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Abstract. The fault coverage of a random test can be estimated by fault simulation. If the

simulation is performed by a random sequence differing from those used under test or a fault

sample, a random difference between the simulation result and the fault coverage has to be

considered. The simulation result must exceed the fault coverage that has to be guaranteed. The
difference is called a guardband. In this paper, the distribution of the fault coverage and that of the

difference were derived by the mathematical model of independently detectable faults. Then it was

verified using experimental data. The comparison between theory and experiment has unveiled

features of the random test which were neglected in the past. However, the correlations in the fault

detection process cannot be ignored in determining guardbands. As the final result, relations for

guardband calculation are given.
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1. INTRODUCTION

The most important parameter of a digital test is the fault coverage. It is the

fraction of detectable faults from a set of assumed faults. Using random patterns
as stimuli, the fault coverage depends mainly on the number of unique test

patterns and less on the test patterns themselves. However, it is a random

variable.

The aim of the paper is to study what kind of fault coverage can be

guaranteed if the fault simulation has been performed with randomly selected

input patterns, differing from those used under test. This question is interesting
in practice. Random patterns are often used in self-test functions, but also in low

cost test systems. Defining the test only by the number of test patterns has many
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advantages over the alternative, computing, storing and processing a large
quantity of deterministic patterns ["*]. For the test of a circuit under operation,
the input patterns are not known in advance. The fault simulation with an

appropriate sample of patterns is the only way to estimate the fault coverage. In

many applications, it is not enough to know the average fault coverage. The

value that can be guaranteed is required. An akin situation arises, if the fault

simulation has been done with a sample of faults. Simulation result and fault

coverage differ by a random amount, and a lower bound has to be guaranteed for

the fault coverage.
The term guardband has been taken from analogue testing. Testing a

parameter, e.g., voltage, the measured value must be better than the value that

should be guaranteed by the test [3]. The difference, the so-called guardband, is

necessary to reduce the probability that noise and other disruptions during
measuring will cause bad devices to be classified as good ones. The problem
with the fault coverage is akin. The fault coverage should not be lower than a

given bound. Otherwise, the number of bad devices classified as good ones will

be too large.
A guardband calculation needs the distribution of the parameter under

investigation. Section 2 develops a mathematical model to calculate the

distribution, the mean value and the variance of the fault coverage out of

detection probabilities. Basic features are discussed. Section 3 deals with the

guardband size.

2. DISTRIBUTION OF THE FAULT COVERAGE

The detection probability pi(1) of a fault i is the probability that the fault will

be detected by a single randomly selected input pattern. More detailed and more

general explanations can be found in ['**’]. To calculate the detection

probabilities p;(n) for a sequence of n input patterns, generally, the binomial

model is used. A fault will be detected by n input patterns if at least one of the

input patterns detects the fault

pin) =l-(1-p(1)". (1)

Equation (1) can be simplified

pi(n)=l-e™"% with ¢, =-=In(1-p;(1)) 2 p;(1). (2)

For small detection probabilities it is

p;(n) =l-e770 (3)

In the context of guardband calculation, the fault coverage is a random

variable. By chance, it can take values between zero and one. To distinguish the
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random variable fault coverage from an exactly known fault coverage, the Greek

letter & will be used.

Here is our new idea. We introduce auxiliary random variables, one for each

fault 7 that should be one if the fault is detected and zero if it is not detected. The

idea behind this is that the fault coverage is the mean value of these auxiliary
variables

£lr)=372250
where M is the number of assumed faults. The distribution of each of the

auxiliary variables ¢;(n) is

P(.(n)=0) = 1-p,(n) faultundetectable,

P i (n) =1) = p;(n) fault detectable.

Theirmean values are equal to the detection probabilities

E(Ci("))= Pi(n)-

The variance is

D*(,(n) =l~ p,(n))- p,(n).

The following presupposes that the faults in the circuit are detected

independently of each other. Properly speaking, it is not true. Many faults share

control and observation conditions. Resulting from that, the same logical values,
at least at a part of the inputs, are eligible for fault detection. On the other hand,
it would not be possible to calculate the distribution of the fault coverage
without this assumption. Additional probabilities would be needed: a probability
that fault i is detectable if faultj is (un)detectable. Those data are not available.

Therefore, first, the model of independently detectable faults is used. Second, the

resulting equations are verified by experiments.
A fast algorithm to calculate the distribution is shown in Fig. 1. Taking the

distribution of M=i faults and the detection probability of fault i+ 1, the

distribution of M =i + 1 faults is calculated. The starting distribution is that of

the auxiliary random variable for the first fault ,(n) with the realizations zero

and one. From this, the distribution of the first and the second fault

P(M:%) with the realizations %e {o,l/2, 1}

is calculated, ...
The calculation time of this algorithm grows with the square of

the number of faults.

(4)

(5)

(6)

(7)
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The example in Fig. 1 shows that the fault coverage converges to a normal

distribution with a growing number of faults. A proof presupposing
independently detectable faults can be found in [°]. Figure 2 shows the fault

coverage of a larger combinational circuit with stuck-at faults. It is also nearly
normally distributed.

The mean value of a sum of independent random variables is the sum of the

mean values of the summands. The fault coverage is the mean value of the

auxiliary variables { (n) . Thus, the sum has still to be divided by the number of

assumed faults

BE) = pln) =123 e

Distribution for 1 to 3 faults

P(,(n)=0)=1-p,(n) pi(n)=0.6 1 py(n)=0,5 |
=0.6PEi(n)=1)= pi(0) )

0.6 —— yy
0.4 I H1 fault

DO fori=2toM
02 | N S l § 2 faults

2R | Nl 13 faults

P(;(n)=0)=P(;_,(n)=0)-(1- p;(n)) 0 AA

0 1 2. 3m

P(;(n)=1)= P, (n)=1)- p;(n) Distribution for 6, 14 and 26 faults

DO for m=1 to i—-1 p;(n):2x0.5; 0.6; 0.7; 2x0.8 | 3x0.4;

3x0.7; 0.8; 0.9 10.4; 3x0.5; 6x0.8; 2x0.9
mHaw=2)-

P[ši—l (”)='l.’f—1)'(1" pi(n)) |04
:

—
m-1

0.2 ;
I

; 26 faults

i P[ši—l (n)=-——). p;(n) 0
A 14 faults

-1
0

6 faults
10 20

OD
m

OD

Fig. 1. The algorithm to calculate the distribution of the fault coverage with examples ; (n) -

distribution of the fault coverage for i faults; p;(n) — detection probability of fault i/; m — number of

detectable faults; M — number ofassumed faults; n» — number of test patterns.

(8)
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The variance of the sum of independent random variables is the sum of the

variances of the summands. For the fault coverage, the mean value of the

auxiliary variables (n) is

DXEm)=~l-3po)(-p o)
Without knowing the single detection probabilities, an upper bound of the

variance can be given. If all detection probabilities are equal, the variance is

maximal:

D*E(n))<—ElE(n))-(-EE(n)).
Equation (10) has been derived as follows.

Let us substitute all detection probabilities by the sum of the mean value and

the difference:

M M

p.(n)=EEMn)+B, with E(E(n))= %z pi(n) and Y&, =O.

i=l i=l

Inserting this in (10), we obtain

Fig. 2. Fault coverage of the benchmark circuit ¢3540 [’] (result of a fault simulation with 1,000
different random sequences; number of faults M= 3,605; n — number of test patterns; m — number
of detected faults).

(9)

(10)
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Equation (10) allows to measure the effect of correlations in the fault detection

process. Let us introduce a parameter &:

e——M
:D*(E(n))

EG(n) (-ECM)

According to Eq. (10), € cannot be larger than one for uncorrelated faults.

However, it can exceed the bound if interdependencies in the detection process
exist. The following train of thought will illustrate this. Let us assume that the

number of faults for a given circuit has been doubled by listing or counting each

fault twice. This corresponds to a fault set with multiple pairs of equivalent
faults or faults that will be detected always simultaneously. The trick will change
neither the mean value of the fault coverage nor the variance. Only the number

of assumed faults M doubles. Thus € becomes larger than a set of independent
faults. Obviously, by a further increase of the number of equivalent faults, € may

become larger than one.

Column 4 in the table shows the values of € for the experiment in Fig. 2.

Although of each class of equivalent faults only one has been used, the numbers

look as if multiple faults would have been detected in each random sequence

with the same pattern.

Fault simulation withall | Fault simulation witha | Fault simulationwith a

3,606 stuck-at faults sample of 1,000 faults sample of 300 faults

n E(š("»» 'Dz(š(n)), € E(š("))» JDZ(š(n))' €
E(š(")), h)z(š(")), €

% % %0

% % %

160 88.5 1.28 5.8 88.2 1.41 1.9 89.6 1.87 1.1

320 93.5 0.88 4.6 93.2 1.04 1.7 94.6 1.42 1.2

800 97.6 0.48 33 97.5 0.63 1.6 98.4 0.76 1.1

1,600 99.2 0.20 1.8 99.2 0.28 1.0 99.7 0.36 oAt

3,200 99.7 0.08 0.8 99.7 0.11 0.4 99.9 0.11 1.0

6,400 99.8 0.05 0.5 99.8 0.08 04 100 0 -

Mean value, standard deviation and ¢ for a complete stuck-at fault set and for two fault samples
(circuit ¢3540 [7], simulations with 1,000 different random sequences)

(11)
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With a growing test length and a growing fault coverage, the inter-

dependencies decrease. All faults with high detection probabilities are detected

almost by each random sequence of the corresponding test length. They do not

contribute to the variance. Between the faults harder to detect are probably also

some interdependencies left. But the effect of the safely detectable faults

outweighs them.

3. GUARDBANDS

The fault coverage of a test set is a quality parameter, a manufacturer’s

guarantee. It must be at least as large as a given lower bound FC,;, However,
the fault coverage is a random variable which can take a value between zero and

one by chance. This leads to a one-side interval estimation

PE<FC,. )<a,

where « is the error probability.

3.1. Simulation with another random sequence

The fault coverage will be determined by a fault simulation with a random
sequence different from those used under test. The number of random patterns
should be the same. In this case, the simulation result and the fault coverage are

two independent random variables with the same distribution. The variance of

the difference of two independent random variables is the sum of the variances,
and it doubles. The standard deviation as the square root of the variance

increases by the factor \/5 .
As shown in the last section, the fault coverage is often nearly normally

distributed. Thus, also the difference is normally distributed. The guardband for

a normal random variable must be about two to four times larger than the

standard deviation. Multiplied with V 2 , the guardband between the simulation

result and the fault coverage that can be guaranteed must be about three to six

times larger than the standard deviation. Using the relation between the variance

and the mean value in Eq. (11), the guardband has tobe

sz.,/%.E(g(„)).(l-zs(g(„))) with o =®(=k),

where € is the parameter to describe the interdependencies; ®(—k) is the value of

the standardized normal distribution.

(12)

(13)
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3.2. Simulation with a fault sample

The simulation with a fault sample has reduced simulation time. In return, the

variance of the simulation result is higher. The distribution becomes broader and

flatter (Fig. 3).
The guardband size depends upon whether the simulation is performed with

the same or with a different random sequence than the test. Using different

random sequences, the simulation result and the fault coverage are two

independent random variables. The variances add. Using the upper bounds for

the variances, the guardband has to be

P e

where M, is the size of the fault sample; & is &-value of the fault coverage for the

fault sample. If the size of the fault sample M; is equal to the number of all

assumed faults M, Eq. (14) is equal to Eq. (13).

Fig. 3. Distribution of the fault coverage of different samples of stuck-at faults (circuit ¢3540 []
simulation with 1,000 random test seguences per fault set).

(14)
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If the fault simulation is performed by the same random patterns as the test,

the simulation result is already the exact coverage for M, of M faults. This

fraction does not contribute to the variance of the difference. In comparison
to Eq. (14), the variance of the difference is smaller by the root of the factor

(M - M)IM

G 2 M (e )0~£6O)

For a small fault sample M, << M, the variance of the fault coverage can be

neglected. The summand &M is much smaller than the summand &/M;, and the

factor (M — M)/M in Eq. (15) is close to one. The required guardband for small

fault samples 1s

G, = k-de—*”s-E(—ž(n))-(l—E(—ž(n))).
Equation (16) gives the impression that the guardband must be increased

conversely proportional to the root of the number of simulated faults. The real

proportions are much better. The table shows also the mean values and the

variances of the simulation with fault samples. The increase of the variance is

much smaller than it could have been expected according to Eq. (16). With the

reduction of the size of the fault sample, the parameter € also becomes smaller.
The parameter € has been introduced to quantify the interdependencies in the

fault detection process. The more fault assumptions are distributed in a given
circuit, the more interdependencies are to be expected and vice versa. The reason

is obviously that the number of control and observation paths is limited in a

circuit. Many assumed faults must share control and observation conditions. It

means that similar input patterns will detect them. The variance does depend less

on the total number of faults but more on the number of groups of similar

detectable faults. The number of those groups is limited by the circuit structure.

Selecting a fault sample reduces mainly the number of similar detectable faults

within the groups and not so much the number of groups. Thus, the variance is

less effected. Naturally, this explanation is simplified. Further investigations are

required to understand the phenomenon of interdependencies in the fault

detection process better.

The parameter € is also a measure of the efficiency of the fault simulation.

The fault simulation costs simulation time depending on the number of assumed

faults. The profit is the information gain about the fault coverage which is

conversely proportional to the standard deviation. A conclusion is that a

complete fault simulation does not repay. The reduction of the standard

deviation is not related to the increase of the number of simulated faults. A fault

simulation with a fault sample is more economical.

(15)

(16)
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SUMMARY

The fault coverage of a random test is a normally distributed random variable.

An upper bound of the variance, which depends on the mean value and the

number of assumed faults, has been found. This bound holds if all assumed

faults are independently detectable. Interdependencies in the detection process
increase the variance far beyond this bound. Thus, interdependencies can be

quantified and measured by simulation experiments.
The guardband is the maximum difference between the result of the fault

simulation and the fault coverage of the test. Both the simulation result and the

test result are random variables. The variances add. The final result is that the

guardband must be approximately

G LD result:(—simulationresult)ä

numberofsimulatedfaults |

In particular, if a fault coverage close to 100% has to be guaranteed, the required
guardband is large in comparison to the allowed difference of 100%. It is

because the guardband reduces only proportional to the root of the term

(1-simulation_result).
An interesting conclusion is that the guardbands for fault samples increase

much less than conversely proportional to the root of the number of simulated

faults. Reducing the number of faults, the factor before the root also becomes

smaller. It is because there are less interdependencies in a fault sample than in a

complete fault set. Thus, it appears to be more efficient to perform a fault

simulation only with a fault sample and not with the complete fault set.
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STOHHASTILISE TESTIMISE VARUTEGUR

Giinter KEMNITZ

Stohhastilisel testimisel saavutatavat veakatet on vOimalik hinnata vigade
simuleerimisega. Kui simuleerimine on tehtud mone testimisel mittekasutatud

stohhastilise jadaga voi kasutades vigade etteantud jaotust, tuleb arvesse votta

stohhastilist erinevust simuleerimise tulemuse ja veakatte vahel. Simuleerimise

veakatte protsent peab olema suurem noutavast protsendist. Seda erinevust

nimetatakse varuteguriks. Soltumatult tuvastatavate vigade matemaatilise mudeli

pohjal on tuletatud veakatte ja varuteguri jaotused. Hiljem on seda lihenemist

korrigeeritud katsetulemuste pohjal. Teoreetiliste tulemuste ja katsetulemuste

vordlus avab stohhastiliste testide omadusi, millele varem pole tdhelepanu
pooratud. Varuteguri kindlakstegemisel ei saa jitta tihelepanuta korrelatsioone

vea avastamise protsessis. On esitatud avaldised varuteguri arvutamiseks.
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