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Abstract. The paper deals with modelling of non-linear systems consisting of highly oscillating 
subsystems. Signals are represented as Fourier series extended by half-frequency components that 
make it possible to model the transients. Macromodels for non-linear transformations are based on 
harmonic linearization, implemented by the Chebyshev expansion. This enables independent 
description of the non-linear transformation and calculation of the Chebyshev transformation of 
waveforms that appear during the solution. Integration method based on this approach has excellent 
stability properties and its accuracy can be checked by using different number of harmonics. 
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1. INTRODUCTION

We shall consider systems that exhibit oscillation-like behaviour, mainly 
conventional oscillators, but other types of narrow band systems are also kept in 
mind. The main problems that arise when designing or analysing such systems 
are the following: 

1) oscillations with slowly changing parameters need a huge number of time
steps to be modelled; it may slow down the modelling process when conventional 
simulators are used; 

2) very high accuracy may be needed; nowadays, quality of oscillators is one
of the most important parameters determining the quality of communication 
systems; 

3) conventional oscillators are simple circuits consisting of few components,
but modern oscillators have become complicated systems using controllers to 
satisfy high demands for accuracy both in time and temperature variation; 
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4) it has been realized that even classical oscillators may exhibit chaos [1]; 
chaotic behaviour should be detectable, chaotic oscillations (and, for example, 
synchronization) need fast modelling. 

Numerical methods for solving non-linear systems of differential equations, 
used in common circuit simulators, are based on integration of differential 
equations by means of implicit methods that reduce the equations to non-linear 
algebraic equations. This procedure is repeated for every time-step recursively, 
changing the time-step and order of the method to achieve maximum gain in 
time. For oscillating processes, the trapezoidal formula is usually recommended. 
However, as integration steps are limited both by stability conditions and 
accuracy control, maximum step must be small compared with the total 
integration time. For example, using the trapezoidal formula, accuracy of the 
period equal to 1 ppm requires about 1500 steps per period [2]. Transients 
appearing during the start-up may last thousands of periods with enormous waste 
of simulation time. Irscheid has modelled a simple oscillator to obtain steady 
state using SPICE; it required 36 hours of computer time [3]. At the same time, in 
most of the neighbouring periods the forms of the signal were rather similar. 

Interest in periodically changing circuits has grown significantly last years 
because of the wide usage of switching circuits like SC-filters, power converters, 
etc. Those circuits can be modelled as discrete time circuits with very low 
accuracy, or using complete models that need enormous simulation time. The 
envelope following method has been reported to be able to solve problems that 
would need weeks of modelling time using the conventional SPICE simulator [4]. 

All special methods for solving such problems are based on the idea of using 
frequency domain representation for signals and working with signal parameters 
(amplitude, phase, frequency, etc.) rather than with instant values in the time 
domain. The most common method is harmonic linearization which assumes that 
input signal of a non-linear element is sine wave and output signal consists of 
higher harmonics, most of which are filtered out in linear dynamical part of the 
system. In the simplest case, only first harmonic is used and many practical 
problems (determination of limit cycles, their parameters, etc.) have been solved 
using this method. It has been shown that simple equivalent circuits can be built 
to make common simulators usable [2,5–7], but problems may arise because of 
non-uniqueness of signal expressions. For more complicated systems, various 
generalizations have been proposed, which use more harmonics, combine time 
and frequency domain, allow multi-tone excitations, consider transients, etc. [8,9]. 
Anyway, that means simultaneous solution of huge systems of non-linear 
equations because every variable is represented by a number of parameters. 

A new method, based on frequency domain representation of the signal, but 
with a time domain integration, has been proposed and several aspects of the 
method have been discussed in [10–13]. In this paper, we shall study in detail the 
properties of this method referred to in the following as the EFS (Extended 
Fourier Series) method. 
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2. SIMPLE  SIGNAL  MODEL 
 
Assume that signals are represented as 

 

),(cos)()( ttAtv ϕ=                                           (1) 
 

where amplitude )(tA  and frequency )()( tt ωϕ = are slowly changing functions. 
The derivative of (1) is 
 

),(sin)()()(cos)()( tttAttAtv ϕϕϕ ′−′=′                            (2) 
 

which is assumed to have also slowly changing amplitudes and phases. It follows 
that we can use a large time-step and have fast modelling. Even if non-linear 
elements generate higher harmonics, they will also have slow amplitudes and 
phases and we can proceed with more variables but fast solution. 

In the frequency domain, “slow” means that the spectrum of signals is 
concentrated into narrow bands around fundamental and higher harmonics. Both 
linear and non-linear transformations preserve this structure of signals. 

Although this approach has been widely used, it has an obvious drawback: 
representation (1) is unique only if narrow-band condition is satisfied. However, 
it is difficult to satisfy this condition in transients. Bandwidth can be controlled 
only in rather specific cases. A typical effect that appears can be described as 
frequency doubling, when )(tA  locks not to the low frequency oscillation, but to 
the doubled frequency: 
 

                            (3) 
 

Such effects were observed in real simulations and they slowed simulation 
completely down because of the smaller time-step than needed for the funda-
mental frequency [5]. 

Experience with using harmonic linearization based on fundamental frequency 
has shown that remarkable acceleration of simulation can be obtained. However, 
the danger of frequency doubling exists and transients are not modelled correctly in 
case of fast changes (switching) of the parameters. The last case is important in 
practice because of the oscillator control that usually switches capacitors to correct 
frequency. 

This experience raised the question of modification of the representation (1) to 
obtain a unique expression for signals that makes it possible to take into account 
higher harmonics, but at the same time accelerates simulation. That means keeping 
attention on the oscillating processes, but also providing an acceptable modelling 
of transients. 
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3. GENERALIZED  PHASE 
 
In [10] the following signal model was proposed 

 

[ ],,),(cos)( 0010 Tttttpaatv +∈+=                              (4) 
 

where T  is a time interval for which this model is applied. Coefficients 0a  and 

1a  are constants in this interval and )(tp  is generalized phase. Obviously, for a 

given )(tv  and fixed 0a  and ,1a  )(cos tp  is defined uniquely. Although these 
coefficients can be given any value, there is an optimum choice of them. Namely, 

if ,1)(cos ≤tp  then )(tp  is real and, as shown below, this avoids serious 

numerical problems. This condition can be met by choosing 
 

[ ].,)),(min)((max
2
1

)),(min)((max
2
1

001

0

Tttttvtva

tvtva

+∈−=

+=
                        (5) 

 

However, we do not assume that this condition is valid; 1)(cos >tp  will also 

be allowed. When non-linear transformation )(xf  is applied to ),(tv  we obtain 
the following result (assuming )(xf  to be such that partial sums are certain 
approximations): 
 

....)(2cos)(cos))(()( 210 +++== tpytpyytvfty              (6) 
 

Here ky  are functions of 0a  and ,1a  serving as models of the non-linear 
element. They can be determined once and forever and they do not depend upon 
the waveform ).(tp  For many functions, those expansions are well known. As an 
example, we consider the exponential function, perhaps one of the most 
important transformations 
 

),2cos)(2cos)(2)(()cosexp( 12111010
0

�+++=+ paIpaIaIepaa a        (7) 
 

where )(xI k  is modified Bessel function of order .k  Note that yk-s are one-
dimensional functions. 

It is remarkable that calculations related to the waveforms are independent of 
the non-linear transformation. In consequence, if the same signal is applied to 
different non-linear elements, there is no need to recalculate the terms .cos kp  

 
 
 
 
 



 293 

4. CHEBYSHEV  TRANSFORMATION  OF  WAVEFORMS 
 
As follows from Eq. (6), the basic calculation step is finding kpcos  from 

.cos p  We do not need to find generalized phase )(tp  itself. Moreover, 
calculation is quite simple because of the well-known relation 
 

),(coscos pTkp k=                                         (8) 
 

where )(xTk  is Chebyshev polynomial of the first kind. Therefore, a simple and 
numerically stable algorithm can be applied for calculating :cos kp  
 

).()(2)( 11 xTxxTxT kkk −+ −=                                  (9) 
 

Note that this recursion contains only a single multiplication. We shall call (8) 
Chebyshev transformation of waveforms and give a short characterization of it. 

Chebyshev polynomials are bounded and orthogonal when :1|| ≤x  
 

.d)()(
1

1
,1)(

1

1
2∫

+

−

=
−

≤ ikkik xxTxT
x

xT δ                     (10) 

 

It follows that when 1|cos| ≤p  then all 1|cos| ≤kp  with certain benefits for 
calculations. However, the condition 1|cos| <≤ηp  does not imply more than 

1|cos| ≤kp  and hence there is no need to keep pcos  small – the best is what was 
declared by (5). Two sets of kpcos  are shown in Figs. 1 and 2 for 

.cos5.0cos tp = Even pcos  is limited by 0.5, p2cos  reaches – 1 and p3cos  
reaches both – 1 and +1. 

Strong bounds on pcos  makes numerical problems simpler but may lead to 
significantly longer computation time to evaluate min and max of the signals and 
also due to recalculations caused by changes in 0a  and .1a  That is why we 
consider also the case when pcos  exceeds 1 (since p  is a complex function). 
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Fig. 1. Waveforms kpcos  when =pcos  

tπcos5.0  and k = 1, 2, 3. 
Fig. 2. Waveforms kpcos  when =pcos   

tπcos5.0  and k = 4, 5, 6. 
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Chebyshev polynomials grow monotonically if their argument lays outside the 
interval [– 1,+1]. Actually, then we have hyperbolic cosine instead of the 
trigonometric cosine. Denoting 
 

,coshcos qp =                                           (11) 
 
we obtain 
 

,cosh))cosh(coshArccosh(cos kqqkkp ==                     (12) 
 
and, consequently, for 1cos >p and 1>>k  we have 
 

.exp
2

1
cosh kqkq ≈                                         (13) 

 
For example, if tap coscos =  and ,1>>a  then kqcos  is close to the Gaussian 
pulse (Fig. 3): 
 

.
1

,2)(,)(cosh 12 2

2

k
aaMeaMkq kk

t

≈≈≈ −
−

σσ                    (14) 

 

Therefore, if ,1cos >p  then character of the expansion (6) becomes extremely 

important. If coefficients ky  decrease too slowly, then the series may not 
converge. 
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5. THE  CASE  OF  THE  EXPONENTIAL  FUNCTION 
 
Consider now in greater detail the exponential function )(exp)( vvf =  which 

has expansion (7). Let us assume that the signal is .cos)( tatv =  Then maximum 

values of the signal are ± a and the values of )(aTk  have exponential behaviour 
as in Eq. (13). As these values determine the amplitude of the pulses (Fig. 3), one 
may expect that spectral components of )(vTk  will also show exponential 
behaviour. This is confirmed by calculations as shown in Fig. 4. Higher 
harmonics exhibit similar behaviour and the number of efficient harmonics (with 
significant contribution to the sum) is about k  (since kT  is a polynomial). 

Asymptotic behaviour of Bessel functions for a fixed argument and varying 
index is known [14]. A simple but sufficient description is 
 

,~)(ln 2ννν DCBxI −−                                   (15) 
 

where ,B  ,C  and D  are constants. 
As νT  is exponential in ,ν  then νTln  is linear in EvH +  and for 

multiplicative terms in Eq. (7) we have 
 

[ ] .)()()(ln 2νννν DCEHBTI −−++=⋅⋅  
 

It follows that the last expression has a maximum and its form as a function of ν  
is close to the Gaussian curve. An example is given in Fig. 5. 

Obviously, after the properties of the curve have been identified, it is 
sufficient to calculate only significant values of νν TI  around the maximum. 

In fact, we do not calculate values of the signal, but components of its 
spectrum. However, as mentioned above, the components of the spectrum have 
the same behaviour as maximum values. Therefore the above conclusions are 
valid also for the spectra. 
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Fig. 4. Logarithm of the first harmonic 1A  of )cos2( tTk  as a function of .k  
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Fig. 5. Behaviour of νν TI  as a function of .v  
 

 
Expansion (7) is based on the representation of the exponent as [15] 

 

),()(2)(
1

0 xTaIaIe k
k

k
ax ∑

∞

=
+=                              (16) 

 

which converges for ,1≤x  since Chebyshev polynomials are orthogonal on  
[– 1, +1]. As shown earlier, it actually converges also outside this interval. 
However, because of alternating signs, it is practically impossible to use it for 
negative values of .x  When computing spectra, we do not encounter this problem. 

Equation (16) shows that our model is based on the Chebyshev expansion of 
non-linear functions. This is the result of our cosine-based signal model. 
Consequently, the magnitude is strictly related to the interval [– 1, +1]. Exceeding 
these limits may cause problems; for example, expansion of non-smooth 
functions does not converge outside this interval. One could use another 
approach like choosing another fundamental set of functions and applying it to 

.cos p  For example, assume that weighing function 0)( >xw  determines a set of 

orthogonal polynomials ).(xPk  Then we have the expansion 
 

∑
∞

=
+=

1
0 ),(cos)(cos

k
kk pPffpf                            (17) 

 

and if truncated, it is a polynomial in .cos p  For a fixed ,k  one can rearrange the 
terms and obtain again the expansion in the form 
 

.cos)(cos
1

0 ∑
∞

=
+=

k
k kpffpf                               (18) 

 

For example, weighing function )(exp 2x−  determines Hermite polynomials 

)(xH k  on [– ����@ >
14]. They are used in the Wiener model of non-linear systems. 

Hermite polynomials can also be calculated by a simple recursion and expressed as 
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It may look as if using Hermite polynomials will solve the problems related to 
the boundaries. However, the weighing function decreases rapidly when .3|| >x  
For example, )(sign x  has an extremely slowly converging Chebyshev expansion 
for 11 +<<− x  and does not converge for .1|| >x  Hermite expansion is 
converging everywhere, but very slowly, and error may be very large when the 
truncated expansion is used. We do not consider other representations in this paper. 

 
 

6. EXTENDING  FOURIER  SERIES 
 
Return now to the signal form (4), assuming for simplicity that 00 =t  

 

],0[),(cos)( 10 Tttpaatv ∈+= .                             (20) 
 

To consider linear dynamical aspects, we concentrate on )(cos tp  as 0a  and 

1a  can be taken equal to 0 and 1, respectively. 
As our interval of interest is ,],0[ T  we can extend )(cos tp  outside this 

interval to meet any of our goals. Since the object is an oscillating system, it 
should be acceptable to assume similarity of waveforms in neighbouring 
intervals, for example in ],0[ T  and ,]2,[ TT  or ]2,[ ε+TT . That would mean 
almost periodic signals. On the other hand, harmonic waveforms are extremely 
simply processed by linear systems and therefore choosing sinusoids as building 
blocks, we may significantly reduce complexity of the calculations. 

Obviously, we could also use Fourier series 
 

.
2

,)sincos()(cos
0

IR

T
tkbtkbtp

k
kk

πωωω =−= ∑
∞

=
                       (21) 

 
However, using truncated series will result in equal values of the function at both 
ends of the period, which is acceptable only in steady state solutions, but not for 
transients. To build a waveform that uses finite number of harmonics and allows 
different values at the ends of the period, we replace (21) by 
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that includes half-frequency components. These make it possible that the signal 
and its first derivative have different values at the ends of the period: 
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Fig. 6. Approximation error of Eq. (24), .7=n  
 

 
Including half-frequency components solves also another problem. When 

integrating the constant term in Eq. (22), we obtain a linear term that is not a part 
of the general form of Eq. (22). However, linear term can be approximated with 
very high accuracy by the half-frequency component: 
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Figure 6 shows approximation error of Eq. (24) when .7=n  
 
 

7. INTEGRATION  FORMULA 
 
Integrating (22) starting from 0=t  and denoting ),()(cos tutp =  we obtain 
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Let the integrator be a capacitor with capacitance ,C  integrating current ),(ti  
and resulting voltage ).(tv  Applying Eq. (24), substituting )0(cos)0()0( pui ==  
from Eq. (23) and reordering terms, we obtain 
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Comparing Eq. (26) with 
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which is obtained from Eq. (22), we get the following set of equations where the 
second index denotes the step number: 
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The first equation expresses the continuity of voltage, the others are related only 
to the current integration step. The set of expressions (28) provides the algorithm 
of the EFS formula. 

Upper indexes R (real) and I (imaginary) are used to emphasize that complex 
numbers can be applied for the implementation of the algorithm: 
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Equations (29) make it possible to use the classical ac analysis sequentially at 
all frequencies. 

 
 

8. ANALYSIS  OF  THE  INTEGRATION  FORMULA 
 
We evaluate the integration formula as usually, by applying it to the linear 

problem 
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with exact solution 
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As our integration step is ,T  we evaluate the value of )0()( vTv=ρ  and 
conclude that the correct value of ρ is )(exp µ  with .Tλµ =  

From (28) we obtain 
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and, finally 
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A remarkable property of this formula is that it maps the imaginary axis from 
the �-plane onto a unit circle in the !-plane. This means that the formula exactly 
preserves the stability. 

On the other hand, for a fixed number of harmonics 1, →ρn  when 
.|| ∞→µ This means that fast components may not decrease when large 

integration step is applied. However, the most popular trapezoidal method has 
similar property – fast components may create saw-tooth oscillations, well 
known to designers. To characterize the EFS formula, we first consider some 
special cases. 

Case 1. Real poles. Behaviour of a real negative pole is shown in Fig. 7. First, 
ρ  has been calculated from the EFS formula using 12=n  and the result is 
mapped back to the �-plane. It is clearly visible that on the left of ,7−≈µ  the 
mapped values differ from the correct ones and saturate at about .8−=µ  In fact, 
there exists a maximum value of the pole that cannot be exceeded (the effect 
described above). It follows that the step size is limited and further we show that 
the value close to – 8 is critical even, for a much larger number of harmonics. 
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Fig. 7. Mapping real poles, n = 12. 

 
Case 2. Imaginary poles. These are mapped correctly back to the imaginary 

axis and according to our construction, the EFS formula is correct for a certain 
number of harmonics. In Fig. 8, the relative mapping error is shown. One can see 
that for intermediate frequencies the error may be remarkable, besides, increasing 
n  reduces the error. 

 
Case 3. Complex poles. Consider poles located on a circle (Fig. 9). When 

radius of the circle is small, the mapping is correct. To make the errors 
observable, we use a large radius. 
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Fig. 8. Mapping imaginary poles. 
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Mapping of a circle with 8=r  in Fig. 9 shows again that if the real part of 
ρln  is more than 6–7, remarkable distortions appear. We shall explain the 

reasons of such behaviour in the next section. 
 
 

9. ZEROES  AND  PADÉ  EXPANSIONS 
 
EFS formula is very close to the Padé fractions of the exponent [16]. We are 

going to show what is common to them and what are the differences. First, note 
that the EFS formula has the same structure as the diagonal Padé fraction: 
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where )( 2µP  and )( 2µQ  are polynomials. 
Such a structure maps the imaginary axis always back to itself, ensuring good 

stability. The Padé expansions of the exponent have been extensively studied, 
including distribution of the zeroes. This is not a traditional way to characterize 
integration formulas, but in our case it appears useful by explaining the effects 
described above. 

Note that trapezoidal formula (that is not the case of EFS) is a diagonal Padé 
fraction: 
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Compare now the second order fractions (EFS uses only the half-frequency 
component): 
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   Padé       EFS 
 
Difference in the coefficients is about 10%. This is explained by the fact that 

while the Padé expansion has 5 first terms in the Taylor series equal to those of 
the exponent, EFS has only 2. When order of the function increases, first 
coefficients of the EFS formula become closer to those of the Padé expansion, 
but they are always different because of different approximation. Let us compare 
also zeroes of the functions (37) (poles are located symmetrically in the right half 
plane): 
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EFS1.94462.2.46740
16

16

4

Padé1.73205,00000.333

422

2,1

2,1

jjz

jjz

±−=−±−=

±−=±−=

πππ            (38) 

 

Second order is very low, EFS uses only the half-frequency component. 
Therefore this formula has no unit value on the imaginary axis, i.e., it is not able 
to carry out integration with a step equal to a period. However, location of zeroes 
shows a general property – EFS has zeroes closer to the imaginary axis. This has 
important consequences as will be shown below. 

Let us consider the case 11=n  that produces 24th order fractions. For 
comparison, Fig. 10 shows location of poles for both EFS and Padé expansions 
(zeroes are located symmetrically in the left half-plane). One can again see that 
poles of EFS are located closer to the imaginary axis but have a wider 
distribution along that axis. Maximum real parts are located near 9)(Re =p  and 
that is just the reason why EFS fails when � approaches this region. This limit 
increases together with the order, but extremely slowly: doubling the number of 
harmonics increases the limit only by about 1.0. 

Padé approximation processes real poles much better, but its behaviour on the 
imaginary axis is less accurate as will be shown below. 

For the same case the location of points where 1=ρ  (step equals to the full 
period, )2 πk  and 1−=ρ  (odd multiple of the half-period, ))12( π+k  is shown 
in Table 1 where the values are multiples of .π   One can see exact location of the  
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Fig. 10. Zeroes of EFS and Padé fractions, order is 24. 
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Table 1. Location of the points 1±=ρ  on the imaginary axis 

 
1=ρ  1−=ρ  

EFS Padé EFS Padé 

2.00000000 2.00000000 1.00000000 1.00000000 
4.00000000 4.00000000 3.00026859 3.00000000 
6.00000000 6.00000000 5.00136886 5.00000000 
8.00000000 8.00000000 7.00394813 7.00000000 

10.00000000 10.00000175 9.00881901 9.00000003 
12.00000000 12.00096293 11.01709133 11.00005495 
14.00000000 14.06067256 13.03041533 13.00981969 
16.00000000 16.71206092 15.05148743 15.24456543 
18.00000000 21.33488815 17.08526838 18.65534969 
20.00000000 31.07896214 19.14262777 25.18742511 
22.00000000 61.12543443 21.25655039 41.03280973 

  27.56569900 121.75075779 
 

 
EFS points for ;1=ρ  less correct are the EFS points for 1−=ρ  while the Padé 
fraction has larger errors at higher values. 

Figure 11 shows the function ),(wρ  which in this case is equal to ).(cos w  
One can see that up to the 11th period, EFS exactly estimates the location of the 
value 1.0. However, values – 1.0 are located with remarkable error starting with 
8.5. The Padé approximation deviates from the cosine function after the 7th 
period. 

Qualitative behaviour of EFS can be explained as follows. The formula is 
designed to describe oscillating systems and hence it has high precision when 
integration step is a multiple of the period corresponding to the near-imaginary 
(dominant) pole. Its behaviour in case of real poles is poor, because non-periodic 
components are represented only by half-frequency components. However, this is 
of importance only by using very large integration steps that is usually not 
applicable, for example, in case of the Gear formulas. 
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Fig. 11. EFS, Padé fraction, and cosine for n = 11. 
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10. EXAMPLE 
 
In this paper, we shall not discuss implementation of the above method. 

However, we shall describe a simple benchmark problem [10]. Consider a simple 
circuit shown in Fig. 12. Non-linear two-pole is described by the following 
equation: 
 

.11.0 27.0












−=

v

ei                                              (39) 

 

This is a simplified case as components required for implementation of the 
oscillator are replaced by a negative resistance. Consequently, no chaos is 
possible in that circuit. If one applies harmonic linearization to that circuit, the 
following result is obtained: voltage is 0.8214 V and the period of oscillation 

.2π=T Both are close to real values with an error of about 0.5%. 
Applying EFS, we can set ,00 =v  0.11 =v  and keep them constant because 

the dc component should be zero and the ac component will not exceed 1.0, as 
seen from the rough solution. 

The number of harmonics was varied from 7 to 16, the number of terms in the 
expansion of the exponential function – from 7 to 11 without remarkable changes 
in results. As the circuit is autonomous, the period control (detection) was 
implemented as follows. Period can be determined as the distance between equal 
values of the signal. This condition can be used when half-frequency cosine is 
zero. This condition was inserted into equations which solve the problem. 
Modelling included the start-up of the oscillator and, after reaching the steady 
state, instantaneous changing of the capacitor value by 1%. The results are shown 
in Figs. 13–15. 

As the method is applied to every integration step, it is possible to follow the 
period values in time. Figure 14 shows a rapid change of the oscillation period 
when the oscillation amplitude becomes stabilized. Such effect is typical for 
start-up processes, demonstrating that the frequency reaches final value before its 
amplitude reaches a steady state. Instantaneous change of the period value as a 
reaction to the change of C is correctly modelled as seen in Fig. 15. 
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Fig. 12. Test circuit. 
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Fig. 13. The start-up process; voltage is shown in relative units. 
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Fig. 14. DeviaWLRQ RI WKH SHULRG IURP ��� FKDQJH RI C at t = 628 s. 
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Fig. 15. Change of the period after the change of C. 
 
 

11. CONCLUSIONS 
 
Properties of the new modelling algorithm EFS based on the extended Fourier 

series have been studied. It is shown that the integration formula is well suited to 
modelling narrow-band systems. It is correct even when a very large integration 
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step is used, if it is synchronized with the oscillation. However, EFS formula 
does not allow very large steps along the real axis. It is shown that the EFS 
formula is close to the Padé fraction. 

Signals are combined from harmonics and new components can be added 
without loss of stability if the accuracy is not sufficient. The integration method 
allows to model autonomous systems since the period can be detected during 
solution. 

For non-linear components a representation that is based on the Chebyshev 
expansion of non-linear functions is proposed. This approach allows to divide the 
non-linear model into a function of two variables and an independent waveform 
transformation. It is shown that the Chebyshev expansion can be used also 
outside its standard convergence region. 

Implementation problems are not considered in this paper. There is a lot of 
work to be done to optimize the iteration process, Chebyshev transformation and 
overall organization of the calculations as the method uses many variables. 
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MITTELINEAARSETE  SÜSTEEMIDE  MODELLEERIMINE  
LAIENDATUD  FOURIER’  REA  ABIL 

 
Vello KUKK 

 
Tugevasti ostsilleeruvaid alamsüsteeme omavate mittelineaarsete süsteemide 

modelleerimiseks on esitatud meetod, mis põhineb signaalide kirjeldamisel pool-
sagedusega komponenti sisaldava laiendatud Fourier’ reana. Seetõttu osutub 
võimalikuks modelleerida siirdeprotsesse ning kasutada harmoonilist linearisee-
rimist, mis realiseeritakse Tšebõševi signaaliteisenduse abil. Nende võtetega saab 
mittelineaarse elemendi kirjelduse lahutada kaheks sõltumatuks komponendiks. 
Saadud integreerimismeetodil on väga head stabiilsusomadused ning selle täpsus 
on lihtsalt reguleeritav kasutatavate harmooniliste arvuga. 

 


