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Abstract. The paper focuses on the stresses and deformations of welded plate girders subjected to 
uniformly distributed edge loading. The critical load parameters of the web plate under the action 
of edge loading, shear, bending, and compressive stresses are determined. The horizontal edges of 
the web plate are considered to be elastically restrained, with vertical edges simply supported. The 
post-buckling behaviour of this web plate is analysed. In the post-buckling situation, the parts of 
the web plate are assumed to be simply supported and the edge load balanced by shear stresses on 
the adjacent edges. Numerical results of the continuous analytical and the finite element method are 
compared with results obtained from the Eurocode 3 formulas and with the test results. 
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1. INTRODUCTION

In steel girder design, as a rule, shear strength and local stability of the web 
are ensured. However, the local stability condition of the web is not necessary, 
since the loss of stability does not result in the loss of the carrying capacity of the 
girder. The theory of the behaviour of plate girders in shear and bending and the 
ultimate load design of steel plate girders is described in [1–3]. The mathematical 
treatment of the interaction between the initial distortions and in-plane loading is 
described in [4]. The results obtained from hundreds of tests on girders varying in 
cross-sectional dimensions and in materials are described in [5–10]. These results 
open up the possibility to verify the values of the calculated ultimate loads. 
However, the test results are not entirely comparable because of different 
definitions of the ultimate load. Practical design methods and formulas for thin 
plate I-girders were elaborated by Höglund [5,6,9,10]. The behaviour of the webs of 
plate and box girders, subjected to repeated buckling, is described in [11,12]. 
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The carrying capacity of a slender plate girder in the post-critical stage 
depends on the slenderness parameters of the web and flange stiffness 
characteristics (compressive, torsional, and flexural rigidity). In this paper a 
calculation model is developed for girders without transverse and longitudinal 
stiffeners. The initial imperfections of the girder web are not taken into account, 
as they have no practical effect on the value of the ultimate load for slender plate 
girders. 

 
 

2. STRESSES  AND  DISPLACEMENTS  BEFORE  BUCKLING 
 
Let us consider a slender plate girder under uniform edge loading. When the  

I-girder is loaded to the point of loosing local stability, the web of the girder will 
buckle, forming several half-waves in the longitudinal direction (Fig. 1). The web 
area with the length of one or several half-waves can be considered as a separate 
plate (panel) for the theoretical study. 

The main assumptions for an analytical study based on the plate theory [13] 
are: 

1) the girder is laterally restrained, i.e. no lateral-torsional buckling occurs, 
2) the girder flanges have certain rigidity and are elastically connected to the 

web, 
3) the relative elongation of flanges )( f

yε  and the web )( w
yε  are equal: 
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Fig. 1. Analytical model and stresses between the web and flanges. 
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The uniformly distributed load q  can be expanded into the Fourier series as 
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Using the equations of equilibrium [13] 
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the stress components of the girder web before buckling can be written as 
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where ,LAA pp =′  ,LBB pp =′  ,Lpa π=  µ  is the Poisson ratio and E  is 
the modulus of elasticity. 

The unknown coefficients ,,, ppp CBA  and pD  are determined from the 
boundary conditions: 
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The stress components of the separate plate hbL ×  of the girder web before 

buckling can be written as 
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where ,0 hx ≤≤  .0 Lby ≤≤  
 
 

3. POST-BUCKLING  STATE 
 
Let us consider the panel hbL ×  (Fig. 1) loaded by stresses according to 

Eqs. (12)–(14). In the post-buckling state, in terms of displacements the 
membrane stresses are [13] 
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and the strain–displacement equations 
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Using the equations of equilibrium (3), (4) and relationships (12)–(20), the 
membrane stresses in the post-buckling state may be written as 
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Relative elongations of the flange and the girder web are equal. The girder 

flanges possess flexural rigidity and cannot buckle. The longitudinal edges of the 
plate will remain rectilinear and can move freely (Fig.2). Thus the unknown 
coefficients ,,,,, 10CHGFE pppp  and 20C  can be found from the boundary 
conditions 
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Fig. 2. A buckled panel of the girder web. 
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Substituting the plate deflection function 
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and stress expressions (21)–(23) into the differential equation of equilibrium of 
the plate for in-plane loading [13] 
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we obtain a system of non-linear algebraic equations for the calculation of the 
parameters mnw  by the Bubnov–Galjorkin method [14]. This system consists of 
three parts: the linear, quadratic, and cubic part. The solution of this system gives 
the parameters mnw  and thus the stresses in the plate can be calculated. The 
ultimate load is determined by the limit stress criterion proposed by von Mises [4] 
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where the stresses include the bending and membrane components and yf  is the 
yield stress. The load q  which corresponds to the criterion (29) is considered to 
be the ultimate load. 

 
 

4. THEORETICAL  BUCKLING  LOAD 
 
In order to study the influence of the torsional rigidity of the flange on the 

critical buckling load of the girder web, the following plate deflection function 
was used: 
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The unknown coefficients ,,, mnmnmn EDC  and mnF  are determined from 
boundary conditions 
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where T  is torsional rigidity of the flange 
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Here cI  is the inertia moment of the flange about the local axis c (Fig. 3). 
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Fig. 3. Torsion of the flange. 
 
 
The buckling load parameter K  is a function of the girder slenderness ratio 
hL  and of the torsional parameter T  of the flange 
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It can be determined from the linear part of the non-linear algebraic system for 
parameters ,mnw  and the critical load for the whole girder can be calculated from 
Eq. (35). 

 
 

5. FINITE  ELEMENT  ANALYSIS 
 
In parallel with the calculations with the continuous analytical method based 

on the plate theory, finite element models were used to determine the buckling 
and the ultimate load (according to Eq. (29)). The numerical results were 
obtained using the COSMOS/M non-linear finite element analysis [15]. One half 
of the finite element model and the first buckling mode are shown in Fig. 4. 

The results of the analytical and FEM calculations are presented in Fig. 5. It 
can be seen that the value of the torsional rigidity T  of the flange influences 
significantly the critical uniform buckling load .q  
 
 

6. EXPERIMENTAL  INVESTIGATION 
 
The aim of the experiments was to determine the ultimate strength of the 

girders and to compare it with the results obtained with theoretical analysis 
(continuous and discrete models) and the Eurocode 3 formulas [16]. 

The testing schema is shown in Fig. 6. 
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Fig. 4. FEM grid and deformed shape of the web after buckling. 
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Fig. 5. Dependence of the buckling load parameter K  on .hL  
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Fig. 6. Schema of the girder test. 
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Special lateral supports provided stability to the compressed flange in the 
horizontal plane. The distance between the supports was 2.0 m. The webs of all 
the test girders had considerable initial imperfections. Thus it was difficult to 
determine the exact critical buckling load experimentally. The ultimate load in 
these tests was determined by the pressure drop in the loading jack hydraulic 
system. 

Eight girders were tested. The geometrical characteristics of the tested girders 
are shown in Table 1. 

Girders T1 and T4 were provided with additional stiffeners at the ends. 
Two forms of failure were observed: 1) buckling of the compressed flange in 

the middle of the span, 2) formation of a prolonged diagonal fold in the web 
close to one of the girder supports; the length of this fold was approximately 4 to 
5 times the web height (typical shear failure mode). In this case, the ultimate load 
was determined by the web’s shear buckling. The first form of collapse was 
observed on girders T1 and T5, the second form on girders T2 to T4 and T6 to T8. 

The ultimate loads of the girders T1 and T4 (which had the rigid end stiffeners) 
were 20 to 30% higher than ultimate loads of the girders T3, T4 without rigid end 
stiffeners. 

 
Table 1. Geometrical characteristics of the tested girders 
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T1 250 12 500 × 2 120 × 6 0.72 > 200 000 0.72  

T2 250 12 500 × 2 9601) 0.96 ~ 9000 0.55  

T3 333 12 500 × 1.5 9601) 1.28 ~ 7000 0.73  

T4 250 12 500 × 2 120 × 6 0.72 > 200 000 0.72  

T5 250 12 500 × 2 120 × 6 0.72 > 200 0002) 1.2  

T6 250 12 500 × 2 120 × 6 0.72 ~ 200 0003) 1.2  

T7 270 15 400 × 1.5 9004) 1.5 42002) 1.3  

T8 270 15 400 × 1.5 100 × 8 1.33 ~ 150 0002) 1.6  
 

———————— 
1) flanges of girders T2 and T3 were made of two angles 50 × 50 × 4, 
2) ,2hb

L
=  

3) ,hb
L

=  
4) flanges of the girder T7 were made from channel 80 × 40 × 4. 
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The compressive rigidity of the support stiffeners of the girders T5 to T8 was 
increased by 50% and an additional transverse stiffener was installed (Table 2). 
The distance z from the end of the girder to the additional stiffener (Fig. 7) was 
2h for girders T5, T7, T8, and h for the girder T6. The compressive rigidity of the 
flanges of the girders T7 and T8 was also increased. 

The test results are shown in Table 3 where also results obtained by Höglund 
and Frey have been included. Comparison of numerical results of the continuous 
analytical, FEM, Eurocode 3 formulas and test results is shown in Fig. 8. 

 
Table 2. Geometrical characteristics of the additional stiffeners 

 

Girder No. Location of the 
stiffener z, 

m 

Stiffness of the 
stiffener 

 αS = AS /Aw 

Stiffener cross-
section,  

mm 

T5 1   0.48 80 × 6 
T6   0.5   0.48 80 × 6 
T7   0.8 0.6 60 × 6 
T8   0.8 0.8 80 × 6 
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Fig. 7. Location of the additional stiffener. 
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8. Comparison of the ultimate load of the tested girders. 
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Table 3. Comparison of the test results 
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Geometrical characteristics 

T1 17.0 1.40 ;0.6=L  ;12=β    ;250=λ  ;72.01 =α  0002002 >α  

T2 15.3 1.18 ;0.6=L  ;12=β    ;250=λ  ;72.01 =α  90002 ≈α  

T3 12.8 1.83 ;0.6=L  ;12=β    ;333=λ  ;28.11 =α  70002 ≈α  

T4 16.3 1.25 ;0.6=L  ;12=β    ;250=λ  ;72.01 =α  0002002 >α  

T5
2) 28.0 1.65 ;0.6=L  ;12=β    ;250=λ  ;72.01 =α  0002002 >α  hz 2=  

T6
2) 28.7 1.44 ;0.6=L  ;12=β    ;250=λ  ;72.01 =α  0002002 >α  hz =  

T7
2) 17.3 2.47 ;0.6=L  ;15=β    ;270=λ  ;5.11 =α    42002 ≈α      hz 2=  

T8
2) 12.0 1.71 ;0.6=L  ;15=β    ;270=λ  ;33.11 =α  0001502 >α  hz 2=  

B4 Höglund [10] 15.83) 1.67 ;0.9=L  ;15=β     ;300=λ  ;77.01 =α  0002002 >α  

3B Frey [8] 15.13) 1.40 ;1.8=L  ;5.13=β  ;300=λ  ;75.01 =α  0002002 >α  
 

———————— 
1) qult EC3 – ultimate load calculated according to Eurocode 3, 
2) girder with an additional transverse stiffener, 
3) ultimate load calculated by interpolation. 

 
 
Installation of the additional stiffener resulted in an increase of the ultimate 

load capacity of the girders T5 to T8 approximately by 60%, which was to be 
expected. 

 
 

7. CONCLUSIONS 
 
The buckling and ultimate loads of slender plate girders were investigated 

theoretically and experimentally. Eight girders of 6 m span were tested. The 
analysis included plate theory and use of the finite element method. 

The results confirm that the ultimate load of a thin-walled girder without 
transverse stiffening ribs depends on the girder slenderness and on the 
compressive rigidity of the flanges. The buckling load depends on the torsional 
rigidity of the flanges, but this is not important for plate girders in which the 
span-to-depth ratio is relatively great. 

In the post-critical situation, the largest deformations and stresses for girders 
of medium slenderness ratio 12( =β  to 16) appear in the supporting zone of the 
girder ).2to0( hzz ==  For very slender girders ),16( >β  the failure occurs in 
the middle of the girder. 
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The ultimate load calculated using Eurocode 3 shear buckling resistance 
formulas [15] is from 60 to 80% of the experimental ultimate load and from 50 to 
70% of the load obtained using the plate theory and the finite element method. 
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Jäikusribideta  õhukeseseinaline  tala  ühtlasel  koormusel 
 

Priit Vilba ja Siim Idnurm 
 
Artiklis on kirjeldatud ühtlase hajukoormusega koormatud jäikusribideta õhu-

keseseinalise tala pingeid ja deformatsioone juhul, kui tala seina horisontaalsed 
servad on elastselt ühendatud vöödega ja vertikaalsed servad vabalt toetatud. On 
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määratud tala seina stabiilsuse kadu tekitava ühtlaselt jaotatud koormuse, nihke-, 
painde- ja survepingete kriitilised väärtused. On uuritud tala seina pärastkriitilist 
olukorda eeldades, et pärastkriitilises olukorras on tala seinaosa vaadeldav ser-
vadel vabalt toetatud plaadina, mille koormus tasakaalustatakse külgservadel 
mõjuvate nihkejõudude poolt. Katsetulemusi on võrreldud pideva analüütilise 
meetodi, lõplike elementide meetodi ja Eurocode 3 valemite abil saadud arvutus-
tulemustega. 


