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Abstract. The paper focuses on the stresses and deformations of welded plate girders subjected to
uniformly distributed edge loading. The critical load parameters of the web plate under the action
of edge loading, shear, bending, and compressive stresses are determined. The horizontal edges of
the web plate are considered to be elastically restrained, with vertical edges simply supported. The
post-buckling behaviour of this web plate is analysed. In the post-buckling situation, the parts of
the web plate are assumed to be simply supported and the edge |oad balanced by shear stresses on
the adjacent edges. Numerical results of the continuous analytical and the finite element method are
compared with results obtained from the Eurocode 3 formulas and with the test results.
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1. INTRODUCTION

In stedl girder design, as arule, shear strength and local stability of the web
are ensured. However, the local stability condition of the web is not necessary,
since the loss of stability does not result in the loss of the carrying capacity of the
girder. The theory of the behaviour of plate girders in shear and bending and the
ultimate load design of steel plate girders is described in [*%]. The mathematical
treatment of the interaction between the initial distortions and in-plane loading is
described in [*]. The results obtained from hundreds of tests on girders varyingin
cross-sectional dimensions and in materials are described in [*°]. These results
open up the possibility to verify the values of the calculated ultimate loads.
However, the test results are not entirely comparable because of different
definitions of the ultimate load. Practical design methods and formulas for thin
plate |-girders were elaborated by Hoglund [>***%]. The behaviour of the webs of
plate and box girders, subjected to repeated buckling, is described in [*"*4].
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The carrying capacity of a dender plate girder in the post-critica stage
depends on the denderness parameters of the web and flange stiffness
characteristics (compressive, torsional, and flexura rigidity). In this paper a
calculation model is developed for girders without transverse and longitudinal
stiffeners. The initial imperfections of the girder web are not taken into account,
as they have no practical effect on the value of the ultimate load for slender plate
girders.

2. STRESSES AND DISPLACEMENTS BEFORE BUCKLING

Let us consider a slender plate girder under uniform edge loading. When the
I-girder is loaded to the point of loosing local stability, the web of the girder will
buckle, forming several haf-wavesin the longitudinal direction (Fig. 1). The web
area with the length of one or several half-waves can be considered as a separate
plate (panel) for the theoretical study.

The main assumptions for an analytical study based on the plate theory [
are

1) the girder is laterally restrained, i.e. no lateral-torsional buckling occurs,

2) the girder flanges have certain rigidity and are elasticaly connected to the
web,

3) the relative elongation of flanges (syf ) and the web (s;v) are equal:

e,y =€;, (x=0,h). (1)
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Fig. 1. Analytical model and stresses between the web and flanges.
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The uniformly distributed load q can be expanded into the Fourier series as

- Py _ Ty 3y o1y
g= z qpsmT—qlsmT+q3smT+q5smT i 2

p=13,..
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Using the equations of equilibrium [*¥]
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the stress components of the girder web before buckling can be written as
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where A ) =A /L, B',=B,/L, a=pmn/L, p isthe Poisson ratio and E is
the modulus of elagticity.

The unknown coefficients A, B,,C,, and D, are determined from the
boundary conditions:
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The stress components of the separate plate b, x h of the girder web before
buckling can be written as
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where 0< x<h, 0<sy<b,.

3. POST-BUCKLING STATE

Let us consider the panel b xh (Fig. 1) loaded by stresses according to
Egs. (12)((14). In the post-buckling state, in terms of displacements the
membrane stresses are [*]

U
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Using the equations of equilibrium (3), (4) and relationships (12)—20), the
membrane stresses in the post-buckling state may be written as
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Relative elongations of the flange and the girder web are equal. The girder
flanges possess flexural rigidity and cannot buckle. The longitudinal edges of the
plate will remain rectilinear and can move freely (Fig.2). Thus the unknown
coefficients E,,F,,G,,H,,C;, and C, can be found from the boundary
conditions

a%w

— f
_ax2 =0, ¢

y

=¢¥, (x=0,h) (24)
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Fig. 2. A buckled pand of the girder web
0'u _
El ; 6y_4 =t*0,, (25)
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Substituting the plate deflection function
w= tz ZW sm—sm N1y (27)

by

and stress expressions (21)—(23) into the differential equation of equilibrium of
the plate for in-plane loading [*°]
2 2 2
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(28)

where
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we obtain a system of non-linear algebraic equations for the calculation of the
parameters w,,, by the Bubnov—Galjorkin method [/]. This system consists of
three parts: the linear, quadratic, and cubic part. The solution of this system gives
the parameters w,,, and thus the stresses in the plate can be calculated. The
ultimate load is determined by the limit stress criterion proposed by von Mises [4]

0.(q) =\/ax2 +o;-0.0,+31; <f,, (29)

where the stresses include the bending and membrane components and f, is the
yield stress. The load g which corresponds to the criterion (29) is considered to
be the ultimate load.

4. THEORETICAL BUCKLING LOAD
In order to study the influence of the torsional rigidity of the flange on the

critical buckling load of the girder web, the following plate deflection function
was used:

. Ny . mix O
w=t w_sn—@gn——+ f__(X)—, 30
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where
fo()=Cch™®ip chM® g XpMX, g XM (31)
h h h h h h

The unknown coefficients C,,,D,,,, E.,, @d F,, are determined from
boundary conditions

2 3
w=0, ‘Z—‘;V::T;T‘(’;’, (x=0, h) (32)
X y20X
2
w=0, %:o, (y=0,L) (33)

where T istorsional rigidity of the flange

_Glc_ _ b_f f
T=—e=20- ) ETQ (34)

Here |, istheinertia moment of the flange about the local axisc (Fig. 3).
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Fig. 3. Torsion of the flange.

The buckling load parameter K is a function of the girder slenderness ratio
L/h and of the torsional parameter T of the flange

2 Y
cfrg)- stz o

It can be determined from the linear part of the non-linear agebraic system for
parameters w,,,, and the critical load for the whole girder can be calculated from
Eqg. (35).

5.FINITE ELEMENT ANALYSIS

In parallel with the calculations with the continuous analytical method based
on the plate theory, finite element models were used to determine the buckling
and the ultimate load (according to Eg. (29)). The numerical results were
obtained using the COSMOS/M non-linear finite element analysis[*]. One half
of the finite element model and the first buckling mode are shown in Fig. 4.

The results of the anaytical and FEM calculations are presented in Fig. 5. It
can be seen that the value of the torsiona rigidity T of the flange influences
significantly the critical uniform buckling load g.

6. EXPERIMENTAL INVESTIGATION
The aim of the experiments was to determine the ultimate strength of the
girders and to compare it with the results obtained with theoretical analysis

(continuous and discrete models) and the Eurocode 3 formulas [*°].
Thetesting schemais shown in Fig. 6.
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Fig. 4. FEM grid and deformed shape of the web after buckling.
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Fig. 5. Dependence of the buckling load parameter K on L/ h.
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Fig. 6. Schema of the girder test.
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Special lateral supports provided stability to the compressed flange in the
horizontal plane. The distance between the supports was 2.0 m. The webs of al
the test girders had considerable initial imperfections. Thus it was difficult to
determine the exact critical buckling load experimentally. The ultimate load in
these tests was determined by the pressure drop in the loading jack hydraulic
system.

Eight girders were tested. The geometrical characteristics of the tested girders
areshownin Table 1.

Girders T, and T, were provided with additiona stiffeners at the ends.

Two forms of failure were observed: 1) buckling of the compressed flange in
the middle of the span, 2) formation of a prolonged diagona fold in the web
close to one of the girder supports; the length of this fold was approximately 4 to
5 times the web height (typica shear failure mode). In this case, the ultimate |oad
was determined by the web’s shear buckling. The first form of collapse was
observed on girders T, and Ts, the second form on girders T, to T, and Te to Ts.

The ultimate loads of the girders T, and T, (which had the rigid end stiffeners)
were 20 to 30% higher than ultimate loads of the girders Ts, T, without rigid end
stiffeners.

Table 1. Geometrical characteristics of the tested girders

<
e | -
= 1l f < o}
I g
< E g @ _ §
o o] N =
8| = T 5 < = 7 5
n | B 5 = < 5 B 5
S kS o =
g S ‘g % I 0 @ )
. o e 8 o . S £
S ° 5] 8 o S e} ke S
z _‘@75, w o S > > > ¢ ©
a; as &) > — — —_
= 8| 2 Bt 5t | B 5 55 5
0] = o =2 E T E vd vd T < R
T, 250 12 500x2 120x6 072 >200000  0.72 [
T, 250 12 500x2 960  0.96 ~9000 oss U 11
Ts 333 12 500x15 960"  1.28 ~7000 073 U T
T, 250 12 500x2 120x6 072 >200000 0.72
Ts 250 12 500x2 120x6 072 >200000° 1.2
Ts 250 12 500%2 120x6 072 ~200000° 1.2
T, 270 15  400x 15 900% 15 42007 1.3 I [
Ts 270 15 400x15 100x8 133 ~150000°7 1.6

Y flanges of girders T, and T3 were made of two angles 50 x 50 x 4,

4 flanges of the girder T, were made from channel 80 x 40 x 4.

184



The compressive rigidity of the support stiffeners of the girders Ts to Tg was
increased by 50% and an additional transverse stiffener was instaled (Table 2).
The distance z from the end of the girder to the additiona stiffener (Fig. 7) was
2h for girders Ts, T, Ts, and h for the girder Ts. The compressive rigidity of the
flanges of the girders T; and Tg was also increased.

The test results are shown in Table 3 where also results obtained by Hoglund
and Frey have been included. Comparison of numerical results of the continuous
analytical, FEM, Eurocode 3 formulas and test resultsis shown in Fig. 8.

Table 2. Geometrical characteristics of the additional stiffeners

Girder No. Location of the Stiffness of the Stiffener cross-
stiffener z, stiffener section,
m as=As/Ay mm
Ts 1 0.48 80x6
Te 0.5 0.48 80x6
T, 0.8 0.6 60 x 6
Ts 0.8 0.8 80x6
a A
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Fig. 8. Comparison of the ultimate load of the tested girders.
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Table 3. Comparison of the test results

s BE [
S=z |4 . -
?3 e s Geometrical characteristics
s E gl¢
0] =
DT =
T 170 140 L=60; B=12 A =250, a; =072, a, >200000
T, 153 118 L=60; =12 A =250, a; =0.72; a, = 9000
T 128 183 L=60 f=12 A=333 a, =128 a,=7000
T, 163 125 L=60; f=12 A =250, a; =072, a, >200000
T2 280 165 L=60; p=12, A=250; a; =0.72 a,>200000 z=2h
Te? 287 144 L=60; B=12, A =250; a, =0.72; a, >200000 z=h
T2 173 247 L=60; B=15 A=270;, a; =15 a,=4200 z=2h
Te? 120 171 L=60; B=15 A =270, a; =133 a, >150000 z=2h

B4 Hoglund [°] 1587 167 L=90; B=15 A =300, a; =0.77; a, >200000
3B Frey [f 1519 140 L=81 B=135 A =300, a, =0.75 a, >200000

D guit ecs — Ultimate load calculated according to Eurocode 3,
2 girder with an additional transverse stiffener,
9 ultimate load calculated by interpolation.

Installation of the additional stiffener resulted in an increase of the ultimate
load capacity of the girders Ts to Tg approximately by 60%, which was to be
expected.

7. CONCLUSIONS

The buckling and ultimate loads of dender plate girders were investigated
theoretically and experimentally. Eight girders of 6 m span were tested. The
analysis included plate theory and use of the finite element method.

The results confirm that the ultimate load of a thin-walled girder without
transverse stiffening ribs depends on the girder slenderness and on the
compressive rigidity of the flanges. The buckling load depends on the torsional
rigidity of the flanges, but this is not important for plate girders in which the
span-to-depth ratio isrelatively great.

In the post-critical situation, the largest deformations and stresses for girders
of medium slenderness ratio (3 =12 to 16) appear in the supporting zone of the
girder (z=0 to z=2h). For very slender girders (3 >16), the failure occursin
the middle of the girder.

186



The ultimate load calculated using Eurocode 3 shear buckling resistance
formulas[*™] is from 60 to 80% of the experimental ultimate load and from 50 to
70% of the load obtained using the plate theory and the finite element method.
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Jaikusribideta dhukesesainaline tala Uhtlasal koormusel
Priit Vilbaja Siim Idnurm

Artiklis on kirjeldatud Uhtlase hajukoormusega koormatud j&ikusribideta 6hu-
keseseinalise tala pingeid ja deformatsioone juhul, kui tala seina horisontaal sed
servad on elastselt tihendatud voddega ja vertikaal sed servad vabalt toetatud. On
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madratud tala seina stabiilsuse kadu tekitava Uhtlaselt jaotatud koormuse, nihke-,
painde- ja survepingete kriitilised vadrtused. On uuritud tala seina péarastkriitilist
olukorda eeldades, et parastkriitilises olukorras on tala seinaosa vaadeldav ser-
vadel vabalt toetatud plaadina, mille koormus tasakaalustatakse kiilgservadel
mdjuvate nihkedudude poolt. Katsetulemusi on vorreldud pideva anallitilise
meetodi, |Gplike elementide meetodi ja Eurocode 3 valemite abil saadud arvutus-
tulemustega.
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