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Abstract. In the paper several different modifications of an adaptive Fourier analyser are 
considered presenting simulation results on transients of the analyser’s fundamental frequency and 
output signal. The results permit to compare convergence properties of these modifications and to 
choose and optimize a proper modification for different applications, including such an extension 
of the analyser, which processes composite signals consisting of several periodic signals of 
different waveforms and (not harmonically related) frequencies. 
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1. INTRODUCTION 
 
In the process of development of the analyser for the reproduction and 

analysis of signal’s periodic components of different frequencies and waveforms 
by means of extension of a block-adaptive Fourier analyser (BAFA), several 
problems have arisen [1,2]. The most serious one is that in certain cases the output 
signal’s transients (oscillations) appear to be huge compared to the signal. It has 
been supposed that this difficulty may be overcome by making changes in the 
structure of the analyser. In this paper, we consider several modifications of an 
adaptive Fourier analyser (AFA) and give a comparison of their practical 
convergence properties presenting transients of the analyser’s fundamental 
frequency and signals. These results form a basis for picking out the AFA, which 
is the most suitable for processing periodic signals with clearly dominating 
higher harmonic components (so that the level of output signals and the 
frequency convergence speed are both acceptable). We suppose that extending 
such AFA one can obtain a better tool for processing composite signals with 
several periodic components of not harmonically related frequencies. 
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In the following we outline basic features of AFAs and describe the 
performed computer experiments and their objects. Finally the obtained results 
and conclusions are presented. 

 
 

2. PRELIMINARIES 
 

2.1. Basic  structure  of  the  adaptive  Fourier  analyser 
 
The observer-based methods for recursive discrete transformations of periodic 

signals have been developed by Hostetter [3,4] and Péceli [5]. The resonator 
structure proposed in [5] and shown in Fig. 1 is used in several different adaptive 
Fourier analysers and it is characterized by the state equations 
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Fig. 1. Block diagram of an adaptive Fourier analyser. 
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is the current value (the kth sample) of the assumed band-limited periodic input 
signal of the angular frequency ;ω  )(ˆ kx  is the estimate of )(kx  found by the 
analyser; T

LLL kXkXkXkXkXk ))(ˆ...,),(ˆ),(ˆ...,),(ˆ),(ˆ()(ˆ
101+−−

=X  is the state-
vector and its element )(ˆ kX l  (with the initial value )0)0(ˆ

=lX  is the estimate of 
the input signal’s complex Fourier coefficient ),(kX l  ,LlL ≤≤−  where L  is 
the number of the harmonic component in )(ˆ kx  and 12 += LN  is the number of 
resonators in the basic observer structure and also the length of the vectors in (1); 

T
LLL kckckckckck ))(...,),(),(...,),(),(()( 101+−−

=c  is a vector of frequency-
dependent time-varying coefficients, i.e., signals, which are modulated by 
corresponding Fourier coefficients in )(kX  to obtain components of the output 
signal ).(ˆ kx  The elements of )(kc  are such that 

 

,)1()( lll zkckc −=    ,ˆlj
l ez ω

=    ,1)0( =lc                          (2) 
 

where ,ω̂  the fundamental angular frequency of the analyser (its output signal 
)),(ˆ kx  is an estimate of the input signal’s angular frequency ω . 

In Eq. (1) the vector )(kg  can be written as 
 

T
LLL kgkgkgkgkgk ))(...,),(),(...,),(),(()( 101+−−

=g  
 

and it can be considered as a vector of signals, which are used to demodulate the 
error signal ).(ˆ)()( kxkxk −=ε  One can use different frequency-dependent time-
varying coefficients 

 

.))(()( 1−
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In this paper we consider the next two cases: 
 

,NGl =                                                      (4) 
 

which is used in AFA [6] and leads to infinite but quite fast decaying transients, 
and 

 

∏

≠

−=

−−

⋅−==

L

li

Li
lill zzrG ),1( 11                                  (5) 

 

which is applied in the BAFA [7] to make the observer a dead-beat one with the 
length of transients not exceeding N  time-steps. 

The mentioned output signal’s transients appear due to changes in the input 
signal or as a result of updating ω̂  and also the vectors )(kc  and ).(kg  In the 
updating process, ω̂  obtains a new value 

 

,ˆˆˆ new ωωω ∆+=                                                 (6) 
 

where ω̂∆  is the estimate of the error .ω̂ωω −=∆  The length N  of the vectors 
in (1) changes too as L  is always updated so that 
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ωπωπ ˆ1ˆ <≤− L                                              (7) 
 

holds. If N  increases, then )(ˆ kX  is appended with zeros and )(kc  with ones. 
After setting ,ˆ ωω =  the transient process tends towards )()(ˆ kxkx =  and 

)()(ˆ kXkX ll =  for LLLl ...,,1, +−−=  with .ML =  In case of ωω ≠ˆ  one has to 
find ω̂∆  and to update ω̂  and all the frequency-dependent parameters of the 
analyser according to Eqs. (2)–(7). 

 
2.2. Estimation  of  the  frequency  error 

 
The error estimate ω̂∆  is found using the fact that the first Fourier coefficient 

)(ˆ
1 kX  can be considered as a vector in the complex plane and, when the 

transients have decayed, this vector rotates in case of ωω ≠ˆ  with an average 
speed of .ω∆  Its actual rotation speed is )(d kωω ∆+∆  where )(d kω∆  is a sum 
of periodic disturbances caused by other Fourier components of the signal ).(kx  

The estimate ω̂∆  can be found in different ways. 
1. In the AFA [6] 

 

)())1(ˆ)(ˆ()(ˆ 11 kNkXkXk −∠=∆ω                             (8) 
 

and it is used for frequency updating in every time-step in spite of disturbing 
infinite transients (here and further )(X∠  denotes the angle of the complex 
vector ).X  These transients compensate each other partially and their summary 
influence is suppressed by means of implicit averaging over )(kN  samples in the 
updating process. 

2. In the BAFA [7], the block-adaptation is applied and the error estimate 
 

PPkXkX ))(ˆ)(ˆ(ˆ 11 −∠=∆ω                                     (9) 
 

is found during 1+P  time-steps and only after the finite transient processes of 
length N  (caused by previous frequency updating) have ended. 

3. The paper [8] recommends to use instead of (9) a more general and 
potentially more efficient error estimation 

 

,))(ˆ)(ˆ(ˆ ,1,1 PPkXkX BB −∠=∆ω                              (10) 
 

where 
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is a conditioned (averaged) estimate of the signal’s first Fourier coefficient 
vector.  

The above three approaches use averaging to suppress disturbances and 
assume that the input signal’s waveform and frequency do not change or change 
slowly enough. Some simple considerations allow us to hope that in case of 
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,NBP ≈=  Eq. (10) is time-optimal and gives up to twice faster frequency 
convergence than (9), i.e., (10) with .1, =≈ BNP  

 
 

3. SET-UP  OF  EXPERIMENTS  AND  INVESTIGATED  ANALYSERS 
 
In our experiments we used different analysers with zero initial states and 

with varied values of their parameters to perform analysis of several signals of 
the frequency .2.0=ω  The relative error ωωδ

ω
∆=  of the analyser’s initial 

frequency ω̂  was + 0.15 or – 0.15. We found the times 1t  and 2t , which were 
needed to achieve the output signal’s frequency error levels 7

1 10−

=δ  and 
,10 14

2
−

=δ  respectively. These times were found for every input signal (and for 
all the used parameter values, i.e., for the tunings of the analyser) and often 
averaged over the set of randomly chosen initial phases of the input signal. The 
normalized times Tt1  and ,Tt∆  where ωπ2=T  and 12 ttt −=∆  (which is 
not influenced by large initial frequency error), characterize thus practical and 
nearly asymptotic convergence of .ω̂  

The band-limited discrete-time periodic signals, which were used to estimate 
capabilities of the analysers, are presented in Fig. 2. These signals are formed 
according to their Fourier series by means of a generator based on the conceptual 
model of the signal assumed in the analyser’s structure (1). This numerical 
generator forms its output signal as a sum of chosen periodic signals of the 
waveforms in Fig. 1 and of a direct component of a given value (a random noise 
can be added too). As we are interested not only in improving the Fourier 
analysers but also in improving the extended Fourier analysers, which process 
signals consisting of several periodic components of different waveforms 
(spectra) and (not harmonically related) frequencies, we have to use also test 
signals like signal 6, where higher harmonic components exceed the fundamental 
one significantly. The influence of these higher harmonic components is similar 
to the influence of the higher frequency periodic components in the extended 
analyser. 

First we consider and compare the properties of the following modifications 
of such (step-)adaptive Fourier analyser, which finds ω̂∆  and updates ω̂  and the 
analyser’s frequency-dependent parameters (see Eqs. (2) and (3)) in every time-
step. 

RA – the robust AFA, which computes )(kg  using (4) and finds ω̂∆  
according to 

 

,)())1(ˆ)(ˆ()(ˆ 11 kNkXkXDk −∠⋅=∆ω                            (12) 
 

where D  is a damping factor ),10( ≤< D  which is introduced to improve the 
precision of ,ω̂∆  performing implicit averaging of the angle )(⋅∠  over 1−D  
times longer interval than in (8). 

IRA – the improved robust AFA, which also computes )(kg  using (4) and 
finds 
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Fig. 2. Plots of periodic band-limited discrete-time signals used to test modifications of the 
analyser. 
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,)())1(ˆ)(ˆ()(ˆ ,1,1 kNkXkXDk BB −∠⋅=∆ω                         (13) 
 

applying vector conditioning (9).  
In order to make the AFAs capable to analyse periodic signals where 

components of higher frequencies dominate, we had to avoid possible 
convergence of ω̂  to higher harmonic frequencies in case of significant (initial) 
error .ω∆  This is done (like in the extended BAFA [1,2]) by means of the 
frequency updating process with the bounds Lω  and Uω  set for :ˆ newω  

 

if UL ωωωω <∆+< ˆˆ  then ωωω ˆˆˆ new ∆+=  otherwise .2)ˆ(ˆ new Lωωω +=    (14) 
 

Later we consider characteristics of block-adaptive Fourier analysers: RBA – 
the robust BAFA, in which )(kg  is updated according to (4) and DBA – the 
dead-beat (observer based) BAFA, in which )(kg  is updated applying (5). 

In these analysers frequency estimation is performed only after passing 
optimal settling-time (which is equal to N  sampling intervals not only in the 
dead-beat BAFA [7] but also in the robust BAFA) since previous 
frequency/parameters updating. In both, RBA and DBA the error ω∆  is 
estimated applying (10) and (11) and using different coefficients 1C  and 2C  to 
determine the values of the parameters )(ceil 1LCB =  and )(ceil 2 LCP =  (here 

)(ceil y  is the smallest integer ).0>≥ y  
As we have computed the (frequency) convergence-time surfaces ),( 211 CCt , 

),( 212 CCt  and ),( 21 CCt∆  of these analysers and cleared out their local/global 
minima patterns for several signals [9], we present in this paper convergence 
times along some more interesting lines of these surfaces (found by averaging 
greater sets of simulation results). Using the parameters from these lines is later 
considered applying the following frequency error’s estimation methods: 

– the angle enlarging method AE uses 1
1

−

= LC  (i.e. 1=B  in (11)) and 
;2 CC =  

– the vector averaging method VA uses CC =1  and 1
2

−

= LC  (i.e. 1=P  in 
(10)); 

– the combined methods: 
method VA&AE uses CCC == 21  (in the DBA the minimum is on or 
near this line); 
method VA<AE uses CCC == 214  (in the RBA the minimum can be 
on or near this line). 

 
 

4. SIMULATION  RESULTS 

4.1. Experiments  with  (step-)adaptive  Fourier  analysers 
 
The experiments with the RA, some results of which are presented in Fig. 3, 

showed that for the signals 1–5 (with 1/f-type or faster decreasing spectrum) 
transients of the frequency ω̂  are time-optimal (i.e. have maximal average con-
vergence  speed found as a change of 

ω
δ10log20  in dB per )T  in the neighbour-  
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Fig. 3. Convergence of the module of the relative frequency error 

ω
δ  in the robust adaptive 

Fourier analyser; 
ω

δ  is given in a logarithmic scale; the initial error is .15.0=

ω
δ  

 
 
hood of 3/2=D  or even 4/3=D  (signals 3 and 7). Frequency transients in the 
original robust AFA [6], which uses ,1=D  were more oscillating (with 
significant frequency overshooting), but the golden section ratio 618.0=D  gave 
us already aperiodic transients of .ω̂  

Let us consider the frequency transient processes in more detail in case of signal 
6, several higher harmonic components of which exceed the fundamental one 
significantly and make it impossible to analyse this signal in AFA [6] and 
BAFA [7]. Figure 4 shows that using the introduced parameter ,D  one can make 
the RA capable to process such periodic signals too. Of course, the convergence 
speed of the error 

ω
δ  (in dB per )T  in the time-optimal frequency transient 

process (achieved using ,45.0≈D  see Fig. 4a) is then more than 3.5 times slower 
than that for the other signals (see Fig. 3). Increasing of D  makes the convergence 
slower  after  achieving  01.0≈

ω
δ   and the  error’s  tendency  to diverge becomes  
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apparent above the level .588.0=D  Figure 4 demonstrates also the behaviour of 
ω

δ  in time-optimal and close-to-aperiodic )382.0( =D  transient processes. 
The IRA applies vector conditioning to improve frequency error estimation 

and to speed up frequency convergence in case when the analysed input signal 
contains dominating higher frequency components. All the results presented in 
the following have been obtained applying vector conditioning over ,T  i.e. 

NB =  in (11), which ensured time-optimal convergence of the frequency ω̂   
to .ω  

Our experiments (see Figs. 5 and 6) showed that in the IRA time-optimal 
frequency convergence can be achieved using values of D  chosen from the 
neighbourhood of 0.382 (the square of the golden section ratio), i.e. 

,5/23/1 << D  and 31=D  ensures for most signals aperiodic transients of .ω̂  
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Fig. 6. The normalized average (frequency) convergence times Tt1  and Tt∆  vs the damping 
factor D  for the improved robust adaptive Fourier analyser (IRA) where NB =  in (11); the times 
have been averaged over 60 experiments: 30 different randomly chosen initial phases of the input 
signal were used and signal analysis was performed starting from initial frequencies ω̂  with the 
errors 15.0+=

ω
δ  and .15.0−=

ω
δ  

 

 
In case of signals 1–5 and 7, the optimal value 35.0=D  leads to twice slower 

and in case of signal 6 the optimal 382.0=D  leads to nearly twice faster 
frequency convergence as compared to the time-optimal frequency convergence 
in the RA. In case of signal 6, nearly time-optimal transients of ω̂  oscillate in the 
beginning but become later aperiodic; purely aperiodic transients are achieved 
below the level .31=D  

Figure 6 presents one main result: the curves of normalized average 
convergence times Tt1  and Tt∆  vs D  for the test signals 1–7 processed in the 
IRA. As these times depend on an initial phase of the input signal, the averaging 
was performed over 60 experiments, in which 30 randomly chosen initial phases 
and the initial errors 15.0±=

ω
δ  were used. 

In the robust analyser IRA the convergence of ω̂  to values of ,ω  which lie in 
small regions just below the values nπ  n(  is an integer) is slower or even 
limited and Fig. 7 demonstrates that in such regions the convergence process 
becomes oscillatory when a certain (slightly varying) frequency error level is 
achieved. The error 

ω
δ  oscillates with the signal’s frequency ,ω̂ω ≈  at the same 

time the error signal xx ˆ−=ε  oscillates with the angular frequency .π  
Analogous phenomenon has been observed in the dead-beat AFA too, but in 
much smaller regions [10]. Figure 8 shows that if the bandwidth of the input 
signal is smaller (smaller than the bandwidth of the analyser, ),LM <  then the 
critical error level (where oscillations appear) becomes lower. Thus pre-filtering 
of the input signal permits only to suppress (to some extent) this phenomenon. 
The latter becomes more disturbing when we try to use lower sampling rates and 
to reduce in this way the amount of computations per time unit. 

In the end we have to state that the dead-beat (observer based) AFA, which 
uses (4)  instead of (3) to  update its  parameters,  does  not  suit for  adaptation in  
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every time-step. It is computationally less efficient and it works much worse in 
case of significant frequency errors and with signals containing more disturbing 
higher harmonic components. Its frequency convergence is not worse than in the 
robust AFA only in case of very small frequency errors. Vector conditioning 
makes the dead-beat AFA’s behaviour better, as it suppresses disturbing 
influence of its transients and possible oscillations, which have not been noticed 
in the robust AFA (see Fig. 9). 
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4.2. Experiments  with  block-adaptive  Fourier  analysers  BAFA 

 
In this section we consider the simulation results obtained with the described 

modifications of BAFA: DBA and RBA. Some additional results on these 
analysers can be found in [9]. 

Figure 10 presents dependence of the normalized convergence times Tt1  and 
Tt∆  on the parameter C  for two signals analysed in the DBA. In the plots in 

these figures the convergence time curves are given for three block-adaptation 
methods (frequency error estimators) of interest. These curves have several local 
minima, which correspond to the signal’s period and significant abrupt changes 
in the signal’s waveform [9]. 

One can see that in the DBA the VA&AE method gives, in spite of two times 
longer error estimation cycle, up to two times shorter convergence times compared 
to the AE or VA method. It is more efficient 1) in case of small frequency errors 
(the plots of Tt∆  in Fig. 10), 2) in case of signal 1 and also signal 2 with ,π=b  
which both have even spectrum lines equal to zero (see [9]), and 3) in case of the 
signal 6 with dominating higher harmonic components (Figs. 10c, d, e and f). 

It appears that the VA&AE method is, in general, most efficient if 
),ˆ2(ceil ωπ≈≈ PB  but in case of signals, even spectrum lines of which are 

zero, )ˆ(ceil ωπ≈≈ PB  gives better results. 
In the RBA transient processes do not decay in N  steps as in the DBA and 

thus its frequency convergence speed (see Fig. 11) is about 2/3 of that of the 
DBA (see Fig. 10), but greater than in the IRA (Fig. 6) for all the used signals. In 
this analyser the VA<AE method with )ˆ2(ceil4 ωπ≈≈ PB  and the AE method 
with )ˆ2(ceil ωπ≈P  are optimal for the signals 1–4 (the VA<AE method with 

)ˆ2(ceil4 ωπ≈≈ PB  and the VA method with )ˆ2(ceil ωπ≈P  are slightly 
worse). However, the VA&AE method appears to be the best for processing the 
signal 6 with dominating higher harmonic components and it is time-optimal in 
case of )ˆ2(ceil ωπ≈≈ PB  as in the DBA. 
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Fig. 10. The frequency convergence times Tt1  and Tt∆  vs C  for the dead-beat BAFA (DBA); 
the times have been averaged over 60 experiments: 30 randomly chosen initial phases of the input 
signal and the initial frequencies ω̂  with the errors 15.0±=

ω
δ  were used; processing the signal 6 

the AE- and VA-method could not achieve the error level 1410−=

ω
δ  in all the 60 experiments 

for several values of C  (broken curves in the plot (d), see also (f)), but the VA & AE method with 
5.1≥C  achieved this level in all the experiments. 
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Fig. 11. The normalized frequency convergence times Tt1  and Tt∆  vs C  for the robust BAFA 
(RBA). These times were found as those in Fig. 10 computing with 3000 time-steps; processing the 
signal 6 (with dominating higher harmonic components) the VA & AE method with 5.1≥C  works 
perfectly (achieves the frequency error level 1410−=

ω
δ  in all the 60 experiments), the VA<AE 

becomes reliable when ,2.2≥C  the AE and VA are worse. 
 
 

Figure 12 permits to compare, how the transient times Tt1  and Tt2  depend 
on the  input signal’s  frequency ω  in the  analysers DBA and RBA. In the  RBA  
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Fig. 12. Averaged transient times Tt1  (continuous curves) and Tt2  (dotted curves) vs ω  for 
the analysers DBA and RBA with ;1.221 == CC  these times have been averaged over 20 
experiments where an input signal of a randomly chosen initial phase was used; the verticals 
correspond to the frequencies nπω =  (n – integer), the initial error .15.0+=

ω
δ  
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Fig. 13. Transients in the block-adaptive Fourier analysers, which apply the VA&AE method with 
optimal ;15.2=C  the initial frequency error is .15.0−=

ω
δ  

 
 
this dependence is nearly the same for the signals 1–5 and 7, and for all the 
signals there are clear sharp minima on the frequencies ).5.0( +nπ  In the DBA 
this dependence is more influenced by the signal’s waveform and minima of 
transient times lie just above the frequencies .nπ  The regions of bad 
convergence, which lie below the lines nπω =  and were considered in 
Section 4.1, are very small for the dead-beat analyser, but quite remarkable for 
the robust analyser, especially in case of the signal 6 (due to its dominating 
components of higher frequencies). Thus Fig. 12 generalizes the results shown in 
Fig. 7 and shows that a properly chosen sampling rate can reduce the 
convergence time up to 30 per cent (the peaks below the values n/πω =  can be 
suppressed by means of pre-filtering of the input signal). 

Last but not least, in the RBA, we have not observed oscillations of the 
angular frequency π  met in transients in the DBA (see Fig. 13). 
 

 
5. CONCLUSIONS 

 
The obtained simulation results permit to state the following. 
1. Introducing the damping factor 1<D  into the robust AFA (its frequency 

error estimator) one can a) improve average frequency convergence speed of the 
analyser up to 20 per cent and b) make the analyser capable to process signals 
with dominating higher harmonic components. 

2. To perform efficient analysis of signals with dominating higher harmonic 
components one has to suppress disturbances in the frequency error estimator of 
robust or dead-beat AFA (and also BAFA) applying conditioning/averaging of 
the 1st Fourier coefficient vector (over the signal’s period )T  and performing 
thus more computing operations per sample. 

3. The frequency convergence time characteristics Tt1(  and Tt∆  vs the error 
estimator’s parameters), computed for different analysers (signals), can be used to 
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find proper or even optimal analyser parameters for solving certain signal 
processing tasks. 

4. The undesired significant oscillations (which appear in transients in dead-
beat analysers and become often very disturbing in the extended BAFA [2]) have 
not been observed in robust analysers. Thus we can suggest that it would be 
better to extend a robust analyser for processing composite signals, which consist 
of periodic components of different (non-harmonic) frequencies and waveforms. 
Presumably the robustness makes the analyser more reliable. 
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Siirdeprotsessid  adaptiivsetes  Fourier’  analüsaatorites 
 

Ants Ronk ja Ülle Voolaine 
 

On käsitletud mõningaid adaptiivse Fourier’ analüsaatori modifikatsioone 
ning esitatud rida simuleerimistulemusi, mis võimaldavad võrrelda nende modi-
fikatsioonide koonduvusomadusi ja leida teatud rakenduste jaoks nii analüsaatori 
sobivaim modifikatsioon kui ka selle parameetrite optimaalsed väärtused.  


