω  and the 
number of the highest harmonic .qN  It is assumed that qqN ω  is smaller than the 
Nyquist frequency. 

EBAFA makes it possible to separate signal’s periodic components and to 
find their spectra simultaneously in real time (of course, several restrictions exist; 
for example, sufficiently precise initial estimates of the components’ fundamental 
frequencies must be used, etc.). However, as stated in [4], EBAFA should be 
improved for wider practical application. This paper is focused on finding and 
analysing ways to develop for EBAFA an efficient adaptive algorithm for multi-
frequency adaptation. 

 
 

2. THEORETICAL  BASIS 
 
EBAFA of the order Q  (its block diagram is presented in Fig. 1) enables us to 

find estimates of the constant component and Q  real periodic components of its 
input signal )(kx  as ),(ˆ kxq  estimates qω̂  of corresponding fundamental 
frequencies ,qω  and also estimates of complex Fourier coefficients of the 
periodic components ),(kXm  ....,,2,1 Lm ±±±=  If ,1=Q  EBAFA turns into a 
simple block-adaptive Fourier analyser (BAFA) [8], where )(ˆ0 kx  (the estimate of 
the constant component ))(0 kx  is determined as )(0 kX  (as an estimate of the 
0th Fourier coefficient of )).()( 1 kxkx =  Thus in the following we consider basic 
properties of the BAFA, because they match with those of the EBAFA, which are 
essential for us. 
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Fig. 1. Block diagram of an extended block-adaptive Fourier analyser (EBAFA) of the order Q  (in 
case of 1=Q  one obtains a BAFA). 

 
 

2.1. Basics  of  the  BAFA 
 
BAFA consists of 12 += LM  harmonically related parallel resonators 

(EBAFA’s resonator groups 0 and 1 in Fig. 1) with a common negative feedback. 
The number of resonator pairs in BAFA (the number of formed harmonics L) 
depends on the fundamental frequency 1ω̂  of the BAFA’s resonators and it must 
satisfy the inequality 
 

.ˆ/1ˆ/ 11 ωπωπ <≤− L                                       (3) 
 

In BAFA, the variable coefficients )(kcm  and )(kg m  of the resonators in 
Fig. 1 are computed as follows: 
 

,)( 1ˆ mkj
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are such that the system has poles only at the origin and operates as a dead-beat 
observer with transient length equal to the total number of resonators M  (for the 
EBAFA of the order ,1>Q  expressions (5) and (6) are more complicated [4]). 

Let us assume that a signal (1) with 1=Q  is processed in BAFA. 

If 11ˆ ωω =  (the fundamental frequencies of the resonator system and of the 
input signal have been set equal) and also ,1NL =  then, after passing M  
sampling intervals, the desired result mm AkX ,1)( =  is obtained for 

....,,1,0,1...,, LLm −−=  
If 11ˆ ωω ≠ , then the Fourier coefficients’ estimates )(kX m  (the state 

variables of BAFA, which is a spectral observer) are erroneous; for example, the 
1st Fourier coefficient has the form 
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where 
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and the transfer function of the thm  channel from the input )(kx  to 
)()( kckX mm  is 
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The unwrapped angle between the complex vectors )(1,1 PlX +  and )(1,1 lX  
can be expressed as 
 

).ˆ())()((),( 111,11,11,1 ωω −=+∠=+ PlXPlXlPl-                  (10) 
 

This opens the possibility to estimate the frequency error 111 ω̂ωω −=∆  and to 
update further 1ω̂  and the parameters of BAFA according to Eqs. (3)–(6). The 
whole procedure of the frequency error estimation should be performed only 
when the transients (caused by the previous parameter updating or by changes in 
the input signal) have decayed, otherwise an additional estimation error appears. 
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2.2. Frequency  error  estimation  in  BAFA 
 
Assuming that the stationary input signal is such that in BAFA for all 

1
~~

,1 AAm m <<≠  in Eq. (7), the frequency error estimate 1ω̂∆  can be found as 
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where ),(1 lPl- +  is the angle between the vectors presenting the complex 
valued estimates of the 1st Fourier coefficient computed in sampling steps Pl +  
and .l  The unwrapped angle ),(1 lPl- +  between two vectors can be computed, 
assuming 
 

.),(1 π<+ lPl-                                           (12) 
 

In [7], angle measurements in Eq. (11) were performed in every time-step 
using ,1=P  but in [8] block-adaptation was applied (with the aim to perform 
convergence analysis of BAFA) using 1>P  and performing frequency error 
estimation only after the transients had decayed. In case of ,2LP =  practically 
the same frequency convergence speed was achieved as in [7]. 

As stated in [8], the frequency convergence can be achieved, if relative 
amplitudes of the input signal’s Fourier components satisfy the inequality 
 

.1AAa nn ≥                                           (13) 
 

In order to relax these restrictions and to improve precision of the frequency 
error estimation, we propose to condition the vectors used in angle measurement 
(Eq. (11)). The conditioning means processing of the computed values )(1 iX  
according to an algorithm τ, which finds for pairs of properly chosen sets of 
computed values ),(1 iX  shifted in time by ,P  corresponding pairs of such 
complex vectors PX ,τ  and 0,τX  that the angle P- ,τ  between them is closer to 

),(1,1 lPl- +  (Eq. (10)) than ),(1 lPl- +  in Eq. (11), and permits thus to obtain 
a better estimate of the error 
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The latter corresponds to the unwrapped angle 
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2.3. Vector  conditioning  for  angle  measurement 
 
In [10] it was proposed to use for conditioning an algorithm that forms PX ,τ  

and 0,τX  as average values of B  consecutive complex vectors (values of the 1st 
Fourier coefficients) chosen with the time-shift :P  
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The vector diagram in Fig. 2 demonstrates how this algorithm leads to the desired 
result (details are given in [10]). 

It has been shown also that, if Eq. (16) is used to find 0,τX  and ,,PX τ  then 
the upper limit �  for the angle error ,),( ,1,1 P-lPl- τ−+  which is proportional 
to the error of the frequency error estimate (14), can be expressed in the form 
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Fig. 2. Vector diagram of conditioning the vector )()()( ,11,11 iXiXiX m+=  applying Eq. (16). 
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where 
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is a relative disturbance gain, introduced by vector conditioning with 1>B  
(in [8], 1≡mγ  was obtained for the case ),1=B  and 
 

.)ˆ( 111111 ωωωωωδ −=∆=                              (19) 
 
It was shown also that increasing of B  permits us to increase the precision of 

1ω̂∆  in Eq. (14) only if 
 

,1ωπ ∆<B    or   .1 1
1

1 ωπδ ∆<−≤ −LB                    (20) 

 

One can easily find that the frequency error estimation with such vector 
conditioning is nearly time-optimal, if .PB ≈  In this case Eq. (20) is not 
needed and only the inequality (15) must be satisfied to ensure acceptability  
of values of the parameters P  and .PB ≈  Besides, if 01 →δ  and 

,1, 1
1 ∞→−→ −δLBP  the error of the frequency error estimate is )( 2−Ω P  

instead  of  )( 1−Ω P  for the basic estimator [8]. 
It is evident that vector conditioning can be performed in several ways, for 

example, by adding vectors )(1 iX  separately for odd and even steps: 
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where B  must satisfy (20). Here ,1=P  because the angle between the resultant 
vectors is an estimate of the frequency error .1ω∆  The corresponding algorithm 
may be useful for suppressing errors caused by input signal’s components of 
frequencies, which are close to .1ω  One does not need it in the BAFA, but it may 
be important for the EBAFA. 

The above approaches can be realized by an algorithm ),,2� BP  which gives 
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It is possible that in some cases the resultant vectors should be found using a 
more general and more powerful, but also more time-consuming algorithm 

),,(2 BP∞  which permits processing of larger sets of vectors: 
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or realizes an analogous but simpler extension of (16): 
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Efficiency of the proposed more general algorithms depends on the content of 
the (E)BAFA’s input signal (frequencies of its periodic components, amplitudes 
of harmonics) and on the choice of the values of P  (which has to keep the 
inequality (15) satisfied) and B  (that is, D  or ,∞b  and ).bD  Values of these 
parameters can be chosen in the computation process depending on the obtained 
results, and this enables us to develop an adaptive frequency error estimator. 

The above vector conditioning algorithms offer a possibility to improve 
frequency error estimation without enlarging the set of saved samples (needed 
memory) via performing joint vector conditioning and angle enlargement. 

 
 

2.4. Angle  enlargement  for  frequency  error  estimation 
 
Let us consider a vector diagram of vector conditioning according to Eq. (16) 

with ,PB =  presented in Fig. 2. When the vector conditioning process has ended 
(according to the inequality (15)) and angle measurement performed using 4,τX  
and ,0,τX  then, if only P  latest samples )(1 iX  are held in the memory, a new 
conditioning/measurement cycle can be performed, for example, according to 
one of the following two schemes. 

Scheme 1. One can compute new vectors 2,τX ′  and 0,τX ′  on the basis of 
values of the components of 4,τX  (that is, )),(1 iX  which are in the memory at 
this moment, and further update them (using new samples of ))(1 iX  until the 
next final PX ,τ′  and 0,τX ′  are fixed due to the unsatisfied inequality (15) (it may 
happen that 4≠= PB  in this measurement cycle!). Figure 2 illustrates the start 
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of this cycle and shows how 1,2V ′  and 1,0V ′  (the useful components of 2,τX ′  and 
)0,τX ′  are obtained summing )(1,1 iX  (useful components of )).(1 iX  In the 

experiments, the results of which are given in Section 3, we apply only this 
scheme. 

Scheme 2. In certain conditions, for example, when in the case shown in 
Fig. 2 achievement of 4== PB  is guaranteed in the following angle 
measurement cycles, one can set 4,0, ττ XX =′  and find 4,τX  using new samples 
of ).(1 iX  

After performing cM  angle measurement cycles, the frequency error estimate 
can be computed as 
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Consequently, using in Eq. (14) instead of P- ,τ  and P  the sums of 

corresponding results of the measurement cycles, we obtain ,, ∑=
Σ

m
P2�P m

--τ  

which is a practically unlimited unwrapped angle, and ,∑=Σ
m

mPP  both found 

over the set of performed cycles. 
In the scheme 2 the error’s limit (17) remains valid for the total angle 

ΣP- ,τ  

due to the fact that PPPm == 1  and 
1,0, −

=
mPm

XX ττ  for ....,,3,2 cMm =  Then it 

is possible to choose (at the end of the first angle measurement cycle) such a 
number cM  of the angle measurement cycles that the upper limit of the absolute 
relative worst-case error of the frequency error estimate (24), which can be 
expressed as 
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becomes sufficiently small. 

Assumption PPPm == 1  for cMm ...,,3,2=  means that P  must satisfy, 
instead of (15), the inequality 
 

,2)(, ψπτ −<k- P                                         (26) 
 
where ψ  is such estimate of the unknown angle error’s limit �  that ��>>ψπ  
Of course, ψ  should be minimal. 



 318 

If up to P2  latest values of )(1 iX  are held in the memory in the vector 
conditioning process, then after finding the vectors )(, kX Pτ  and )(0, kX τ  and the 
frequency error estimate (14) in the time-step ,k  one can easily find 
corresponding vectors in following time-steps, but only if (15) remains satisfied 
in case of increasing k  (if (26) holds for the first value of ).k  One can also find 
(over the set of computed )(, lX pτ ) 
 

)(max ,
,

max, lXX p
lp

ττ =    and ,)(min ,
,

min, lXX p
lp

ττ =                  (27) 

 
which can be used to compute 
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In certain favourable conditions �̂  can be considered as an approximate (but, 

unfortunately, underestimated) value of the angle error’s upper limit ��  Then, if 

ψ  permits one to find 1ω̂∆  and �̂  according to Eqs. (24) and (28), one can 

update 1ω̂  and (with special precaution) also .ψ  On the other hand, a significant 

increase of currently computed (small) values of �̂  indicates essential changes in 

the input signal. If )(max 1max, lXX
l

=τ  and )(min 1min, lXX
l

=τ  are used in (28), 

then the value �̂  is obtained for ��  which corresponds to .1≡mγ  
 
 
2.5. Frequency  error  estimation  and  frequency  updating  in  EBAFA 
 
In EBAFA the frequency error estimators of all the resonator groups can start 

to work simultaneously after the transients have decayed. As our experiments 
have shown, it is reasonable (in the sense of total transient time or multi-
frequency convergence speed) to update fundamental frequencies (and 
frequency-dependent parameters) of all the resonator groups in the same time-
step. Thus, the work of the frequency error estimators must be organized to 
achieve: 

1) optimal (or at least reasonable) estimation time, 
2) efficient using of this time in all the estimators. 
Due to the large amount of different factors (frequencies, phases and spectra 

of the input signal components, noise, disturbances) that have influence on the 
processes in EBAFA, it is difficult to find an optimal solution for this task. It 
seems to be reasonable to make EBAFA adaptive enough to more essential 
factors and stable in critical situations. 
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Let us consider here some features of the EBAFA’s last versions, used in the 
experiments, the results of which are presented in Section 3. 

1. Coefficients qK  were introduced to determine numbers of time-steps for 
frequency error estimation (that is, B2  for Eqs. (21) to (23), and its equivalent 

PB +  for Eqs. (16) and (23a)) for all resonator groups from the equation 
 

,2 qqq LKB =    ....,,2,1 Qq =                                    (29) 
 

The values of the coefficients qK  were computed as 
 

,}ˆ{minˆ5.0 



 += q

q
qq KK ωω                                  (30) 

 
where K  is a common parameter for determining the estimation time. Later the 
formula 
 





= }ˆ{min2 q

q
q KB ωπ                                           (31) 

 
was used. 

2. When all Q  frequency error estimates have been found, only these new 
values of the EBAFA’s fundamental frequencies, which lie in the pre-set working 
bands, that is, satisfy the inequalities 
 

,ˆˆˆˆ max,min, qqqq ωωωω <∆+<                                  (32) 
 

are accepted and taken into use. The frequency limits min,ˆ qω  and max,ˆ qω  (and the 
initial value of )ˆ qω  should be fixed using available information about ,qω  in 
accordance with other essential factors. It is expected that the restriction (32) 
excludes possible large errors in the first steps of the multi-frequency 
convergence process. 

The above features permit investigation and control of signal processing in the 
EBAFA en bloc and they are closely related; for example, a greater qK  enables 
to obtain a better estimate qω̂∆  but it assumes a smaller initial error qω∆  [10]. 
On the other hand, in case of pq ωω >  one should use pq KK >  to achieve in the 
process of estimation of qω∆  sufficient suppression of errors, caused by lower 
harmonics of the pth component, etc. In order to obtain some information for 
further studies, we performed several pilot experiments simulating the work of 
the EBAFA in the MATLAB environment. 
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3. SIMULATION  RESULTS 
 
In this section multi-frequency convergence processes and separation of the 

signal’s components in the EBAFA are considered, but first some earlier results 
on frequency error estimation in the BAFA are presented. 

 
3.1. A  case  study:  BAFA’s  input  signal  is  a  sum  of  two  (not  

harmonically  related)  sinusoids 
 
It can be shown that if the BAFA’s input signal consists of a useful sinusoid 

of a frequency 1ωω =u  with an amplitude ,1=uA  and a disturbing sinusoid of a 
frequency dω  with an amplitude ,dA  then the angle error limit (17) (that is 
proportional to the limit of the error of the frequency error estimate) can be 
computed as 
 

)),()()(arcsin(2 1 dd� ωθγωθγωγ −++−=                     (33) 
 
where 
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We computed �  according to (33), using .10ˆ 2
1

−⋅= πω  The value of 1ω  was 
determined via 1ω̂  and .1δ  The parameters dω  and dA  had such values that 
satisfied the equalities 2

1ωωω =−+ dd  and ,1=−+ dd AA  and also the inequalities 
22 1010 ≤≤−

dA  and .1)1( 1
1 +≤=≤+ − LL dd ωωω  In order to compare the 

frequency error estimates with [8] and [10], different values of the parameter B  
were used. If 1=B , then the estimator proposed in [10] matches with that 
described in [8]. As Eq. (35) gives for a small B  such γ  that overestimates the 
angle error limit, we used in Eq. (33) 1≡γ  in case of 1=B  (further γ1=B  is 
used to notify that). 

The angle error upper limit �  can be found only if the absolute value of the 
argument of )arcsin(⋅  in Eq. (33) is less than 1, and .ˆ11 ωωπ −−<�  If in our 
computations the first condition was not satisfied, then �  was set equal to .π  As 

1111 ˆ ωδωω =−  was rather small, the region of parameters, where π<� , can 
be considered as a domain of the BAFA’s potential convergence (to guarantee 
actual convergence, the condition 11 ˆ/ ωω −>�P  must be satisfied). 
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Let us consider some simulation results, plotted using logarithmic presenta-
tion. 

Figure 3 demonstrates how the domain of the BAFA’s potential convergence, 
which remains below zero level due to the normalization of �  by ,π  enlarges 
with increasing .B  In the lower half of the plots one can see a part of the region, 
where a constant error level caused by 3.01 =δ  (the 1st complex Fourier 
component of the useful sinusoid) is greater than the error caused by the 
disturbing sinusoid. 

Figure 4 presents the ratios of the angle error limits �  for the estimates 
according to [8] and [10]. These plots show that the introduced vector conditioning 
suppresses the estimate errors (caused by a disturbing sinusoidal signal of 
frequency 11 ω̂ωω ≈≠d ) as a simple low-pass filter, which has a resonant peak 
at the corner frequency ,ˆ1ω  an asymptotic slope – 20 dB per decade at higher 
frequencies, and an asymptotic level of ))(2(log20 BL π  dB in the pass-band. 
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Fig. 3. Dependence of )),,((log πω BA�S ddc =  on )(loglg dωω =  and )(loglg dAA =  for 
two values of ;B  .3.01 =δ  
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Fig. 4. Dependence of ))1,,(),,((log γωω === BA�YLBA�S dddd  on dωω loglg =  and 

dAA loglg =  for different values of ;Y  the axis of lgA  is perpendicular to the surface of the 
plots; 

10
1 10 −=δ  (from [8,10]). 

 
 

The ratios of the angle error limits �  (Fig. 5) have been found so that in case 
of π=< 21 ��  the ratio 21 /��  was set equal to .10 5−  The plotted surfaces 
give an approximate description of the worst-case possibilities to maintain 
frequency convergence in EBAFA, where the fundamental frequencies of its 
resonator groups that correspond to the input signal’s sinusoidal components of 
frequencies 1ω  and ,dω  have the same error :1δ  

1) in a small horizontal “dead” zone on the level 0 (in the neighbourhood of 
the point (0,0)) convergence is impossible; 

2) in a horizontal zone on the level + 5/– 5 an error estimate can be found only 
for higher/lower frequency; 

3) in the remaining part of the surface two-frequency convergence is possible 
and increasing of B  widens this area. 

On the left of the plots, which correspond to ( ) ,0loglg >= dωω  one can see 
the “Nyquist barrier.” 
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3.2. Experiments with EBAFA 
 
In [4] robustness of EBAFA with 2=Q  has been demonstrated on an example 

of a two-component signal, where a waveform of a component with an unlimited 
2/1 f -type spectrum (a rectified sinusoidal signal) was reconstructed (in the 

experiments this component was either comparable to or 100 times smaller than 
the other one). In case of the unlimited f/1 -type spectrum the error signal )(ke  
appeared to be too big and caused significant distortions of waveforms. 

In the experiments considered below we use only such specially generated 
input signals, which satisfy the Nyquist criterion. The used initial values of the 
EBAFA’s fundamental frequencies were such that the absolute relative frequency 
errors qqqq ωωωδ )ˆ( −=  were between 10 and 30 per cent. 

Figure 6 enables us to compare processing of a four-component signal 
(fundamental frequencies of its components of different waveforms are 

,0535.01 =ω  ,1308.02 =ω  ,1319.03 =ω  and ,3811.04 =ω  and the levels of 
these components are comparable) using different frequency error estimators 
with such values of the parameter ,K  which appeared to be (nearly) optimal for 
this signal-processing task. 

Comparing the plots in Figs. 6a and b, which correspond to using 1=D  and 
1=P  in Eq. (22) (applying Eq. (16) with PB =  and Eq. (21)), where B  is 

determined by Eq. (29), one can see that in case of 1=P  the convergence speed 
of the medium-size frequencies, which are close to each other, is relatively good, 
but in case of 1=D  the frequency convergence process (as a whole) is 
significantly better. 
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qδ  Eqs. (16), (29),  
(30) are used; 

13=optK         

 

qδ  Eqs. (20), (29), 
(30) are used; 

13=optK  

 
(a) (b) 

 qδ  Eqs. (16), (31) are 
used without angle 
enlarging;  

12=optK  

 

qδ  Eqs. (20), (29), (30), 
and (36) are used; 

13=
opt

K  

 
(c) (d) 

 qδ  Here and in (f) Eqs.  
(16), (31) are used 
with angle enlarging; 

5.9=optK  

 

 x  
 x̂  
 qx̂  

 
(e) (f) 

 
Fig. 6. Processing of a four-component signal in EBAFAs that use different frequency error 
estimators. In (a) to (e) components’ frequency errors || qδ  are given for the lowest frequency 
(dash-dot curve), close %)1( ≈ωδ  medium frequencies (dashed and continuous curves), and for 
the highest frequency (bold-dotted curve). The plot (f) presents the signals x(  is given by dots) in 
first time-steps when transients do not exceed the input signal’s level any more. 
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Here 1=P  leads to convergence in the second attempt. However, when 
EBAFA has to perform such a complicated task as the considered one and its 
parameter K  is far from the optimal value optK  (no matter, which of the 
considered frequency estimation algorithms is used), one can see not only longer 
series of such attempts, but also a fully “paralyzed” EBAFA, where all its 
fundamental frequencies remain (may be, for ever) at erroneous values. 

The mentioned undesired processes take place when frequency errors have not 
been suppressed below certain levels yet, where further convergence is 
guaranteed (we expect that such levels do exist and further convergence can be 
proved as in [8] for the BAFA, that is, for EBAFA in the case of ).1=Q  In such 
situations one can apply two strategies: 1) to avoid steps that lead to great errors, 
2) to make (in reasonable time) many steps, among which there would be such 
ones, which “make things better”. 

The first strategy, applied in EBAFA in the form of the inequalities (32), 
gives satisfactory results. In Figs. 6b and e and also in Fig. 7b errors of some 
fundamental frequencies were not changed in several first convergence steps as 
the error estimates happened to be unacceptable. A result of one attempt to apply 
the second strategy is shown in Fig. 6d, where a value of the parameter K  for 
the kth frequency error estimation cycle was found as 
 

}.,3min{ optKkK +=                                     (36) 
 

This example is presented to emphasize that one has to pay more attention to 
first frequency adaptation steps in which, in hard conditions, even generally 
efficient algorithms happen to fail. The considered error estimation algorithms 
(based on Eq. (22)) are less efficient just in first frequency convergence steps, 
due to the restrictions (15) and (20). 

Better results (Figs. 6e and f) were achieved, when the above described angle 
enlarging scheme 1 was introduced into the algorithm based on Eq. (22) with 

,1=D  improving thus its performance in the first frequency convergence steps 
too. As in this algorithm the products DPB =  are determined using Eq. (31), a 
parallel experiment without angle enlargement was performed to obtain a basis 
for comparison (Fig. 6c). Experiments with less complicated signals showed 
clearly that the angle enlargement increases the convergence speed about 
30 per cent. 

The best algorithm (based on Eq. (22) with 1=D  and angle enlargement) was 
used in EBAFA in the experiments, the results of which are presented in Figs. 7 
and 8. In all these experiments 7.2opt =K  was used. 

The plots in Fig. 7 illustrate processing of an input signal obtained from the 
one in Fig. 6 after removing one of the components of close to medium 
frequencies. One can see that different levels of input signal’s components do not 
cause any specific problems: when the greater components have been identified 
(suppressed) precisely enough, then convergence of the EBAFA’s fundamental 
frequencies onto the frequencies of smaller components is obtained. 
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Fig. 7. Processing of a three-component signal in EBAFA of the order ,3=Q  .7.2opt =K  In the 
plots (c) and (d) the component of medium frequency (the error of which is given by continuous 
curve) is 106 times greater than in (a) and (b). An acceptable waveform of this component is 
obtained in time-step 600. In (b) x  is given by dots. 
 
 

Figure 8 demonstrates how EBAFAs of the orders 4=Q  and 1 process a 
single periodic signal, one of the components of the input signal in Fig. 6. With 

4=Q  the output signals of all the resonator groups, the working bands of which 
(see Eq. (32)) are empty (that is, do not contain any fundamental harmonics of 
the input signal), achieve the zero level practically simultaneously. In this 
experiment we used the same EBAFA and the same initial parameters as in the 
experiment, illustrated in Figs. 6e and f, with two exceptions: 1) a medium-size 
fundamental frequency of one resonator group and a corresponding working band 
were shifted towards the highest fundamental frequency so that the working 
bands did not overlap, and 2) the used optimal value of K  was 2.7 instead of 9.5. 

Figure 8a shows that introducing the working bands (the inequalities (32)) 
enables not only to avoid fatal errors in first frequency convergence steps, but 
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also to avoid competing of the EBAFA’s resonator groups for one and the same 
input signal’s fundamental frequency (Fig. 7b), which can lead to undesired 
results. The main conclusion is that there is no need to know the exact number of 
input signal’s periodic components, but one has to cover the potential band of 
input signal’s fundamental frequencies with properly chosen (not overlapping) 
working bands of the EBAFA’s resonator groups. Comparison of the plots in 
Figs. 8a and b shows what is the “cost” of this possibility. 

In some experiments, where restrictions were introduced to avoid entering of 
fundamental frequencies of EBAFA into neighbourhoods of the others and the 
number of resonator groups was greater than needed, the outputs of the 
resonators of the redundant groups, which were left “free” (unlocked) in the end 
of the frequency convergence process, achieved zero value. 
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Fig. 8. Processing of a periodic signal in EBAFAs of the orders 4=Q  and 1; .7.2opt =K  In the 
plots (b) and (d) x  is given by dots and the error signal e  by dotted curve. In the plot (d) a 
transient of the constant component 0x̂  is observable. 
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4. CONCLUSIONS 
 
The results of investigating frequency adaptation problems in EBAFA, that 

are presented in this paper and in [4], allow to state the following. 
1. The simulation results demonstrate that in certain cases EBAFA is capable 

to analyse its complicated input signal of the form (1), that is, to reproduce the 
input signal’s periodic components of different frequencies and waveforms, and 
to find their spectra (complex Fourier coefficients). In these favourable cases, 
first, the spectrum of the input signal satisfies certain restrictions that are more 
complicated but rather similar to those formulated for the frequency convergence 
in BAFA [8]. Second, the fundamental frequencies of the EBAFA’s resonator 
groups qω̂  are updated without pitching on certain “bad” sets of values, which 
lead to too small differences of frequences qqpp mm ωω ˆˆ −  of some harmonics 
with numbers pm  and qm , and to the result that (as it was pointed out in [4]) 
EBAFA looses its computability. Thus one has to develop an efficient frequency 
updating algorithm, which guarantees (under certain conditions) avoiding of the 
mentioned “bad” sets of frequencies .ˆ qω  Of course, it is not excluded that the 
difficulties caused by too close frequencies of higher harmonic resonators can be 
overcome in some other way. 

2. Several new possibilities to improve frequency error estimation in EBAFA 
and also in BAFA have been proposed and more or less thoroughly analysed and 
tested. It is obvious that these approaches permit us also to relax restrictions on 
the input signal. These must be satisfied to achieve (multi-)frequency 
convergence. Some of them permit enlargement of the measured angle (which is 
proportional to the error of the frequency error estimate) without increasing the 
upper limit of its error, to estimate the angle error upper limit, and to make the 
frequency error estimation algorithm adaptive to the level of the angle error. 
These means seem to be good enough to modernize EBAFA so that convergence 
of the fundamental frequencies qω̂  to the input signal’s frequencies qω  can be 
proved under certain preconditions. However, as these preconditions should 
include (due to the “bad” sets of the fundamental frequencies )ˆ qω  a rather low 
upper limit for the total number of resonators ,M  this proof is not of serious 
interest. On the other hand, in case of 1>Q  the nature of EBAFA (transfer 
function (9)) as well as that of the input signal (their frequency patterns formed 
by frequencies of all the harmonics) are such that a change of one fundamental 
frequency can cause significant changes of the angle errors that appear in the 
process of estimation of errors of the other (and even unchanged) fundamental 
frequencies in the next estimation cycle . This important effect of changes of the 
frequency patterns should be studied more thoroughly with the aim to 
improve   convergence of the frequency vector T

Q ]ˆ...,,ˆ,ˆ[ˆ 21 ωωω=&  to 
.]...,,,[ 21

T
Qωωω=&  

3. As several experiments have shown, EBAFA can be used to analyse a 
complicated signal even if the exact number of its periodic components of 
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different frequencies and waveforms is unknown. This important result was 
achieved due to making a step towards proper treatment of frequency pattern 
problems and applying, in this particular case, certain restrictions on the 
EBAFA’s fundamental frequencies. 

4. The final conclusion is that the above frequency pattern problems must be 
investigated. The results of this work would enable us to improve the EBAFA 
and to prove multi-frequency convergence in it under such preconditions, which 
meet the needs of practice and permit wider application of EBAFA. On the other 
hand, it would be reasonable to develop application-specific EBAFAs, which 
meet certain more limited demands. 
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SAGEDUSADAPTATSIOONIST  LAIENDATUD  PLOKK-
ADAPTIIVSES  FOURIER’  ANALÜSAATORIS 

 
Ants RONK 

 
On käsitletud sagedusadaptatsiooni võimalusi laiendatud plokk-adaptiivses 

Fourier’ analüsaatoris, milles saab reprodutseerida piiratud sagedusribaga sig-
naali erineva põhisageduse ja kujuga perioodilisi komponente, leides samaaegselt 
ka nende kompleksse Fourier’ rea koefitsiendid (spektrid). On kirjeldatud uusi 
mooduseid analüsaatori ühe resonaatorirühma põhisageduse vea hindamise algo-
ritmi täiustamiseks. Neid on võrdlevalt analüüsitud ning katsetatud. On tutvusta-
tud ka mitme sageduse adaptatsiooni variante ning uuritud nende rakendatavust 
MATLABis realiseeritud laiendatud plokk-adaptiivses Fourier’ analüsaatoris. 
Viimasele pole vaja ette anda töödeldava sisendsignaali komponentide täpset 
arvu. 
 


