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Abstract. The spreading rate of infected regions in the lung is studied. It is assumed that the

lung has a self-similar tree-like structure and that the infection can propagate both convectively
along the airways and invasively across the walls of the alveoli. The scaling laws of the

evolution of the infected spot are derived. Depending on the parameters of the model, the

propagation can be explosive. Also, the transport of a passive component in a blood-vessel

system is analysed. It is shown that the convection rate depends crucially on the initial size of

the spot of the contaminant and on the mobility of its particles. The characteristic absorption
time varies between 1 and 20 min.
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1. INTRODUCTION

The fractal tree-like systems can be met rather often in biology [']. The lung
and the blood-vessel tree are among the most well-studied systems of this kind,
due to their great importance in medicine. Several mathematical models have been

proposed to describe the airway tree of a lung [2~s] and the tree of blood-vessels

[°~lo]. These models deal with the statistical size distribution of the constituent

elements (bronchial tubes, blood-vessels) [>7] and with the spatial structure of

the respective trees [2~68-10], The recently proposed model of the blood-vessel

system [°] satisfies also additional requirements of homogeneous blood supply of

the organism, stability with respect to slight damagesof the system,and consistency
with the processes governing the growth of the blood-vessel tree.

The physiological processes both in blood-vessels [7] and in bronchial tubes

[ll] are studied in detail. However, the processes in a fractal tree as a whole have
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attracted much less attention. In this paper we show that the fractalness can have

an essential influence on the physiological processes. First, we propose a possible
scenario of the propagation of infection in the fractal network of airways in a lung.
Also, we suggest a simple model of the transport of passive components in a blood-

vessel system. This model allows us to assess the transport rate of the admixture.

2. PROPAGATION OF INFECTION IN ALUNG

In this section we exploit the fractal model of the human lung presented in paper

[°]. The basic elements of the model are as follows. The lung is treated as a self-

similar set of bronchial tubes. Thus, for instance, we do not distinguish the alveolar

ducts from the bronchioli and call both the bronchial tubes (though, of different

size). The size of a bronchial tube is characterized by the flux of air ¢ in it. A
bronchial tube ofnth generation branches into two tubes of the (n + I)st generation.
The two branches can be of different size, the ratio of the sizes £ = q; /¢ being a

randomly distributed quantity. However, it is assumed that the two branches are of

the same order of magnitude, i.e., that the distribution function of the quantity &

vanishes at small (< 1/2) and large (> 2) values of k.

Thenumerical dataare taken from [!!]. For a human lung there is approximately
N = 28 generations of the bronchial tubes. The last generation, the alveoli, are of

the length of [y =~ 0.23 pm and of the diameter dy =~ 0.28 um. Starting from the

generation number of n = 4 there is quite a good scaling law for the length of the

tubes, I, o až/ * Here An X 2-"/3 denotes the characteristic distance between

the branches of the nth generation. However, for the diameter d,, and hence for

the volume of the tube V,, = 71,d? /4, the law is less regular. This irregularity
implies that the real bronchial tree is not strictly self-similar and sometimes it is

necessary to takethis circumstance into account. The volumes of the bronchial tubes

are presented in Table 1 as a function of the generation number n.

According to ['!], by inhalation the air flow is turbulent approximately down to

the 20th generation of tubes. By expiration, the air flow is much more laminar: the

switching point to the turbulence is approximately at n = 7. Such a behaviour of

the air flow leads us to the formulation of a model of the transport of bacteria (or

virus) with the following assumptions. .
1. The bacteria invade diffusively a layer of air near the walls of an infected

alveolus.

2. During expiration the infectedair is brought to the larger bronchial tubes and

mixed with the air from other alveoli.

3. This mixture is carried by the next inhalation from the bronchial tubes to

all the alveoli of the lung. Note that the fraction of the infected air inan alveolus

depends on the distance from the originally infected alveolus. The alveolus will also

be infected if there is a bacterium in the diffusion layer near the walls of it.
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Such a model implies that the bacteria replicate quickly in comparison with the

propagation time. Also it is assumed that the bacteria maintain their replicative
capabilities while being convected.

The first observation is that in the case of high diffusivity of bacteria when

& 30T, (1)

the diffusive layer near the walls of the alveoli fills them completely. Here 7" denotes

the inhalation period and Dy — the diffusivity of the bacteria. The width of the layer
d is simply the radius of the alveoli

6x dN/2.

In the opposite case of low diffusivity, the bacteria fill only the captured air, i.e., that

fraction of air which is close to the walls of the alveoli and is not pushed out during
the expiration. The width of such a layer can be assessed as

6x de/2,

where k denotes theratio of the volumes of the lung before and after the inhalation.

Suppose the saturated concentration of the bacteria at the surface of the alveoli is

co. Then, in the case of high diffusivity, the number of bacteria pushed into the

bronchial tubes from a single infected alveolus is given by

my = Vy(l —k)cy, Vy = mdaln/4. ()

0 2600000 12 205

1 462000 13 123

2 83900 14 81.9

3 22400 15 56.5

4 15800 16 38.5

5 7890 17 26.6

6 5240 18 19.5

7 2620 19 14.8

8 1310 20 11.0

9 817 21 8.96

10 493 22 6.98

11 287 23 592

Table 1. Dependence of the volume of the bronchial tubes V,, on the generation number n (N = 28;

Vy — volume ofan alveolus)
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In case of low diffusivity the gradient of the concentration can be assessed as

co /6, hence the flux density of bacteria is ¢ &= Dycp/d. The number of bacteria can

be estimated as my ~ ¢Sy, where Sy = wdyly denotes the area of the walls of

an alveolus. So, in this case Eq. (2) should be substituted by

my =~ WIeNCOD()T/Õ = ZWZNCODOT/]C. (3)

Suppose there is only one infected alveolus. Let us assess the probability of

infecting the alveolus at a distance a during one cycle of expiration and inhalation.

If there are more than one infected alveoli, the probabilities are simply added

(assuming that the resulting probability is much less than one). To begin with, we

calculate the fraction of infected air after an expiration in such a bronchial tube of

the nth generation which is the ancestor of the infected alveolus f,,. The air in such

a tube is the mixture of the air from the infected alveolus and the air from 2V="
— 1

healthy alveoli. Thus we have f, ~ 2"
V.

The average concentration of bacteria

in the air from the infected alveolus is m/Vjy. The number of bacteria in the tube

under consideration is

s
Ny=myNA

Mn =

A
ann my2

Vv
. 4

Here V,, = md2l,/4 is the volume of the tube. The distance between two alveoli a

can be associated with the generation number n(a) of such a bronchial tube which

1s the smallest common ancestor of both alveoli:

a 3 = Vy2N-nle), (5)

Here we took into account that the alveoli fill almost all the space of the lung and

that the branch forms a compact structure of volume a®. Thus the total volume of

those alveoli, which are the descendants of the given ancestor tube, is also equal
to a3.

The bacteria can be carried to the distance a only by those volumes ofair which

are after the expiration in the bronchial tube ofnth generation with n < n(a). After

the inhalation, all these bacteria will be equally distributed over all the alveoli of the

same branch. The number of bacteria transported to the distance of the order of a

(i.e., to the distance which is longer than a and shorter than 2a) from the origin, can

be calculated as

M@~ Y mnzn-N“//—”zn-nm). (6)
n<n(a)

N

In the case of high diffusivity all these bacteria reach the walls of the alveoli, so that

M(a) givesus the estimate of the probability of infecting an alveolus at the distance

a from the originally infected alveolus, i.e., of the probability we are looking for. In

the case of low diffusivity, some ofthe bacteria will bepushed out by the subsequent
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expiration, again. In that case the probability of the capture can be estimated as

p(a) ~ m(a)DoT/d%. Using Egs. (2)~(4) and keeping only the first term in

Eq. (6), we obtain

d

lNd

C )

< D

DOT

( )

Neglecting the subsequent terms of Eq. (6) is justified by the fact that this sum

converges as a geometric progression. Hence, the whole sum is of the same order of

magnitude as its first term. Thus we see that the probability of infecting a specific
alveolus at a distance a is

p(a) x Vn(a) 2n(a)’

and, according to the data in Table 1, vanishes rapidly at large values of a.

Further, let us try to understand how the size of the infected spot will behave.

Suppose, at a certain moment the size of it is . Then the number of infected alveoli

is 73 /Vx and hence the size-doubling probability P,(r) is given by

Py(r) = r®p(r)/Vy.

The characteristic size-doubling time 7(r) can be found using the equality

7(r)Pa(r) = 1.

Here the duration of the inhalation-expiration cycle is assumed to be of the unit

length. According to Eq. (7), we find

4V

o=y W2I
r(r) = (rlveoVae)7§ iy, ,

(8)

2D72 N> D

The most important feature of this equation can be expressed by the scaling law

7(r) &< 1/Vp(ry.-

Thus we see that the size-doubling time decreases with increasing size of the spot.
Besides, the sum 7(r) + 7(27) + 7(4r) +. .. converges. Thus, during a finite time,
the spot will occupy the whole space. In other words, the behaviour of the spot is

explosive.
We have ignored the possibility of invasive propagation of the infection through

the walls of the alveoli. That mechanism would lead to a linear law for the size of
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the infected spot. Within the framework of the model presented above, there are

three possibilities:
1) the evolution of the spot is completely invasive and the size of it increases

linearly in time;

2) the dominating process is convection and the size of the infected spot
increases explosively;

3) at the first stage, by small sizes ofthe spot, the process is governed by invasion

through the walls of the alveoli and (%) o ¢; at the second stage, when the spot has

become larger than the critical size, the convection will be more effective than the

invasion and further the spot grows explosively.
It should be emphasized that the scenario outlined in this section is closely

related to the assumptions of the model: we have neglected the time delay needed

to infect an alveolus (in comparison with the propagation time 7(r)); also, we have

neglected the possibility that during the longer travel paths, a significant fraction

of bacteria can loose the capability to infect other alveoli. These factors deserve

a closer study, since they can substantially affect the infection process and the

behaviour of the infected spot.

3. PROPAGATION OF A PASSIVE COMPONENT IN A BLOOD-VESSEL

SYSTEM

In this section we study the transport of a passive admixture through the blood-

vessel system. It is assumed that the admixture has been injected into tissues

and fills a certain region between the vessels. Besides, we make the following
assumptions.

1. Outside the vessels, the admixture propagation is diffusive, of molecular

diffusivity Dy.
2. The admixture particles can penetrate the walls of the vessels.

3. The presence of the admixture around and inside the vessels does not affect

substantially the blood flow in these vessels. However, a small change (by a factor

of the order of one) in the rate of the blood flow is admitted.

4. A vessel is called to be of size L if its length is between L and 2L. In

accordance with the model of the blood-vessel system [], the vessels of size L

form a quasi-homogeneous network and the distance between neighbouring vessels

is much less than L.

5. The transport is accomplished in the venous half of the blood-vessel tree. In

fact the admixture is convected also by the arterial flow, but this is the convection

towards the capillaries. Thus the transport distance in the arterial tree is limited by
the size of the vessel where the injection has been made.

6. The flow in vessels is laminar [2].
The 4th assumption can be restated in the following way: the distance A between

the neighbouring vessels of size L depends only on the size L and is assessed as
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A = A(L). Further, we introduce the functions N(L) — the total number of vessels

of size L, and d(L) — the diameter of the vessel of size L.

There are two simple but still useful relations. The first one is the expression for

the total volume of the whole body:

V = N(L)L[X(L)]2. (9)

The second one is the estimate of the total flux of blood through the heart:

Q = N(L)v(L)[d(L)]?. (10)

Here v(L) denotes the characteristic velocity of the blood in a vessel of size L.

It should be emphasized that Egs. (9) and (10) are valid for any value of L; one

can say that the combinations NLA? and Nvd? are the “integrals of motion” of our

model. Sometimes it is more convenient to use the combined and hence a dependent
integral ofmotion:

vV
_

L@
0 v(L)[d(L)]2

~ 1000s. (11)

Here the numerical value 1000 s was obtained by substituting V = 70dm?® and

Q@ = 70cm*/s.
Suppose inside the tissues there is a spot of passive admixture which diffuses

into the blood vessels and will be carried into the other parts of the organism by the

blood. The admixture can be an injection, a venom of an insect or of a snake or

something else. For the sake of brevity, further we refer to it simply as to a venom.

We show that there are four qualitatively different regimes of venom

propagation, depending on the initial size of the spot r and molecular diffusivity
of the venom D).

1. Evolution of a large spot by high values of seed diffusivity. If the

amount of the injected venom is large, the region between the tissues filled by the

venom has aconsiderable size, o > Ao, where ) is the size of the smallest vessels

(capillaries). So, even if the site of the injection is random, some of the vessels of

size L > Ao will be surrounded by the venom. More precisely, the “typical”, i.e.,
the most probable situation is that the size L of the largest vessel surrounded by the

venom is given by the relationship

AL) = ro. (12)

To begin with, let the time £, passed since the injection was made, satisfy the

condition

[d(L)]?/Dy < t < [M(L)]?/Dg = r2/Dy. (13)

Then the tracer propagates in the form of a “sausage” around the vessel stretching
out the initial spot. The diameterof it can be assessed as y/Dyt. Thus the inequality
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(13) means that the width of the “sausage” exceeds the diameterof the vessel, but

is less than the distance between the vessels. The length of it can be found in

the following way. We note that the molecules of the venom spend most of the

time outside the core-vessel of the “sausage”. The fraction of time spent inside the

vessel can be estimatedusing the ergodicity hypothesis, i.e., as theratio of the cross-

sections of the vessel and of the “sausage”, [d(L)]?/Dyt. So the effective velocity
of the venom veg is given by

i (14)
ML)"

v(L).LÄDVe

Now we can assess the length of the “sausage” as I(t) ~ [ vegdt. Assuming that

the length [ is less than the length of the vessel L, we find

_

[d(L)*v(L) , tDy
| ~ —E)——ln ID

(15)

Here we took the lower integration limit equal to to = d(L)?/Dy. Indeed, by t < to
the venom fills only a thin layer of blood near the walls of the vessel, where the

blood flow is much slower than v(L) (presumed that the blood-flow is laminar ['?]
and that the diffusivities in the blood and in the tissues are approximately equal).
The assumption /| < L can be rewritten using Egs. (11),(12), and (15); neglecting
the logarithmic factor it reads

r2/Dy < V/Q = 1000s. (16)

2. Evolution of a large spot by small diffusivity. The approximation of a large
spot implies that the condition (13) is satisfied. However, instead of (16) we have

now the opposite inequality

ré/Dy > V/Q= 1000s. (17)

The size of the largest vessel surrounded by the venom is given by Eq. (12).

However, the flow in that vessel is now so fast that Eq. (15) would give a

contradictory result: the length of the “sausage” would exceed the length of the

vessel itself, [ > L. In fact, the “sausage” occupies quickly (t < [d(L)]?/Do)
the whole vessel. Further the venom is carried to the larger vessel where it is mixed

with the blood from the other branch. In that vessel, the convection is even faster.

The convection time is so short (L/v(L) < [d(L)]?/Dy) that the admixture has

no opportunity to diffuse over the tissues and in such a way to slow down the

convection along the vessel. Thus, further transport is purely convective; a rough
estimate for the propagation distance [(¢) can be found from the equation

| = v()t. (18)
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It follows that the time needed to reach the heart is less than therotation time of the

blood. The latter is assessed as tg = W/@ ~ 1 min, W being the total volume of

the blood.

3. Short-time evolution of a small spot. In the case of small spot sizes the

inequality (13) is satisfied only during a short period just after the injection and soon

it becomes opposite,

[ML)]*/Do < t. (19)

The expression (14) can still be used, it gives us the effective velocity of the partial
transport along the vessel of size L. However, now L will change in time since

vDot > ro. Consequently, the spot spreads not only along the vessels, but also

in the perpendicular direction. During the evolution of the spot, larger and larger
vessels will be surrounded by the venom. The size L of the largest vessel, which is

embedded by the spot of the venom and hence takes part in the transport process,
can be assessed via [A(L)]? &~ Dyt. We rewrite this equation as

L = L(/Dot), (20)

where L(\) designates the reverse function of A(L).
Neglecting the contribution of the smaller vessels in the total transport, the

effective transport velocity can be estimated as

2

va = FO L))
A=/Dot

After substituting the “integral ofmotion” (11), we result in a simple expression for

the length of the spot | = vegt,

l = L(/Dot)tO/V = L(/Dot)t/1000s. (21)

This equation is valid under the assumption that the length of the polluted area

is less than the length of the largest vessel participating in the transport process,
| < L(v/Dyt). This condition can be rewritten together with the inequality (19)
as

A 2 /Dg < t < V/Q = 1000s. (22)

So, Eq. (21) describes the process in the short time limit, £ < 1000 s.

4. Long-time evolution of a small spot. Upon achieving the moment t =

1000 s, propagation of the venom is accelerated since the largest size of the

vessels involved into the process is no more limited by the value of L. Now,
the longitudinal transport is more efficient in occupying large vessels than by the

transverse diffusion. The critical length L, of the spot, when switching to the

long time limit occurs, can be estimated by L, = veg(L.)t. Substituting veg from

Eq. (14) we obtain
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L, ~ v(L,)[d(L+)]*/Dy. (23)

Further, increasing the value of L, L > L,, the term veg(L)t = v(L)[d(L)]? /Dy
grows faster than L. The time needed for the spot to pass the distance between
two branching points will decrease in time and the process acquires an explosive
character. Hence the venom is carried over the rest of the organism within following
few time intervals of duration 71 = V/Q = 1000 s.

As a conclusion we note that the size of the spot of the injection, as well as the

diffusivity of the admixture affect drastically the transport rate of the admixture.
The characteristic time scale varies from 70 &~ 1 min to 7; = 1000 s. The first
scale here, 79, is relevant to the injections into venules and to the bites of snakes,
while the second scale, 71, describes a sting of an insect.
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ÜLEKANDEPROTSESSID FRAKTAALSETES BIOLOOGILISTES

STRUKTUURIDES

Jaan KALDA

On modelleeritud infektsiooni poolt haaratud piirkonna laienemist kopsus
eeldusel, et kopsul on enesesarnane puulaadne struktuur ja infektsioon voib levida

nii konvektiivselt piki 6hu liikumise teid kui ka invasiivselt Idbi alveoolide seinte.

On tuletatud skaleerumisseadused infektsiooni poolt haaratud piirkonna evolut-

siooni kirjeldamiseks. Soltuvalt parameetrite vididrtustest voib piirkonna suurus

kasvada plahvatuslikult.
Samuti on vaadeldud passiivse komponendi edasikandumist piki veresoones-

tikku ning ndidatud, et konvektsiooni kiirus soltub olulisel méiral nii lisandaine

laigu algsest suurusest kui ka selle osakeste liikuvusest. Karakteerne aeg, mille

jooksul lisandaine hajub iilekogu organismi, on inimese puhul 1-20 minutit.
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