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Abstract. In the paper several different modifications of an adaptive Fourier anayser are
considered presenting simulation results on transients of the analyser’s fundamenta frequency and
output signal. The results permit to compare convergence properties of these modifications and to
choose and optimize a proper modification for different applications, including such an extension
of the anayser, which processes composite signals consisting of several periodic signals of
different waveforms and (not harmonically related) frequencies.
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1. INTRODUCTION

In the process of development of the analyser for the reproduction and
analysis of signal’s periodic components of different frequencies and waveforms
by means of extension of a block-adaptive Fourier analyser (BAFA), severad
problems have arisen [*?]. The most serious oneis that in certain cases the output
signal’ s transients (oscillations) appear to be huge compared to the signal. It has
been supposed that this difficulty may be overcome by making changes in the
structure of the analyser. In this paper, we consider several modifications of an
adaptive Fourier analyser (AFA) and give a comparison of their practical
convergence properties presenting transients of the analyser’'s fundamental
frequency and signals. These results form a basis for picking out the AFA, which
is the most suitable for processing periodic signals with clearly dominating
higher harmonic components (so that the level of output signals and the
frequency convergence speed are both acceptable). We suppose that extending
such AFA one can obtain a better tool for processing composite signals with
several periodic components of not harmonically related frequencies.
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In the following we outline basic features of AFAs and describe the
performed computer experiments and their objects. Finally the obtained results
and conclusions are presented.

2. PRELIMINARIES
2.1. Basic structure of the adaptive Fourier analyser

The observer-based methods for recursive discrete transformations of periodic
signals have been developed by Hostetter [**] and Péceli [*]. The resonator
structure proposed in [*] and shown in Fig. 1 isused in severa different adaptive
Fourier analysers and it is characterized by the state equations

)A((k+1)=>A((k)A+g(k)-[x(k)—>A<(k)], (1)
(k) =c' (k) - X(K),
where
x(k)= X (™ (j=v-1)
e s
estimation |~

Fig. 1. Block diagram of an adaptive Fourier analyser.
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is the current value (the kth sample) of the assumed band-limited periodic input
signa of the angular frequency ®; X(k) is the estimate of x(k) found by the
analyser; X(K)=(X_ (K), X_,1(K), -y Xo(K), X1 (K), .., X, (K))T is the state-
vector and its element X, (k) (with theinitia value X, (0) =0) isthe estimate of
the input signal’s complex Fourier coefficient X, (k), —L<I<L, where L is
the number of the harmonic component in X(k) and N = 2L +1 is the number of
resonators in the basic observer structure and also the length of the vectorsin (1);
c(k) = (c_, (K),c_1(K),....Co(K), C; (K), ....c, (K))" is a vector of frequency-
dependent time-varying coefficients, i.e., signals, which are modulated by
corresponding Fourier coefficients in X(k) to obtain components of the output
signa X(k). The elements of c(k) are such that

cq(K)=c(k-1z, z=€e ¢(0)=1 2

where @, the fundamental angular frequency of the analyser (its output signal
X(k)), isan estimate of the input signal’ s angular frequency .
In EQ. (1) the vector g(k) can be written as

9(k) = (9 (K), 9.1 (K), -, o (K), 91 (K), .., 9 (K))'

and it can be considered as a vector of signals, which are used to demodul ate the
error signal g(k) = x(k) — X(k). One can use different frequency-dependent time-
varying coefficients

9, (k) =(Gc (K) ™. )
In this paper we consider the next two cases:
G =N, (4)

which is used in AFA [?] and leads to infinite but quite fast decaying transients,
and

G :rfl:'[[l_(l_ z-77), 5)

i=l

which is applied in the BAFA ['] to make the observer a dead-beat one with the
length of transients not exceeding N time-steps.

The mentioned output signal’s transients appear due to changes in the input
signal or as aresult of updating @ and also the vectors c(k) and g(k). In the
updating process, @ obtainsanew vaue

6y =6+ AG, 6)

where Ao isthe estimate of the error Aw = — @. Thelength N of the vectors
in (1) changestoo asL isaways updated so that
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76 -1<L<x/d (7)

holds. If N increases, then X(k) isappended with zerosand c(k) with ones.

_ After setting @ =, the transient process tends towards X(k)=x(k) and
X, (k)= X, (k) for  =—L,—L+1,...,L with L=M. Incaseof @ #® onehasto
find A@ and to update @ and all the frequency-dependent parameters of the
analyser according to Egs. (2)—7).

2.2. Estimation of the frequency error

_ Theerror estimate A@ isfound using the fact that the first Fourier coefficient
X;(k) can be considered as a vector in the complex plane and, when the
transients have decayed, this vector rotates in case of @ # @ with an average
speed of Aw. Its actual rotation speed is Aw + Awy(K) where Aoy (K) isasum
of periodic disturbances caused by other Fourier components of the signal x(k).

The estimate A@ can be found in different ways.
1. Inthe AFA [°]

AG(K) = £ (X, (K)/ X, (k—1))/N(K) 8)

and it is used for frequency updating in every time-step in spite of disturbing
infinite transients (here and further £(X) denotes the angle of the complex
vector X). These transients compensate each other partially and their summary
influence is suppressed by means of implicit averaging over N(k) samplesin the
updating process.

2. Inthe BAFA ['], the block-adaptation is applied and the error estimate

AG =2 (X, (K)/ Xy (k—P))/P 9)

is found during P +1 time-steps and only after the finite transient processes of
length N (caused by previous frequency updating) have ended.

3. The paper []] recommends to use instead of (9) a more general and
potentially more efficient error estimation

Ad =2 (Xyg(K)/Xyg (k= P))/P, (10)
where
R (=13 X, (k- b) 1)
' B

is a conditioned (averaged) estimate of the signal’s first Fourier coefficient
vector.

The above three approaches use averaging to suppress disturbances and
assume that the input signal’s waveform and frequency do not change or change
slowly enough. Some simple considerations allow us to hope that in case of
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P=B~N, Eqg.(10) is time-optima and gives up to twice faster frequency
convergence than (9), i.e., (10) with P~ N, B=1.

3. SET-UP OF EXPERIMENTS AND INVESTIGATED ANALYSERS

In our experiments we used different analysers with zero initial states and
with varied values of their parameters to perform analysis of several signals of
the frequency @ =0.2. The relative error 5, = Aw/w of the analyser’s initia
frequency @ was +0.15 or —0.15. We found the times t, and t,, which were
needed to achieve the output signal’s frequency error levels |5,/=10"" and
|6,|=10"*, respectively. These times were found for every input signal (and for
al the used parameter values, i.e., for the tunings of the analyser) and often
averaged over the set of randomly chosen initial phases of the input signal. The
normalized times t, /T and At/T, where T =27/ and At=t, —t; (whichis
not influenced by large initial frequency error), characterize thus practical and
nearly asymptotic convergence of a.

The band-limited discrete-time periodic signals, which were used to estimate
capabilities of the analysers, are presented in Fig. 2. These signals are formed
according to their Fourier series by means of a generator based on the conceptual
model of the signal assumed in the analyser’s structure (1). This numerical
generator forms its output signal as a sum of chosen periodic signals of the
waveformsin Fig. 1 and of a direct component of a given value (a random noise
can be added too). As we are interested not only in improving the Fourier
analysers but also in improving the extended Fourier analysers, which process
signals consisting of several periodic components of different waveforms
(spectra) and (not harmonically related) frequencies, we have to use aso test
signals like signal 6, where higher harmonic components exceed the fundamental
one significantly. The influence of these higher harmonic components is similar
to the influence of the higher frequency periodic components in the extended
analyser.

First we consider and compare the properties of the following modifications
of such (step-)adaptive Fourier analyser, which finds A@ and updates & and the
analyser’s frequency-dependent parameters (see Egs. (2) and (3)) in every time-
step.

RA — the robust AFA, which computes g(k) using (4) and finds Aw
according to

Ad(K) =D £ (X (K)/ X, (k =1)/N(K), (12)

where D is a damping factor (0< D <1), which is introduced to improve the
precision of A®, performing implicit averaging of the angle /() over D*
times longer interval than in (8).

IRA — the improved robust AFA, which also computes g(k) using (4) and
finds
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(9) Signd 7

Fig. 2. Plots of periodic band-limited discrete-time signas used to test modifications of the
analyser.
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Ad(K) =D £ (Xyg(K)/Xya(k—D)/N(K), (13)

applying vector conditioning (9).

In order to make the AFAs capable to analyse periodic signals where
components of higher frequencies dominate, we had to avoid possible
convergence of @ to higher harmonic frequencies in case of significant (initial)
error Aw. This is done (like in the extended BAFA [*?]) by means of the
frequency updating process with the bounds @, and @, setfor @, :

if o, <d®+Ad<awy then &, =d + Ad otherwise @, = (@ +®)/2. (14)

Later we consider characteristics of block-adaptive Fourier analysers: RBA —
the robust BAFA, in which g(k) is updated according to (4) and DBA — the
dead-best (observer based) BAFA, in which g(k) isupdated applying (5).

In these analysers frequency estimation is performed only after passing
optimal settling-time (which is equal to N sampling intervals not only in the
dead-beat BAFA[] but aso in the robust BAFA) since previous
frequency/parameters updating. In both, RBA and DBA the error Aw is
estimated applying (10) and (11) and using different coefficients C, and C, to
determine the values of the parameters B =cell (C,L) and P=ceil (C,L) (here
ceil (y) isthe smallest integer >y > 0).

As we have computed the (frequency) convergence-time surfaces t,(C,,C,) ,
t,(C,,C,) and At(C,,C,) of these analysers and cleared out their local/global
minima patterns for several signals[’], we present in this paper convergence
times along some more interesting lines of these surfaces (found by averaging
greater sets of simulation results). Using the parameters from these lines is later
considered applying the following frequency error’ s estimation methods:

— the angle enlarging method AE uses C,=L"" (i.e. B=1 in (11)) and

C,=C;
— the vector averaging method VA uses C, =C and C, =L"" (i.e. P=1in
(10));
— the combined methods:
method VA&AE uses C, =C, =C (in the DBA the minimum is on or
near thisline);
method VA<AE uses 4C, =C, =C (in the RBA the minimum can be
on or near thisline).

4. SIMULATION RESULTS
4.1. Experiments with (step-)adaptive Fourier analysers
The experiments with the RA, some results of which are presented in Fig. 3,
showed that for the signals 1-5 (with 1/f-type or faster decreasing spectrum)

transients of the frequency @ are time-optimal (i.e. have maximal average con-
vergence speed found as a change of 20Ioglo|(5w| indB per T) in the neighbour-
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Fig. 3. Convergence of the module of the relative frequency error |(>‘w| in the robust adaptive
Fourier analyser; |5@| isgivenin alogarithmic scale; theinitial error is ¢, = 0.15.

hood of D=2/3 or even D =3/4 (signals 3 and 7). Frequency transients in the
origina robust AFA [®], which uses D=1, were more oscillating (with
significant frequency overshooting), but the golden section ratio D = 0.618 gave
us already aperiodic transients of .

Let us consider the frequency transient processes in more detail in case of signd
6, severa higher harmonic components of which exceed the fundamental one
significantly and make it impossible to analyse this signal in AFA[?] and
BAFA [']. Figure 4 shows that using the introduced parameter D, one can make
the RA capable to process such periodic signals too. Of course, the convergence
speed of the error |5,| (in dB per T) in the time-optimal frequency transient
process (achieved using D ~ 0.45, see Fig. 49) is then more than 3.5 times slower
than that for the other signals (see Fig. 3). Increasing of D makes the convergence
slower after achieving |5,|~0.01 andthe error's tendency to diverge becomes
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Fig. 4. Convergence of the relative frequency error 6, of the reproduced signal 6 in the robust
adaptive Fourier analyser; |5w isgivenin alogarithmic scale; theinitial error is 6, = 0.15.
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apparent above the level D =0.588. Figure 4 demonstrates also the behaviour of
o, intime-optimal and close-to-aperiodic (D =0.382) transient processes.

The IRA applies vector conditioning to improve frequency error estimation
and to speed up frequency convergence in case when the analysed input signal
contains dominating higher frequency components. All the results presented in
the following have been obtained applying vector conditioning over T, i.e
B=N in (11), which ensured time-optima convergence of the frequency @
to w.

Our experiments (see Figs. 5 and 6) showed that in the IRA time-optimal
frequency convergence can be achieved using values of D chosen from the
neighbourhood of 0.382 (the square of the golden section ratio), i.e
1/3<D<2/5, and D =1/3 ensures for most signals aperiodic transients of .
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Fig. 5. Convergence of the relative frequency error &, in the improved robust adaptive Fourier
analyser (IRA) where B= N isusedin (11); the curves &, of thesignals 1-5 and 7 are very close
to each other; |§w| isgivenin alogarithmic scale; theinitial error is 6,, = 0.15.
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Fig. 6. The normalized average (frequency) convergence times t; /T and At/T vs the damping
factor D for the improved robust adaptive Fourier analyser (IRA) where B= N in (11); the times
have been averaged over 60 experiments: 30 different randomly chosen initial phases of the input
signa were used and signa analysis was performed starting from initial frequencies @ with the
errors 6, =+0.15 and §,, = -0.15.

In case of signals 1-5 and 7, the optimal value D =0.35 leads to twice slower
and in case of signal 6 the optimal D =0.382 leads to nearly twice faster
frequency convergence as compared to the time-optimal frequency convergence
inthe RA. In case of signal 6, nearly time-optimal transients of @ oscillatein the
beginning but become later aperiodic; purely aperiodic transients are achieved
below thelevel D =1/3.

Figure6 presents one main result: the curves of normalized average
convergencetimes t,/T and At/T vs D for the test signals 1-7 processed in the
IRA. As these times depend on an initial phase of the input signal, the averaging
was performed over 60 experiments, in which 30 randomly chosen initial phases
and theinitial errors 5, =+0.15 were used.

In the robust analyser IRA the convergence of @ to valuesof @, whichliein
small regions just below the values z/n (n is an integer) is slower or even
limited and Fig. 7 demonstrates that in such regions the convergence process
becomes oscillatory when a certain (slightly varying) frequency error level is
achieved. The error &, oscillates with the signal’s frequency w ~ @, at the same
time the error signa &=x-X oscillates with the angular frequency 7.
Analogous phenomenon has been observed in the dead-beat AFA too, but in
much smaller regions[™]. Figure8 shows that if the bandwidth of the input
signal is smaller (smaller than the bandwidth of the analyser, M <L), then the
critical error level (where oscillations appear) becomes lower. Thus pre-filtering
of the input signal permits only to suppress (to some extent) this phenomenon.
The latter becomes more disturbing when we try to use lower sampling rates and
to reduce in this way the amount of computations per time unit.

In the end we have to state that the dead-beat (observer based) AFA, which
uses (4) instead of (3) to update its parameters, does not suit for adaptationin
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Fig. 7. Convergence of the frequency error |5w| in the improved robust adaptive Fourier analyser
(B=N isusedin(11) and D =1/3) when  isintheneighbourhood of 7/15; |5, | isgivenin
alogarithmic scale, theinitial error is &, = 0.15.
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Fig. 8. Convergence of the frequency error |6w| in the improved robust adaptive Fourier analyser
(B=N isusedin (11)) when the input signa’s frequency @ = 0.20942 is in the neighbourhood
of 71'/15 and M, the number of formed Fourier components of the input signal, is equal or smaller
than L, the number of Fourier components computed/reproduced in the analyser; |5w| isgivenin
alogarithmic scale, theinitial error is &, = 0.15.

every time-step. It is computationally less efficient and it works much worse in
case of significant frequency errors and with signals containing more disturbing
higher harmonic components. Its frequency convergence is not worse than in the
robust AFA only in case of very small frequency errors. Vector conditioning
makes the dead-beat AFA’'s behaviour better, as it suppresses disturbing
influence of its transients and possible oscillations, which have not been noticed
in the robust AFA (see Fig. 9).
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Fig. 9. Transients in the (step-)adaptive Fourier analysers, which apply vector conditioning over the
input signal’ s period, the initial frequency error is o, = 0.15.

4.2. Experiments with block-adaptive Fourier analysers BAFA

In this section we consider the simulation results obtained with the described
modifications of BAFA: DBA and RBA. Some additiona results on these
analysers can be found in [7].

Figure 10 presents dependence of the normalized convergencetimes t, /T and
At/T on the parameter C for two signals analysed in the DBA. In the plotsin
these figures the convergence time curves are given for three block-adaptation
methods (frequency error estimators) of interest. These curves have several local
minima, which correspond to the signal’s period and significant abrupt changes
in the signal’s waveform [?].

One can see that in the DBA the VA&AE method gives, in spite of two times
longer error estimation cycle, up to two times shorter convergence times compared
to the AE or VA method. It is more efficient 1) in case of small frequency errors
(the plots of At/T in Fig. 10), 2) in case of signa 1 and aso signa 2 with b=,
which both have even spectrum lines equal to zero (see[%]), and 3) in case of the
signal 6 with dominating higher harmonic components (Figs. 10c, d, eand f).

It appears that the VA&AE method is, in general, most efficient if
B~ P~ceil(27/w), but in case of signals, even spectrum lines of which are
zero, B~ P~ ceil (z/@) gives better results.

In the RBA transient processes do not decay in N steps as in the DBA and
thus its frequency convergence speed (see Fig. 11) is about 2/3 of that of the
DBA (see Fig. 10), but greater than in the IRA (Fig. 6) for all the used signals. In
this analyser the VA<AE method with 4B~ P ~ ceil (2z/@®) and the AE method
with P~ ceil (27/®) are optimal for the signals 14 (the VA<AE method with
B~ 4P ~cel(2z/@) and the VA method with P~ ceil(27/®) are slightly
worse). However, the VA&AE method appears to be the best for processing the
signal 6 with dominating higher harmonic components and it is time-optimal in
case of B~ P~ ceil(27/w) asinthe DBA.
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Fig. 10. The frequency convergence times t, /T and At/T vs C for the dead-best BAFA (DBA);
the times have been averaged over 60 experiments: 30 randomly chosen initial phases of the input
signal and the initial frequencies & with the errors §,, = £0.15 were used; processing the signal 6

the AE- and VA-method could not achieve the error level |a‘w 10"

in al the 60 experiments

for several values of C (broken curvesin the plot (d), see aso (f)), but the VA & AE method with

C >1.5 achieved thislevel in dl the experiments.
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Fig. 11. The normalized frequency convergencetimes t, /T and At/T vs C for the robust BAFA
(RBA). These times were found as those in Fig. 10 computing with 3000 time-steps; processing the
signal 6 (with dominating higher harmonic components) the VA & AE method with C > 1.5 works
perfectly (achieves the frequency error level |§w| =10 ¥ in dl the 60 experiments), the VA<AE
becomes reliable when C > 2.2, the AE and VA are worse.

Figure 12 permits to compare, how the transient times t, /T and t, /T depend
onthe input signal’s frequency @ inthe analysers DBA and RBA. Inthe RBA
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Fig. 12. Averaged transient times t; /T (continuous curves) and t, /T (dotted curves) vs o for
the analysers DBA and RBA with C, =C, = 2.1, these times have been averaged over 20
experiments where an input signal of a randomly chosen initial phase was used; the verticals
correspond to the frequencies o = ;r/ n (n—integer), theinitial error &, = +0.15.
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Fig. 13. Transients in the block-adaptive Fourier analysers, which apply the VA&AE method with
optimal C = 2.15; theinitial frequency error is 6, = —0.15.

this dependence is nearly the same for the signals 1-5 and 7, and for all the
signals there are clear sharp minima on the frequencies r/(n+0.5). In the DBA
this dependence is more influenced by the signal’s waveform and minima of
transient times lie just above the frequencies z/n. The regions of bad
convergence, which lie below the lines w=7z/n and were considered in
Section 4.1, are very small for the dead-beat analyser, but quite remarkable for
the robust analyser, especially in case of the signal 6 (due to its dominating
components of higher frequencies). Thus Fig. 12 generalizes the results shown in
Fig. 7 and shows that a properly chosen sampling rate can reduce the
convergence time up to 30 per cent (the peaks below the values w = 7 /n can be
suppressed by means of pre-filtering of the input signal).

Last but not least, in the RBA, we have not observed oscillations of the
angular frequency = met intransientsin the DBA (see Fig. 13).

5. CONCLUSIONS

The obtained simulation results permit to state the following.

1. Introducing the damping factor D <1 into the robust AFA (its frequency
error estimator) one can a) improve average frequency convergence speed of the
analyser up to 20 per cent and b) make the analyser capable to process signals
with dominating higher harmonic components.

2. To perform efficient analysis of signals with dominating higher harmonic
components one has to suppress disturbances in the frequency error estimator of
robust or dead-beat AFA (and also BAFA) applying conditioning/averaging of
the 1st Fourier coefficient vector (over the signal’s period T) and performing
thus more computing operations per sample.

3. The frequency convergence time characteristics (t,/T and At/T vsthe error
estimator’s parameters), computed for different analysers (signals), can be used to
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find proper or even optimal anayser parameters for solving certain signa
processing tasks.

4. The undesired significant oscillations (which appear in transients in dead-
beat analysers and become often very disturbing in the extended BAFA [?]) have
not been observed in robust analysers. Thus we can suggest that it would be
better to extend a robust analyser for processing composite signals, which consist
of periodic components of different (non-harmonic) frequencies and waveforms.
Presumably the robustness makes the analyser more reliable.
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Siirdeprotsessid adaptiivsetes Fourier’ anallisaatorites

Ants Ronk jaUlle Voolaine

On kasitletud méningaid adaptiivse Fourier’ anallsaatori modifikatsioone
ning esitatud rida simuleerimistulemusi, mis véimaldavad vorrelda nende modi-
fikatsioonide koonduvusomadusi ja leida teatud rakenduste jaoks nii anal isaatori
sobivaim modifikatsioon kui ka selle parameetrite optimaal sed vaartused.
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