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Abstract. Since the complexity of large electronic systems is rapidly increasing, most of them do

not fit in any of the commercially available Field Programmable Gate Array (FPGA) devices. Thus,
the implementation of circuits with FPGAs commonly requires partitioning to obtain several FPGA

packages. This paper describes an automatic partitioning method of a design onto multiple FPGA

devices. The partitioning method described consists of a hierarchy-based clustering algorithm, a

constructive partitioning algorithm, and an iterative improvement algorithm. Experimental results

were obtained on large industrial hierarchical circuits, using XILINX 4000 technology.
Experimental results show that the hierarchy-basedclustering is the key to speed up the partitioning
of large industrial circuits and to improvepartitioning results.

Key words: partitioning, prototyping, field programmable gate array, application specific
integrated circuit, clustering, flat circuit, hierarchical circuit, constructive algorithm, iterative

improvement algorithm.

1. INTRODUCTION

The partitioning problem of field programmable gate arrays arises when

prototyping large application specific integrated circuits (ASICs): their size is

commonly too large to allow an implementation on a single FPGA device.

Multiple emulation and prototyping systems use partitioning to implement the

complex circuits on FPGAs. Circuit partitioning on FPGAs assumes the

definition of a number of blocks, allowing for each block to satisfy a set of

constraints: area, IO pin, flip-flop, and some other technology-dependent
constraints. The problem is complicated because the gate capacity of FPGA

chips is large with respect to their IO pin capacity. Thus, because of a rapid pin
saturation, it is difficult to obtain good device fillings.
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The classical partitioning objective is to minimize the number of cut nets

between two or more blocks of partition. The problem is NP-complete, and

heuristic methods are used to reach a solution ['™*]. Surveys about the state of art

in partitioning may be found in [*°].
Most of the existing partitioning approaches [**] are based on the well-known

iterative improvement heuristic proposed in [']. But the iterative improvement

algorithms are known to trap usually in a local minimum. The larger the circuit, the

smaller the probability to find a global minimum. To cope with this problem,

multiple approaches of clustering — grouping of the circuit elements before the

partitioning starts — were proposed to reduce the complexity. However, bottom-up
clustering methods [*''] suffer from the absence of the global circuit view, and

top-down clustering approaches ['*] still are faced with the same complexity
problem. In ["] an algorithm is proposed which combines the top-down and

bottom-up clustering approaches and allows a rapid partitioning of FPGA netlists

of 100 K gates. But the reported FPGA gate utilization is quite low — less than

40%. This algorithm, like other approaches, works on flat netlists at the gate level.

Although the hierarchical representation is a natural basis for the reduction of

complexity, few device partitioning methods for hierarchical circuits have been

reported ['*]. On the other hand, complex digital circuits designed manually and

assisted by high-level synthesis tools are hierarchical. Therefore, this hierarchy can

be used for guiding the partitioning to obtain a faster and better solution. The

partitioning method presented in this paper combines hierarchical clustering ["]
and the flat partitioning approach to minimize the number of obtained blocks.

This paper is organized into eight sections. Section 2 provides the statement

of the partitioning problem. Section 3 covers the hierarchy-driven clustering
approach to reduce the complexity of the partitioning problem. Section 4

describes the flat netlist partitioning method, consisting of the constructive and

iterative improvement algorithms. Sections 5 and 6 present and discuss the

experimental results obtained on a set of industrial benchmarks using XILINX

4000 technology. In section 7, our conclusions are drawn.

2. STATEMENT OF THE FPGA PARTITIONING PROBLEM

A mapped digital circuit Y is a network of primitive cells, characterized by its

size Sy and its input/output number Ty. The size of the circuit is the sum of the

sizes of all its primitive cells (such as standard cells, FPGA CLBs, flip-flops,
RAMs, ROMs). The circuit may be modelled as a hypergraph H = (V, L), where

V is a set of nodes representing circuit cells, and L is a set of hyperedges which

represents a set of nets. FPGA partitioning problem consists in finding a

partition of the initial circuit into a minimal number of blocks b: (A, As, ..., Ap),
each of which can be implemented on a single target FPGA device D,
characterized by its size Smax and IO pin number Tmax.
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3. HIERARCHY-BASED CLUSTERING APPROACH

Circuit hierarchy is defined by the hierarchy tree. Each node of the tree

corresponds to a block in the circuit hierarchy. Leaf blocks contain only primitive
cells. Non-leaf blocks contain other blocks and possibly primitive (i.e. glue logic)
cells. Each block, or an envelope, E is characterized by its size Sy and 10 number

Tr. The amount of the glue logic, contained in an envelope, is denoted by Gg. An

envelope may be removed, as a result, its border becomes transparent.
Clusters are defined as hard envelopes, which cannot be removed during

partitioning. An envelope E is acceptable if it satisfies two conditions:

Sp <SB and Ty <T,_.. Circuit clustering is the process of defining a set P of

hard acceptable envelopes. Clusters are the first acceptable envelopes when

going from the root to a leaf in the hierarchy tree. Once the clusters are selected,
the rest of envelopes will be removed. Then the flat partitioning algorithm is

applied to the network which contains the glue logic cells and clusters.

The non-acceptable envelopes are either removed or split to obtain several

acceptable envelopes. The strategy chosen is based on the envelope ST-quality
(Size-Terminals quality) defined

ST, =l/2(AvST, + AbsST,),

where AbsSTg is the absolute ST-quality calculated as AbsSTg = Se/Tg; AvST is

the average ST-quality calculated as AvST, =l/nz ST(CEj) where ST(Cg) is

j=l

the ST-quality of the j-th successor of E. For a leaf envelope, STg = AbsSTg. Each

FPGA device D may also be characterized by the absolute S7-quality ratio:

AbsSTp = Smax/Tmax- Partitioning strategy selection for non-acceptable envelopes
is shown in Fig. 1.

4. PARTITIONING ALGORITHM

Once the clustering is performed, the clustered circuit will be represented by
a cluster graph, and the flat partitioning algorithm starts. The partitioning
algorithm we applied for flat netlists is similar to the PP algorithm described in

[*'°]. The algorithm is iterative: the first iteration applies a bipartitioning

Envelope -ST£ AvST ST
g

s AvST

Leaf envelopes split
Non-leaf envelopes with GE > SMAX Split
Non-leaf envelopes with G <8,¢ Remove Spllt Remove

Fig. 1. Selection of a strategy for envelope partitioning.
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procedure to the given circuit, and the subsequent iterations apply the same

procedure to the remainder. At each moment, b — 1 blocks satisfy the target
device constraints. One block called the “remainder” does not satisfy the device

constraints. The recursion stops when the “remainder” meets the device

constraints. Each partitioning step consists of the application of two algorithms:
1) creation of an initial partition by a constructive algorithm;
2) amelioration of the existing partition by an iterative improvement

algorithm.
It has been observed that starting the bipartitioning procedure from a

randomly chosen bipartition tends to produce unsatisfactory results. Because of

this, we have used the combination of both constructive and iterative

improvement algorithms.

4.1. Constructive Partitioning Algorithm

A greedy-like algorithm is used to create an initial bi-partitioning solution.

Blocks are created by greedy merging clusters around two seed points (Fig. 2).
The first seed point is the largest cluster, and the second seed point is the cluster

with the maximal distance from the first one.

Once the candidate for merging is selected, the objective will be to ensure that

the block size increases quicker than the number of 10s. The cost function to be

maximized is

Cost -
HatŠa—Cl+C2

—

,

TC2 + ]z,'l —2 X ];ommon

where S, and S, are sizes of clusters C 1 and C2; 7, and 7, are the number

of 10s of clusters C 1 and C2; 7, is the number of connections between C 1
and C2, which does not cross the cluster border when C 1 and C 2 are merged.

Fig. 2. Merge ofclusters

(1)
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The nominator presents a good FPGA fill objective, and the denominator

presents the IO number reduce objective. Block growth stops when no one cluster

can be added to a block without violating the constraints. The merge continues

with the second block. When both blocks are saturated, the rest of clusters are

merged with the smallest block. The obtained partitioning solution is recorded.

The theoretical time complexity of the merge (if there exists an edge between

each pair of clusters in the cluster graph) is O(c*), where ¢ is the number of

clusters in the network. However, in practice, cluster graphs are not dense. The

practical time complexity is reduced to O(cm®), where m is the average number

of edges incident to every graph node, commonly much smaller than c.

To increase the probability of the quality improvement of the initial partition,
we used an additional pass with the “ratio-cut” cost function described in ™

o
Ty+Ty,

ALAD
ÕO

Sal XS42

where (A,,A, ) is the partition in blocks A and 4,; T,, and T,, are the number

of Ios of blocks 4, and 4,; S,, and S, are the sizes of blocks 4, and 4,. This

cost function prefers partitions with small cut-set and balanced sizes.

4.2. Iterative improvement algorithm

The iterative improvement algorithm proceeds in the following four steps
(Fig. 3):

1) moves to balance block sizes;

2) moves to decrease 10s on all blocks;

3) moves to decrease lOs on the "remainder" block;

4) greedy moves — only the moves which decrease the cost function are

allowed.

Stagel. It may happen that the “remainder” block does not meet the size

constraint while the minimal theoretical number M is already reached. In this

@ 2O AD=——(G0D D D o TR
c Y6 S ° (S:O .-:.QQ_

‘..
- \\\ //l

” \\'//'I -

\" . ;:5:’5155/ * ;*.,g*iš'.':// *\/
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Stagel: Stage2: Stage3: Stage4:

the "remainder" the cut-set the "remainder" greedy IOreducing

size balancing reducing IO reducing

Fig. 3. Swapping steps.

(2)
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case, the size constraint is critical. The ratio-cut method of ['*] suits for size

balancing. The following “ratio” cost function can be used:

AR
_Tyu+Ty Ty-c+Ta2+c

(A-CAHOTT KS SKSs

A 1 X 9 42 AI-C
XD

A24C

where (4,-C,4,+C) is the partition obtained from the partition (4,,4,) by

moving cluster C from 4, to A4,. This cost function reflects a decrease in the

ratio value if the cluster is moved. Clusters are preferably moved “from” the

largest block, which contributes to size balancing.
The drawback of this cost function is that it cannot be represented by integer

values, as the net gains described in [']. Therefore, the gain update by simple
increment/decrement is not possible. The recomputing of all gain values should

be performed every time the cluster is moved. The complexity of the algorithm
will be 0(c2), where c 1s the number of clusters in the network. But considering
that the size of the problem was previously reduced by clustering, such an

algorithm may be successfully used in practice.
Stage2. When the size constraint is satisfied for all partition blocks, but the

“remainder” block does not respect the IO pin constraint, the classical IO gain
cost function may be used. The classical algorithm of [’] with linear complexity
is used to reduce the total number of nets in the cut-set. Several passes are

performed. At each pass, all clusters are moved, and the best encountered

partitioning solution is stored. We have also performed passes starting from the

second best solution.

Stage3. On the previous stages, the clusters are allowed to move between all

pairs of blocks — to explore the solution space in the global way. On the current

stage, clusters are allowed to move only between the “remainder” block and

other blocks. The solution space is explored locally to reduce the Ios number of

only one block.

Staged. On the final stage, clusters may move between all pairs of blocks, but

only the moves which decrease IO numbers are allowed. It is different from

stages 1, 2 and 3 which allow moves with negative gain. This step is a greedy-
like swapping performed to refine the obtained partitioning solution.

Fig. 4. Solution of cost function.

(3)
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Intuitively, this process can be represented as in Fig. 4. The constructive

algorithm obtains initial solution in the proximity of a local minimum. Stages 1

and 2 of the iterative improvement algorithm may be able to escape from the

local minima. Stages 3 and 4 perform solution refinement by descending as low

as possible in the current minimum.

S. EXPERIMENTAL RESULTS

We performed tests with four large industrial ASIC circuits migrated on

XILINX 4000 technology. Benchmark data are shown in the table.

For each benchmark, tests were performed with three different XILINX 4000

devices: XC4OIO with fill 1.0 (Smax=4oo, Tmax= 160), XC4013 with fill 0.8

(Smax = 460, Tiax = 192), and XC4013 with fill 1.0 (Spax = 576, Trax = 192). They
are denoted by PKGI, PKG 2 and PKG3, respectively (Figs. 5 and 6).

We compared the results of the partitioning algorithm with a flat netlist

(FPART), with those of greedy-like hierarchical partitioning (GHP), and with the

results of partitioning with hierarchy-based clustering (HPART). In the first

case, circuit hierarchy was previously flattened. The greedy-like algorithm
consists in: 1) clustering by splitting all non-acceptable envelopes; 2) filling
devices in a greedy manner using the cost function (1). Such an algorithm was

described in ['].
Partitioning results are shown in Figs. 5 and 6. Figure 5 illustrates device

fillings. It can be seen that the algorithm which uses hierarchical clustering
obtains the most uniform device filling. Its average filling ratio is about 70%. On

the contrary, the filling ratio of other algorithms is not stable. Figure 6 shows the

CPU results relative to HPART results. We can see that hierarchy-based
clustering accelerates partitioning up to thirty times.

Circuit #gates before Size, CLB after #FF

migration migration

CI 46003 3699 88 5160

C2 36133 1477 212 1874

C3 73320 7648 329 10387

C4 134532 9648 182 10165

Benchmark information
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Fig. 5. Filling results of a hierarchical netlist partitioning device.

Fig. 6. CPU results of hierarchical netlistpartitioning.
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6. DISCUSSION

The introduced stages of the iterative improvement algorithm have different

time complexity. Application of each stage for large circuits may take much of

CPU time. The partitioning tool should facilitate quick acquisition of the first

result. Then, it is useful to organize the work of the partitioning tool in several

“passes”, each of which will execute some subset of the stages. The first pass
should apply only the stages with low time complexity, allowing for quick
acquisition of results even for large circuits.

The example circuits are mapped on XILINX 4000 technology. To illustrate

the size of the partitioning problem, it is often not sufficient to estimate the

number of CLBs. The migrated netlists used were not packed, thus, one CLB

does not equal to one node in the partitioning algorithm. One CLB may consist

of several primitive elements, packed by the PPR tool after partitioning. In our

experience, to obtain the real size of the partitioning problem, it is necessary to

multiply the number of CLBs by a coefficient of 3-6.

The results of hierarchical partitioning may depend on circuit hierarchy. For

example, if there are many acceptable envelopes with bad S7-quality which do

not fit together. The method may be easily extended to treat this case.

7. CONCLUSIONS

In this paper, we have presented a design partitioning method forFPGAs. The

method consists of the hierarchy-driven clustering algorithm and the flat

partitioning algorithm, which, in turn, is composed of constructive and iterative

improvement steps. The hierarchy-based clustering considerably reduces the size

of the partitioning problem. In addition, an efficient implementation of

constructive and iterative improvement algorithms allows for achieving good
partitioning results, confirmed by our experimental results obtained on large
industrial circuits.
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DISAINI TÜKELDAMISE MEETOD PROGRAMMEERITAVATE

VENTIILMAATRIKSITE TARVIS

Helena KRUPNOVA ja Gabriele SAUCIER

Viimasel ajal on suured elektroonikasiisteemid muutunud keerukaks ja
enamik neist ei mahu enam iihtegi saadaolevasse kasutajaprogrammeeritavasse
ventiilmaatriksi seadmesse. Seetdttu tuleb kasutajaprogrammeeritavates ventiil-

maatriksites realiseeritavate disainide korral rakendada tiikeldust, et saada

mitmeid viiksemaid pakette. On kirjeldatud disaini mitmesse kasutaja-
programmeeritavasse ventiilmaatriksisse automaatse tiikeldamise meetodit.

Tiikeldamisalgoritm koosneb hierarhial pohinevast klasterdusalgoritmist,
konstruktiivse tiikeldamise algoritmist ja iteratiivsest tdiustamise algoritmist.
Katsetulemused on esitatud mitmete suurte toostuslike skeemide tarvis, mis on

realiseeritud XILINX 4000 tehnoloogias. Hierarhial pdhinev klasterdamine

annab voimaluse kiirendada suurte toostuslike skeemide tiikeldust ja parandada
selle kvaliteeti.
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