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Abstract. This paper presents an automated mixed-level test pattern generator operating on

register-transfer level and gate-level representations of digital systems. The system implements a

novel test generation approach based on a uniform diagnostic model of a digital system for mixed-
level representations in the form of alternative graphs (AGs). The model allows for defining a

general fault model which uniformly covers high-level functional and low-level stuck-at fault

models. The AG representation enables the application of standardized procedures for fault

activation, fault propagation and line justification on both levels. The system consists of separate
test generators for datapath and control parts, based on similar fault propagating procedures, which

differonly in building general test plans. Experimental results show the efficiency ofthe approach
used in the generator.
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representations, register-transfer level (RTL) circuits, gate-level circuits, binary decision diagrams
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1. INTRODUCTION

Test generation for real life digital circuits on the gate-level is extremely
complex. It has been shown that test generation for combinational circuits is a

NP-complete problem [']. However, algorithms developed so far can handle test

generation for relatively large combinational circuits in a reasonable computing
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time ["?]. Gate-level test generation for sequential circuits is even more complex
and still remains unsolved in practice M

Test synthesis for digital systems encompasses three activities: selecting a

description method, developing a fault model and generating tests to detect the

faults derived from the fault model. The efficiency of test generation (quality,
speed) is iighly dependent on the description method and on the fault models

chosen. The complexity of digital systems is increasing. As a result, the gate level

test generation methods have become obsolete. Promising approaches are

hierarchical methods which use mixed-level descriptions of systems. However, the

drawback lies in the need of different languages and models for different levels.

As a possible solution for the problem, hierarchical test generation methods

have evolved [*''], which take advantage of a higher abstraction level (e.g.
behavioural or RTL) information while generating tests for gate-level faults.

Hierarchical test generation is based on the divide and conquer principles. A device

under test is considered at different design abstraction levels, and test generation 1s

performed on these levels by utilizing an appropriate test generation tool. In

hierarchical testing, top-down and bottom-up strategies are known. In the bottom-

up approach, tests generated at the lower level will be laterassembled at the higher
abstraction level [']. The generality of this approach lies in the possibility of using
precalculated library tests for components during the higher level test synthesis.
On the other hand, high-level constraints cannot be considered in creating libraries

of test patterns for components. This can be a reason why solutions cannot be

found even if they exist. This paper represents a method which allows for

implementing both, bottom-up and top-down approaches. By the top-down
approach, the constraints extracted at a higher level [*] will be considered when

deriving tests for components at the lower level. As the main theoretical basis for

creating the test generator, AGs are used.
e

During the last ten years, binary decision diagrams ['*'*] have spread in

digital design and test. AGs were introduced as a generalization of BDDs to

represent functions, structural properties and faults of complex digital systems
['°""]. AGs serve as a basis for a general theory of test design for mixed-level

representations of systems, similarly to the Boolean algebra for the plain logical
level. The fault model defined on AGs represents a generalization of the gate-
level stuck-at fault model — the latter was defined for literals in Boolean

expressions whereas the former is defined fornodes in graphs.
In the hierarchical test generation approach discussed in this paper, different

design abstraction levels (RTL and gate-level) of the system under test are

represented by AGs. This feature provides a uniform model representation and an

application of standardized procedures for all levels of abstraction. As different

from known methods, both control path and data path are handled here by
uniform fault models and uniform faultactivation and fault propagation methods.

Uniform approaches for gate-level and higher level descriptions easily afford to

adopt gate-level fault propagation and line justification methods, algorithms and

tools for higher level ones.
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In this paper, section 2 defines the concept of AG, section 3 explains the

generality of the fault model defined on AGs, section 4 describes the structure of

the test generation system, and in section 5, experimental results are discussed.

2. ALTERNATIVE GRAPHS

In general, an AG is defined as a non-cyclic directed graph whose nodes are

labelled by variables. There are different finite sets of values the variables can take.

In special cases, variables can also be substituted by constants or by algebraic
expressions. The graph has only one starting node (root). The number of terminal

nodes, i.e. nodes without any successor nodes, is not limited. For each value from a

set of predefined possible values of a non-terminal node variable (or expression),
there exists one and only one output branch from the node. Different branches of

the same node may lead into the same successor node.

Consider a situation where all node variables are fixed to some value. By
these values, for each non-terminal node, a certain output branch will be chosen

which enters its corresponding successor node. Let us call such connections

between nodes activated branches under the given values. Succeeding each

other, activated branches form, in turn, activated paths. For each combination of

values for all node variables, there exists always a corresponding activated path
from the starting node to a terminal node. Let us call this path the main activated

path. For each combination of values for all node variables, there exists one and

only one value equal to the value of the variable (or expression) at the terminal

node of the main activated path. This relationship describes a mapping from a

Cartesian product of the sets of values for variables to all nodes to the joint set of

values for variables in the terminal ones. Therefore, by AGs it is possible to

represent arbitrary digital functions Y = F(x), where Y is the variable whose value

will be calculated on the AG, and x is the vector of all variables which belong to

the labels of the nodes in the AG.

When using AGs to describe complex digital systems, at the first step, we

have to represent the system by a suitable set of interconnected components
(combinational or sequential ones). On the second step, we have to describe these

components by their corresponding functions which can be represented by AGs.

Examples of representing the RTL description of a digital system by AGs are

depicted in Figs.l and 2.

The finite state machine (FSM) of the control part is described by an AG

where non-terminal nodes represent the current state and inputs for the control

part, and terminal nodes are for representing the next state and control signals
leading to the datapath. Figure 1 shows an example of a fragment of a FSM state

table and the corresponding AG representation. In this example, ¢ denotes the

next state variable and ¢’ is the current state. The variables outl, out2, out 3 and
out 4 denote the output variables of the FSM. The graph in Fig.l describes the

behaviour of the FSM at the current state s5.



274

The datapath is described as a set of AGs. An AG corresponds to each register
and each signal fanout. Here, non-terminal nodes represent the control signals
coming from the control part or inputs and terminal nodes represent signals of the

datapath, i.e. primary inputs, registers, constants or data manipulation expressions.
Figure 2 shows a datapath fragment and its corresponding AG model.

3. FAULT MODEL

The main idea of the fault model defined for AGs is the relationship of faults

to nodes of graphs, in a similar way as logical level faults stuck-at-1 and stuck-at-0

are related to Boolean variables (or literals) in the corresponding logical
expressions. In the simplest case, at the logical level, each node in AGs is

labelled by a Boolean variable and, therefore, is related to the stuck-at faults s-a-1

and s-a-0 of this variable. This relationship between nodes in AGs and faults in

circuits can be generalized in comparison to the Boolean level.

Each path in an AG describes the behaviour of the system in a specific mode

of operation. The faults, having effect on the behaviour, can be associated with

the nodes along the given path. A fault causes an incorrect leaving the path
activated by a test. From this point of view, we introduce the following abstract

fault model for the nodes m with node variables z(m) in AG-representations of

digital systems:

Fig. 1. Represention of a control part of a digital system by an alternative graph

Fig. 2. Represention ofa data part of a digital system by an alternative graph
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1. The output branch at z(m) = i of a node m is always activated; notation:

z2(m)/D= .

2. The branch at z(m) = i of a node m is broken; notation: z(m)/i= Y.
3. Instead of the given branch at z(m) = i of a node m, another branch at

z(m) = j or a set of branches {j} is activated; notation: z(m)/i = {j}.
The fault model defined on AGs is directly related to nodes and gives a clear

description of the faulty behaviour of the system in terms of the model. In this

fault model, first, the situation how an AG is activated is described (a value of

the node variable or node function is given), and, secondly, the new faulty
activated situation is discussed.

Different fault models for different representation levels of digital systems can

be covered by this uniform node fault model defined on AGs. The physical
meaning of the faults associated with a particular node depends on the meaning
of the node. Depending on the adequacy of representation of the structure of the

system, the fault model proposed for AGs can cover a wide class of structural

and functional faults introduced for digital circuits and systems ['>*’]. For

example, the fault model for the nodes labelled by Boolean variables ze {o,l}
covers the stuck-at fault model z/0 (z/1) for gate-level circuits, the fault model for

the nodes labelled by integer variables represents widespread functional fault

models for decoders, multiplexers, instruction decoding units of microprocessors
['°], case constructions in procedural models of systems ['"?"], etc.

Denote each fault F; in a digital system represented by AGs as a quadruple:
Fi= (G, N, C, V), where G is the graph where the fault is defined, N is the node

affected by the fault, C is a condition needed to activate the fault (not always
formally derivable from the AG-model itself), and V is the action of the fault, i.e.

the identification of the faulty activation of the outputs of the node. For example,
the faults in a graph G at a node m, defined above, will have the following
general notation:

z2(m)ID = i (G, m, {z(m) = D}, i);

z2(m)i = D: (G, m, {z(m) =i}, D),
zm)li = {j}: (G, m, {z(m) =i}, {j}).

In Fig. 3, examples of some typical faults in a digital circuit and in the

corresponding AG-model are depicted:
1) F1: (OUT, 5, x; = 0,1) — stuck-at fault at a line x; in the circuit.

2) F2: (OUT, 8, {x3=l, x, =o}, 0), or (OUT, 6, {x3=o, x, =l}, 0) — bridging
(or crosstalk) fault between leadsx, and xs; the condition C (the values of x; and

x») is needed to reveal the bridge by observing the signal value on one of the two

leads involved in the fault.

3) F3: (OUT, 2, I =2,{2, 3}) — functional fault in the decoder (instead of the

active output 2, two outputs 2 and 3 are simultaneously active); this fault can be

caused, for example, by a bridge or crosstalk between the leads 2 and 3 at the

output of the decoder. For microprocessors, a similar class of functional faults
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has been introduced for functions like instruction decoding, source and

destination register decoding in ["°].
4) F4: (OUT, 3, {R=76,IN =4},*) — another type of functional faults is

considered at the high-level primitive block F (e.g. ALU) that is related to the

hierarchical approach in test generation; the condition {R=76,IN =4}
represents a local test pattern for F, generated at the lower level. Asterisk * in the

place of V means that the faulty value in the output of F is not determined.

From above, it follows that the faultmodel defined on AGs can be regarded as

a generalization of the gate-level stuck-at fault model for higher level

representations of digital systems. The stuck-at fault model is defined for

Boolean variables (literals), whereas the generalized new fault model is defined

for nodes of AGs. As nodes with Boolean labels represent only a special class of

nodes in AGs, the logical level stuck-at fault model also represents special class

of faults in AGs only. In [*'], a general notation of the fault model is introduced

for representing a wide class of faults in digital systems like stuck-at, bridging,
crosstalking, and general functional faults.

4. STRUCTURE OF THE TEST GENERATOR

Input data for the test generator is a register-transfer level VHDL description
of the system. Such representations are provided by various high-level synthesis
tools where behavioral descriptions are compiled into RTL ones. Figure 4 shows

the place of the test generator in the design process.

Fig. 3. Represention of faults ofdigital circuits in alternative graphs.
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Figure 5 shows the general structure of the test generation environment. It

consists of a hierarchical datapath test generator, a control part test generator, and

a high-level AG model generator. From RT-level VHDL description, the high-
level AG generator generates high-level AG model, which will be applied as an

input of the datapath and control part test generators.

The datapath test generator has a hierarchical structure. The high-level part of

the generator performs symbolic path activation at RT-level. During the path
activation, functional constraints are extracted and applied to a CSP algorithm

Behavioral description
(VHDL)

High-level synthesis

RT-level description
(VHDL)

Logic-level synthesis
(SYNOPSYS)

AG-based

; test generation
Gate-level netlist

(EDIF) system

Fig. 4. The test system in a design process.

Behavioral descriptions RTL description
of FUs (VHDL) of the design (VHDL)

Logic synthesis High-level
(e.g. SYNOPSYS) AG generator

Gate-level netlist High-level
(EDIF) AG model

Low-level High-level
AG generator path activation

Structural AG Global functional
model of aFU constraints

Low-level constraint-driven Control part
test generator test generator

Fig. 5. The AG-based test synthesis system.
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contained in the low-level part of the generator. The test generation process takes

place in the following way. Tests are generated sequentially for each functional

unit (FU). For each FU, justification and propagation constraints are extracted at

the high level and passed to the lower level test generator. During extracting, the

constraints for the target FU, for all non-target FUs functional information are

applied to perform propagation and justification through the FUs at the functional

level. Such information, in the form of simplified behaviour of the block under a

few simple conditions needed for fault effect propagation and justification, is

preliminarily extracted and recorded in a special library of test modes (also
referred to as transparency library). This functional information will consist of a

set of input/output mappings (so-called I-paths [**] and F-paths [*']).
The low-level test generator handles justification and propagation constraints

derived at the high level. Additional tasks of the low-level program are to

generate gate-level tests for the FU and to assemble the final test set for the

datapath. It is a random gate-level AG-model test generator. The input data at the

target module boundary will be obtained by applying random vectors to the

inputs of the reduced constraints driven model and performing logical simulation

on this reduced model. In order to test the FUs, gate-level models of the FUs

must be synthesized. The current system uses the Design Compiler by Synopsys
Inc. for the logic-level synthesis. The RT-level VHDL description and a VHDL

library of FUs, containing generic bit-width behavioral descriptions of the FUs

are the input for logic-level synthesis. Due to the fact that the low-level test

generator operates with structural AG (SAG) representations, the low-level AG

generator is required to generate SAG models from gate-level netlists. The low-

level AG generator creates SAG representations from EDIF 2.0.0 netlist

descriptions. EDIF is a technology-dependent design format, and therefore,

appropriate technology libraries have to be included while performing EDIF to

SAG conversions.

5. EXPERIMENTAL RESULTS

Experiments have been carried out with the control part and datapath
generators. In all the experiments, system models have been used where both

datapath and control part of the system were connected into the whole system.
All tests have been run on Sun SparcServer 20/712 computer. As an input for the

datapath test generator, a hierarchical model of a 16-bit multiplier has been

chosen. Test generation results for four FU in the circuit are given in Table 1. By
increasing the interaction limit between high- and low-level generators, three of

the FU have been tested at 100 per cent efficiency. For one of the FU, the

transparent paths could not be activated at the high level. The results of test

generation for control parts (FSM) of three different digital systems (multiplier
5344, differential equation solver diffeq, and greatest common divisor gcd) are

shown in Table 2.
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To investigate the

adequacy of the mixed-

level fault model defined

for = AGs and to

investigate the possibility
of achieving high guality
gate-level tests by using high-level descriptions only, experiments were carried

out with a restricted class of digital systems — with benchmarks based on a family
of n-bit simplified RISC processors Cir_n (the number of instructions was 8).
Only arithmetical and logical operations in different modes were implemented,
and only combinational parts of processors have been examined. Circuits were

synthesized by CADENCE, and two AG-models for each circuit have been

created — compressed structural AGs for tree-like subcircuits ['°] (for structural

gate-level test generation) and high-level AGs (for functional high level test

generation). The results of test generation experiments are shown in Table 3. The

number of target faults for gate-level test generation corresponds to the case of

compressed model.

Inter- FUs Inter- |Vectors Inter- FUs Inter- |Vectors| Result

action actions action actions

limit limit

] add1 1 7 - success 1000 addl 1 7 success

add2 1 0 failure add2 1000 76 partial
andl 1 3 success andl 1 3 success

subl 1 0 failure subl 244 0 failure

100 addl 1 7 success oo add1 1 7 success

add2 100 0 failure add2 1093 78 success

and1 1 3 success andl 1 3 success

subl 100 0 failure subl 244 0 failure

Table 1

5344 90 84.44 11 0.26

diffeq 104 91.35 16 0.46

ged 142 93.66 40 0.80

Table 2

Item _Functionalhigh-level test generation| Structural gate-level test generation

Table 3

—_—mm va—tIaa —— 22222222 —— 22220222 —tb

Circuit name Cir4 Cir8 Cir 16 Cir 32 Cir4 Cir8 Cir 16 Cir32

Number of gates 603 1195 2379 4747 603 1195 2379 4747

Test length 126 126 126 126 111 140 169 274

Fault coverage, % 99.86 99.93 99.96 9998 9993 99.97 99.98 99.99

Test gener. time,s — 0.1 0.4 1.2 43 31.1 109.8 440.0 2584.6

Gate-level faults 2728 5360 10624 21152

Target faults 1522 2970 5866 11657
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In the low-level random constraints driven test generator, the critical path

tracing fault simulation method was implemented. High efficiency of simulation

resulted from the compaction of the model by replacing the gate-level AGs with

macro-level AGs (compressed AGs). In Table 4, gate- and macro-models are

compared for their simulation speed. Simulation time per pattern is given for

both models. Because of fault collapsing and decreasing the model complexity,
simulation time decreases from 2.6 to 9.1 times for the given set of benchmark

circuits.

Table 5 shows simulation results in sec per 10 000 test patterns for the

benchmark family of RISC-processors given as RT- and gate-level AG-models.

The universal simulator is capable of uniformly simulating both high- and low-

level models. On the other hand, the dedicated logical simulator is faster. Two

types of binary AGs were used — gate and compressed macro ones.

6. CONCLUSIONS

This paper has described a hierarchical test generation system based on using
alternative graphs. Differently from known methods, both higher and lower level

design abstraction levels, and both control path and data path were handled by
uniform fault models and uniform fault propagation methods. The fault model

defined for an AG can be regarded as a generalization of the gate-level stuck-at

fault model for higher level representations of digital systems. Uniform basis for

gate- and higher level descriptions easily allow us to adopt and generalize gate-

ms/pattern
(Gate) 8.5° 45.0° = 17.5° = 37.0 ° 620 110 185 360 700 750

ms/pattern

(Macro) 2.2 6.5 34 . TN 9.6 17 21 43 275 83

Time ratio
(M/G) 3.9 6.9 5.2 3.1 6.5 6.5 8.8 8.4 2.6 9.1

Table 4

Table 5

RISC8 907 0.32 14 28 2.3 6.3

RISC16 1735 0.32 29 99 4.7 11.5

RISC32 3373 0.32 75 270 9.5 22.0
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level simulation and test generation methods to higher level ones. As a result, the

complexity of the problem reduces, and the efficiency of test generation and fault
simulation increases. In comparison with gate-level test generation, the high
efficiency of the mixed-level test generator described in this paper has been

shown by experiments with the family of benchmark circuits of simplified RISC

Processors.
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DIGITAALSÜSTEEMIDE MITMETASANDI TESTIGENERAATOR

Marina BRIK Gert JERVAN Antti MARKUS Priidu PAOMETS Jaan RAIK

ja Raimund ÜBAR

On kirjeldatud automaatset mitmetasandi testigeneraatorit, mis opereerib
digitaalsiisteemide registri- ja ventiilitasandil. Siisteemrealiseerib uue ldhenemis-

viisi, mis baseerub iihtsel mitmetasandi digitaalsiisteemide diagnostilisel mudelil

— alternatiivsel graafil (AG). Seesugune ldhenemisviis voimaldab defineerida

tildise veamudeli, mis iiheselt katab korgtasandi funktsionaalsed ja madaltasandi

konstantrikked. AG-de kasutamine lubab rakendada standardseid protseduure
rikete aktiviseerimiseks, rikete levitamiseks ja loogikavorrandite lahendamiseks

molemal tasandil. Siisteem koosneb eraldiseisvatest testigeneraatoritest andme-

osa ja juhtosa jaoks. Molemal on sarnased vea levitamise protseduurid ja nad

erinevad teineteisest ainult iildiste testiplaanide iilesehituse poolest. Eksperi-
mendid kinnitavad kisitletud lihenemisviisi efektiivsust.
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