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Abstract. By the use of a multiparametric Schur invariant transform on the coefficient space
ofclosed-loop characteristic polynomials, a family ofstable discrete-time systems is obtained,
starting from a nominal stable system. Only linear transforms have been used to formulate some

necessary stability conditions and to introduce a rough stability measure. A straightforward
robust controller design procedure is proposed for interval plants.
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1. INTRODUCTION

During the last decade, the robust controller design for interval plants has been a

problem of great interest. The most significant results in this field are Kharitonov’s

theorems [!], the edge theorem [2], and the box theorem [®]. These theorems

formulate the sufficient stability conditions for interval systems. Unfortunately,
Kharitonov’s theorems do not hold for discrete-time systems [4s], and that is

why the discrete analog of the box theorem [6] is considerably weaker than the

continuous one. The edge theorem holds for both continuous-time and discrete-

time systems, but it suffers from a dimensionality curse [°]. However, the crucial

fact is that the Kharitonov-like approach does not give any measure for stability
robustness. Thereforethese theorems suit very well for checking stability of interval

systems but not for designing a robust controller, particularly in the discrete-time

case.

On the other hand, only few attempts have been made to bring together the well-

known robust control methods like H,-optimization or structured singular value

approach and the Kharitonov-like tests [7].
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Our aim is to find a simple tool for comparing robust controller candidates in

the discrete-time case. The key idea is to use such a multilinear transform of the

coefficients of a polynomial which does not alter the stability of a discrete-time

system. By the use of this transform, we can generate a family of stable systems,
starting from a nominal stable system. We shall use only linear transforms to

obtain some simple necessary stability conditions and to introduce a rough stability
measure.

The following problems will be considered. First, we introduce a Schur

invariant multiparametric transform S: R"*! xR" — R"*!, which maps
a polynomial f(z) into a family of polynomials f(z,&) = S(§)f(z). Every
member of the family f(z,&) will be Schur stable if f(z) is Schur stable and

6€ (-1,1),i =1,...,r.
Second, we use this transform to formulate some necessary stability conditions

for polytopes P[f;(€)] of the polynomials fj(z,E),j = 1,...,N. The stability
measure p is then introduced as a minimal distance between the nominal point f (z)
and the stable vertices of the polytope P[f;(£)].

The third problem is concerned with controller design by the use of the measure

p. Starting from an interval plant and a desired characteristic polynomial of a

closed-loop system, a heuristic procedure is proposed to choose a candidate for a

robust controller. Because the procedure is based on necessary stability conditions

and deals only with vertex polynomials, the final check via some sufficient stability
test is needed.

2. INVARIANT TRANSFORMS OF SCHUR POLYNOMIALS

A polynomial of the degree n

f(z) = fa2"+ ...+ fiz+fo

is called Schur stable ifallits roots lie in the unit circle, [A;| < 1,7 = 1,...,n. Let

us introduce polynomials f(z) and h(z) of the degree n and n —1, respectively

f(z) =2"f(z7") = 2" + fl2"7" + o+ + fn-12 + fa

he) =27 1)- 22(2)
and let us recall the lemma which allows us to reduce the degree of a polynomial
without losing stability.

Lemma 1 [®]. If f(2) satisfies |fn| > |fol, then h(z) will be Schur stableif and

only iff(z) is Schur stable.

We can obtain a similar statement for increasing the degree of a polynomial
without losing stability. Let us define a polynomial g(z) of the degree n + 1

(1)
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Lemma 2 [°]. If€ € (—1,1), then g(z, &) will be Schur stableif and onlyif f(z) is

Schur stable.

By repeated use of Lemmas 1 and 2, we can introduce a Schur invariant

transform S : R™tl x R™ — R™*! on the coefficients space f € R"*! of poly-
nomials f(z) with r-vectors ¢ and v of independent parameters £,v € R", r < n.

Let

f(z,é,u)=2f,—(£,u)zi, fi(éaV)ER
I=o

and

where

f(&v) =8 v)f,

f — [fol°"7fn]T7
f({,l/) — [fo(š,l/),...,f„(f,1/)]T.

Then according to (1) and (2), we can define a (n + 1) x (n + 1) matrix S(¢, v) of

2r variables &1, ...,& and vy, ..., W

S(¢,v) = R(§)P(v),

where R(¢) and P(v) are (n+l)x(n—r+2) and (n—r+2) x (n+l)
matrices, respectively

R() = Rast(6) |pe l e |
P(V) = [OEPn-H„g(Vl)] - [OEP„(VT—I)]Pn+I(VT)

and

R;(£) = I; + LEj,

Pj(v.) = I; — v.Ej,

where I; is aj x j unit matrix and Ej = [e;i...iel], ;i = (0...010..0)"
i—l

By repeated use of Eq. (1), we obtain

S 1

|=
-

h
ri (2x )]g

" [h(j)(z) hsljlj
z(j+1)(z)h

where h(9) (z) = f(z). Obviously,

flzv) =Y fily)? = 2"h)(2),
I=o

3)

4)

(5)
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where f(v) = P(v)f, if

h(()j)
j=0,...,7 —l.Ur—] —

hgl]

Ifr = nandf(z) is monic, then v}, j = 1, ...,
n are called reflection coefficients

of the polynomial f(z) ['°]. Recall that for a Schur polynomial, all the reflection

coefficients have v; € (—1,1).

Lemma 3 [°]. The polynomial

f(z&v)=) fil,v)7, f&v) =B¢v)f
I=o

with v; from (6) will be Schur stable ifand only if
1) polynomial f(z) is Schur stable,

2)¢ €(-1,1), j=1,..,r.

Next, we shall use the transform S(, v) with fixed v;,j = 1,...,r according
to (6) and with €; € (—1,1),7 = 1, ...,r. Therefore, we call it a Schur invariant

transform and denote by S(¢). -

3. NECESSARY STABILITY CONDITIONS VIALINEARSCHUR

INVARIANT TRANSFORM

Lemma 3 formulates the sufficient stability conditions for Schur polynomials,
starting from a stable polynomial f(z). By the use of the transform S(¢), we can

give also some simple necessary stability conditions.

Let us consider a polytope of N polynomials fi(z2), ..., fn(2)

P(fl)""fN) = 71f1(z) +... +7NfN(z)a

N

Y=l, <L k=l.,N
k=l

For fx(z) = f(z,&k,v), according to Lemma 3, we obtain

Corollary 1. For the stability ofa polytope P(fl,
..., fn) with

flz)=f(z,yEk; V), Ju= S,vV)f, k=1,...N; = & VERS

and v from (6), it is necessary that

1) polynomial f(z) is Schur stable,

2) fkj € (—171)3 j=l..r.

(6)
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The transform S(§) is nonlinear in respect of polynomial coefficients fo,
...,

fn
and multilinear in respect of independent parameters &1, ...,&k,. To obtain a

simple necessary condition for the Schur stability of a polytope P(f(z,&k,v), k =

1,...,N), we have to fix a stable polynomial f(z) and to choose the parameters
€kj»J = 1,...,7, so that the transform S(§) will reduce to a linear one. The simpliest
way to accomplish the latter is to fix r — 1 parameters of the r-vector £.

Let us fix the parameters vector ;. as follows:

i ik,
) -1 ifk=n+i

ki =

v, ifk#i,k#n+i,
i=1,..,n;k =1,...,2n,

where v; is the reflection coefficients of the polynomial f(z).
Now we can generate a family of n line segments P( f;, f,+i) through the point

f(z). Along the line segment P(f;, fn+i) between the points f; and f,, .1, only the

i-th reflection coefficient v; is varying v; € (—1,1) . According to Corollary 1, the

polytope P(fx,k = 1,...,2n) with &; and v;,7 = 1,...,n from (6) and (7) is a

candidate for a stable polyhedron around the point f(z).
We need some measure to compare the candidates for stable polyhedrons. The

most natural measure would be the minimal distance p* from the point f(z) to the

stability boundary. As we know only some points of the stability boundary, we

choose the measure as the minimal distance between the point f and the points
Her,v) = S(E)f

p = min|f — f|.
With the linear invariant transform S(§) and Lemma 3, we can formulate

necessary stability conditions for several different polytopes, which include f(z).
For example, let us consider the polynomials fx, (z) = f(z,&k, €k,, v, vk) With

coefficient vectors

fei = S(ksvik) e= S(Eks»Vk) S(ErsV)F,

where v and v}, are the reflection coefficients vectors of the polynomials f(z) and

fr(2), respectively, &g,v € R™; &k,vk€ER™; 7 <n, r 1 <n.

Corollary 2. For the stability ofa polytope P(f, fr,, k 1 = 1, ..., 2n) with fi, from
(9), it is necessary that

1) polynomial f{z) is Schur stable,

2)&j€(-1,1), j=l,.,r, r<n; k=1,..2n,

3) fkljl € (—l’ 1)’ n=l.,r; r<n

Let & be fixed according to (7) and n— 1 parameters of the vector &k, satisfy

ki = Vki, While &, € (=1,1), j #1; 4,5 = 1,...,n. Then we produce n line

segments through the point fx(z). Because one of the reflection coefficients v; has

(7)

(8)

(9)
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|vki| = 1, n — 1 of these line segments lie on the stability boundary. The n-th line

segment is stable and goes through the point f(z).
Now we can modify the stability measure p, taking into account the new

information about the stability boundary. Instead of separate points fx(z), we have

a couple of M < 2n(n —1) line segments fix, = S(&,)fr &, € (—1,1)
on the stability boundary. Let us define the stability measure p as the minimal

distance between the point f(z) and the line segments fi, ({x), &kj € (—1,1);
€kli = Vkiyt #J; ,7=1,..,n:

fi‘_‘rg:nlfkl(§kl) —fl

Obviously, p > p > p*.
In a similar way, we can produce a variety of stable line segments through the

points fi, (z) and modify the measure p.
Let us illustrate the above statements for n = 2 (monic polynomials) (Figure).

According to (7), we generate the line segments AB (—1 < £3 < 1, & = 2) and

CD (& =v,—l <& < 1) through the nominal point F. Conformably to

Corollary 1, the quadrangle ADBC is a candidate for the stability region around

the point F. By (8), we find p = FB. On the second step, we will find the line

segments AH, AG, and GH on the stability boundary through the points A, C, D, and

B. According to Corollary 2, the triangle AGH will be a candidate for the stability
region. Thus, p = FK = p*.

4. ROBUST CONTROLLERDESIGN FOR INTERVAL PLANT

In the standard feedback system, suppose that the nominal single input single
output plant

Wiol3) &

b(z) bo,_lz2™m1+ +bz+b]
POV T

2) = a 8 2m + - +alz+al
is stabilized by the controller

gL

Stability boundaries and linear invariant transforms (n = 2)

(10)
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It means that the closed-loop system

j- —P)alo)—W2) = F) = )

has a Schur characteristic polynomial f(z) of the degree n > m.

Our aim is to find a suitable controller for an interval plant W)y(2z) with

g; s.6i. <O5, b 7 <bi <bF, i=1,....m, and b7, =bb =O.

The suitability of acontroller Wc-(z) = ¢(z)/r(z) can be found by the use of the

stability measure p (or p) for all of the corner polynomials f¢(z) of a closed-loop

system
f€(z) = a®(2)r(z) + b°(2)q(2),

where af € {a;,a;}},b¢ € {b;,b},i=l,...,m.
The problem is that some of characteristic polynomials f(z) of the closed-loop

system may be placed very close to the stability boundary. So we shall seek a

controller which will produce equidistant corner polynomials f¢(z) in the sense of

the measure p.

Suppose we have calculated the distances p (or p) by (8) (or by (10)) for all of the

corner polynomials f%(z),j = 1,...,2" "1, It is reasonable to modify the desired

closed-loop characteristic polynomial f°(z) by weighting the corner polynomials
f¢(z) proportionally to the distances p;

fi(z) = af’(2) + ag;£ (2),

where

aCj — ,Bcpj)

a+zacj &= 7

j

and « is the fixed weight of the nominal plant 0 < a < 1, p; > oif f% is stable

and p; < 0 if f% is unstable, 3, is a constant which satisfies (13) and (14).

The design procedure consists of the following basic steps :

1. Starting from a desired characteristic polynomial f!(z) of the closed-loop

system and the nominal plant Wy(z), find the controller We(z,l), 1 =0,1,....

2. Find the corner polynomials f%(z,!) of the closed-loop system with the

controller W,(z,l) according to (11),j= 1,...,2"*1.
3. By the use of the linear invariant transform S({x) and necessary stability

constraints (7), find the points f,’ (z,l), k = 1,...,2n, on the stability boundary
for every corner polynomial f% (z,l).

4. Calculate by (8) the distances p%(l). Find the minimal and maximal

distances p2. (1) and priax(l).

(11)

(12)

(13)

(14)
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5. Compare the distances p.’. (1) and p.2;(1 —1).
1fiia) < pilinU—1), then

a) make use of the modified distance p or

b) increase the weighting constant o .
Cj C 3

a)if%'a,-";“—"(%l > y,7 >1, gotostep 6,

b) if %'„“Jf—*((% < 7, stop.

6. Check the stability of corner polynomials f¢ (z,l). If some of them are

unstable, put p; = —p;.

7. Find the new desired closed-loop characteristic polynomial f!*1(z) by
formulas (12)—(14) and return to step 1 with [ = [ + 1.

It is worth pointing out that the proposed procedure gives only a candidate for

the robust controller. It is necessary to check this candidate via some sufficient

stability criterion (e.g., edge theorem).

Example. Let us have the interval plant

0.5
Wol2) =

55,703

witho.2 > by > 08,03 > a; > 0.7,0.4 > ap > 0.6, and we are seeking a

suitable first-order controller

01z + Qo

Let us choose the constants a = 0.2, v = 1.5 and the closed-loop characteristic

polynomial (n =3) - - 5

f0=22+0.122 + 0.2 z + 0.5.

Then
0.2z + 1.0

We(2,o) =BTy
and

Pmin(o) = 0.356 — Prhax(o) = 0.917

peir(l)=o.sl2 pC. (1) = 0.933

Pmin(2) = 0.593 Pmax(2) = 0.936

peiin(3)=o.646 — pt (3) = 0.938

For/ = 3 we have

3(z) = 23 + 0.2672% + 0.15 z + 0.094

and %%“_“%2 < 7. Thus, the candidate for the robust controller is

0.137 z + 0.508
Welz3)=

—op
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5. CONCLUSIONS

By the use of a multiparametric transform on the coefficients space of the

closed-loop characteristic polynomial f(z), a family of stable discrete-timesystems
f(z,€) is obtained, starting from a nominal stable system. This Schur invariant

transform is multilinear in respect of independent parameters &1, ..., &, . Only linear

Schur invariant transforms have been used to formulate some necessary stability
conditions and to introduce a stability measure p.

The proposed robust controller design procedure is quite straightforward but

needs a final stability check.
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ROBUSTSE REGULAATORI SUNTEES SCHURI INVARIANTSE

TEISENDUSE ABIL

Ulo NURGES

Kasutades mitme vaba parameetriga Schuri invariantset teisendust suletud siis-

teemi karakteristliku vorrandi kordajate ruumis ja ldhtudes stabiilsest nominaal-

siisteemist on saadud stabiilsete diskreetsete siisteemide hulk. Lineaarse teisen-

duse abil on leitud stabiilsuse tarvilikud tingimused poliitoopide kujul. Nende

poliitoopide tippude kaudu on defineeritud stabiilsuse mdot, mis voimaldab esitada

lihtsa protseduuri robustse regulaatori vdimaliku variandi valikuks.
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