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Abstract. A method for computing masonry arches consisting of rigid brick voussoires and 
deformable mortar layers is presented. The brick elements are allowed to move and rotate relative 
to each other, according to the material model of the mortar. Non-linear constitutive law is applied 
to eccentric compression and the shear behaviour is determined by both the shear and normal 
stresses. The applied mathematical method produces the global equilibrium path. The proposed 
algorithm is appropriate for analysing arches of arbitrary geometry subjected to arbitrary static 
loads. Some examples which show the influence of the various shape and material parameters are 
given. 

Key words: masonry arch, non-linear constitutive law, sliding, equilibrium path, third-order 
theory. 

1. INTRODUCTION

For centuries, larger openings were covered by building arches from a large 
number of small elements. The shape of these structures is determined by the 
material. Since masonry, layed with or without mortar, does not resist tension, a 
curved shape evolved which can pass on the loads via compression. No attempt 
was made to describe the behaviour of masonry arches. Medieval buildings were 
based on a geometric construction which was suitable in most cases [1,2]. 

In the 18th century, when the science of mechanics began to develop [3–5], 
many researchers dealt with the mechanical problems of masonry arches [6]. By 
the beginning of the 19th century, both the experimental and theoretical research 
of masonry arches was regarded as complete and the interest was transferred to 
new problems. 

In recent years research restarted, with the goal to determine whether the 
constructions from earlier centuries, mainly masonry arch bridges, meet today’s 
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requirements. Using the apparatus of modern mechanics, several methods have 
been developed for the analysis of masonry arches [7,8]. 

Some researchers follow and develop the classical theory of masonry arches, 
which considers the arch as a set of bricks, without tensile strength and with 
infinite compressive and shear strength in the joints. In this approach, the main 
problems are the equilibrium and geometry rather than the strength of the 
material. The main tool of the classical theory is the line of thrust which defines 
the path followed by the resultant of forces acting in the arch. The statically 
indeterminate arch contains an infinite number of equilibrium solutions (or thrust 
line shapes). Considering that the compressive stresses are relatively small 
compared with the strength of the material, failure occurs only in the case when 
the line of thrust reaches the outer faces of the arch at four points and the arch 
becomes a mechanism with hinges at these points. One of the approaches of the 
classical theory states that if for a given loading at least one state of equilibrium 
can be found, for which the structure is stable (one line of thrust inside the arch), 
then it is stable absolutely. As a consequence, a proportional increase of the load 
never leads to collapse. Another approach, the mechanism method, supposes that 
the position of the thrust line, i.e. the positions of the hinges at failure, are 
determined by the given loading. The ultimate value of the load can be calculated 
from the equilibrium equations. Essentially, the safety of the arch is ensured by 
its correct shape [9,10]. 

These techniques of analysis give no information about the loading stages 
before failure, stresses, and deformations. Modern formulation of the classical 
theory contains many enhancements, like finite compressive strength, sliding at 
joints, etc. 

Another, more frequently used technique regards the masonry arch as a 
homogenous continuum which is divided into (small) finite elements with non-
linear constitutive law. In this approach the size of the elements is introduced 
artificially. There exists also a more accurate model, requiring large computer 
capacity, which simulates the bricks and mortar layers separately [11]. 

As opposed to the cited homogenous continuum approach and closer to the 
classical theory, this paper suggests a model for the arch consisting of separated 
bricks, also called voussoires. In contrast to the finite element models, where the 
finite element discretization usually follows a rectangular mesh without consider-
ing the position of the mortar layers, in the new model the division of the arch 
corresponds to the physical reality. The material law is applied only to thin 
mortar layers, the bricks are considered as rigid bodies. 

In this model the behaviour of the arch is described more exactly than in the 
classical theory. Not only the ultimate state can be computed, but detailed results, 
forces between the voussoires, the actual position of the thrust line as well as 
stresses and displacements can be found at every loading step. The assumptions 
and results of the classical theory can be verified with the results of this approach 
which applies a third-order theory.  
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The mathematical model does not apply the variational formulation. It rather 
solves the underlying ordinary difference equations (supplemented by 
appropriate boundary conditions) numerically. 

 
 

2. THE  MECHANICAL  MODEL 
 
The masonry arch is considered as a bar structure consisting of rigid brick 

voussoires and deformable mortar layers. On the basis of the “length” of the 
elements, the brick voussoires represent the bars and the mortar layers represent 
the joints between them. However, in this approach the roles are interchanged 
because the “short” mortar layers have deformations (similar to the rods of a bar 
structure) and the “long” bricks do rigid body displacements (similar to the joints 
of a bar structure). Arbitrary horizontal and vertical loads can be applied at the 
centre point of every brick element. 

The suggested model of the masonry arch is solved by a computer program 
which uses a multiply recursive algorithm, as illustrated in Fig. 1. The computa-
tion has the following three levels. 

A. At the joint level, the core of the program describes the behaviour of the 
mortar layer between two neighbouring bricks. Section 2.1 explains how to 
obtain the displacements and rotation of a voussoir from the forces and the 
moment acting on the previous mortar layer. 

B. At the second level, the recursion goes through the arch, from the first until 
the last element. This step is equivalent to the solution of an initial value problem 
(IVP) associated with a system of ordinary difference equations. Using the forces 
and moment on the first element as input, the new position of the last element is 
obtained as output (Section 2.2). 

C. At the third level, a simple version of the Parallel Simplex Algorithm 
(PSA) is used as a mathematical tool to solve the boundary value problem (BVP). 
The prescribed position of the last element is known, from which the forces and 
moment on the first element can be found. This mathematical method is outlined 
in Section 2.3. 

 
 
 

 
 

Fig. 1. Recursion levels. 
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2.1. Joint  level 
 
The brick elements can be separated from each other and slide along their 

contact surface of width ,t  according to the material model of the mortar layer 
which involves both the axial and shear behaviour of the masonry. (The width of 
the contact surface is equivalent to the arch thickness if no sliding is present.) 
The thi  mortar layer is subjected to the normal and shear force and bending 
moment ),,,( iii msn  from which the relative axial and shear displacements and 
the relative rotation of the joint ),,( iii tl ϕ∆∆∆  can be computed as shown in 
Fig. 2. 

The material of the mortar layer is modelled by linear elastic–perfectly plastic 
axial stress–strain relationship. From the normal force and bending moment the 
normal stresses and strains and curvature of the cross-section can be obtained. 
The normal and shear responses are not independent, interaction between them is 
considered by applying the Coulomb’s friction law. 

For shear, the constitutive equation is described by a bilinear elastic curve 
with characteristic value derived from the normal stress diagram, via the friction 
law. The shear stress and strain are assumed to be uniformly distributed over the 
cross-section. There is a second connection between normal and shear behaviour, 
a feedback, with which the shear response influences the normal one. In case of 
the sliding )0( >γ , the contact surface between brick elements decreases and the 
moment value changes, which results in a new normal stress distribution. This 
feedback is repeated until the shear strain becomes small enough ).( 0γγ <   

The outputs of the calculation are displacements and rotations of the opposite 
sides of the mortar layer. 

 
2.2. Arch  level 

 
The second recursion goes from joint to joint along the arch with five steps at 

every joint. Each of these steps will be described by one compact and one more 
detailed formula and illustrated by a figure where the capital letters refer to the 
global and the lower case letters to the local coordinate system, the subscript 
denotes the serial number of the element and the superscript refers to the 
components of the masonry (mortar or brick). 

Step 1. Determination of the forces and of the moment, acting on the thi  
mortar layer, in the global coordinate system (Fig. 3): 
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Fig. 2. Material model of the mortar layer. 

ni 

 
 

mi 

 
 
 
 
 
 
 
t 
 
 
 
 
 
 
 
 

si 

∆li 

∆ϕi 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∆ti 

σc,max 

fv

τ0
arctg µ 

Coulomb’s friction law 
fv = τ0 + µ.σc,max 

Shear stress-shear strain 
relationship 

γ 

τ 
fv 

γ0 

arctg G1 

arctg G0

Axial stress-strain 
relationship 

ft 
ε 

σ 
fc 

ε0 

arctg E 

γ < γ∗ 
yes 

no 

σc,max 

fv 

σc,max maximum of 
compressive 
stress  

τ0 cohesion 
µ frictional 

coefficient 
γ∗  allowable 

shear strain 

τ shear stress 
γ shear strain 

fv shear strength 
G0 shear modulus 
G1 shear modulus 
γ0 yield shear strain 

σ normal stress 
ε normal strain 
 
fc compressive 

strength 
ft tensile strength 
E Young’s modulus 
ε0 yield strain 



 152 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Illustration of the computational step 1. 
 
 

where *F ],,[ iiii MVH=  is a vector containing the forces ii VH ,  and bending 
moment ,iM  acting on the thi  mortar layer, *F ]d,d,[dd iiii MVH=  denotes the 
vector of loads on the thi  brick element, and iU  and b

iU  are matrices which 
describe the equilibrium between the th)1( −i  and thi  mortar layers and between 
the thi  brick element and thi  mortar layer, respectively. In these matrices, 

ii YX ,0,0 ,  denote the coordinates of the centre point of the surface between the 
thi  brick and the thi  mortar element and 1,11,1 , −− ii YX  denote the coordinates of 

the centre point of the surface between the th)1( −i  mortar and the thi  brick 
element. 

Step 2. Transformation of forces and moment from the global to local 
coordinate system (Fig. 4): 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. Illustration of the computational step 2. 
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where iF  and if  are the vectors of forces and the moment as before in global 
and local coordinate systems, T  is the common rotation matrix, describing the 
relation between the coordinate systems. The slope of the thi  mortar-brick 
joining surface is denoted by .0 i,α  

Step 3. Computation of the relative displacements and rotation of the thi  
mortar layer, as described in Section 2.1 and shown in Fig. 2: 
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Step 4. Transformation of the displacements and rotation from local to global 
coordinate system (Fig. 5): 
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Fig. 5. Illustration of the computational step 4. 
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where *d ],,[ iiii tl ϕ∆∆∆=  and *D ],,[ iiii YX ϑ∆∆∆=  are the vectors of displace-
ments and rotation of the surface between the thi  mortar and the th)1( +i  brick 
element in the local and global coordinate systems, respectively. 

Step 5. Determination of the new position of the th)1( +i  mortar layer 
(Fig. 6): 
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where *
,,,,Z ],,[ 0000 iiii YX α=  and *

,,,,Z ],,[ 1111 iiii YX α=  denote the coordinates 
of the centre points and slopes of the surfaces between the thi  brick and the ith 
mortar and the thi  mortar and the – )th1( +i  brick elements. The arch geometry 
is given by the vectors m

iG  and b
i 1+G  which contain the width ,il  the wedge 

angle ,iγ  and the slope of the thi  element .iβ  
The above five steps must be repeated 1+N  times N(  denotes the number of 

the bricks) from the beginning to the end of the arch, in order to obtain the 
position of the last element. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Illustration of the computational step 5. 
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2.3. Solution  of  the  boundary  value  problem 
 
The applied mathematical method is an earlier version of the PSA (not to be 

confused with the simplex algorithm in linear programming!). PSA has been 
developed for problems in structural mechanics by Domokos and Gáspár [12,13], 
based on the so-called Piecewise Linear method of Allgower and Georg [14]. 

The basic idea of the method is that calculation of the structure is regarded as 
a multipoint BVP. The solution of the BVP can be found in the space which is 
spanned by the non-constant initial conditions and the load parameter. This space 
is the so-called global representation space of the BVP. Each point in this space 
represents a parametric configuration of the initial value problem, but only those 
IVPs satisfy the boundary conditions which are associated with points of the 
equilibrium path. We divide the k-dimensional global representation space into 
simplices, which are defined by 1+k  vertices. 

The values of the function, belonging to the vertices of the simplex, can be 
calculated by any IVP solving algorithm. These values can be linearly 
interpolated inside the simplex. The solution yields a straight line which has two 
intersection points with the surface of the simplex: the initial point and a second, 
exit point. Reflecting the simplex to the plane of the exit point, the continuation 
of the equilibrium path is obtained. 

This computation requires an initial point. Namely, at least one equilibrium 
configuration of the BVP must be known in advance. Usually the trivial, 
unloaded configuration, the origin of the global representation space is used as 
the first point. 

The advantages of the applied method are that there are restrictions neither on 
the material law nor on the order of magnitude of deformations. Thus it allows to 
take into consideration both physical and geometrical non-linearities. In addition, 
not only the ultimate load, but the overall behaviour of the structure, the 
equilibrium path, is obtained. The PSA does not involve iteration, it is based on 
linear interpolation. The method is efficient, because one additional point on the 
equilibrium path requires solution of only one IVP. 

The problem of the masonry arch can be regarded as a BVP whose unknown 
quantities, the forces and moment on the first element, can be found by satisfying 
the boundary conditions. In case of our masonry arch, a four-dimensional space 
is suitable. The parameters of the IVP are ,,, 000 MVH and the load parameter, 

,Q  as illustrated in Fig. 7. The boundary conditions, which must be satisfied at 
the end point of the arch, prescribe that the position of the last element must 
coincide with its position in the unloaded case: 
 

0),,( 0,1000,1 =− XMVHX N , 
 

0)( 010001 =− ,, ,, YMVHY N ,                                     (7) 
 

0),,( 0,1000,1 =−αα MVHN . 
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Fig. 7. Parameters and boundary conditions. 
 

 
3. EXAMPLES  AND  RESULTS 

 
In this section some numerical examples are presented. First, a computation 

for a common arch was carried out. After that, a parametric study was made to 
investigate the effect of different geometrical and material factors and a special 
load factor. The geometrical and mechanical properties of the arch and the load 
are summarized in Table 1. The circular arch is loaded with self weight, frictional 
coefficient is 0.5. 

The load–deflection curve begins with a linear part as shown in Fig. 8. Later, 
with growing applied load it becomes flatter. This change is related to the change 
of the load–bending moment diagram in Fig. 9. If we approach in one or more 
joints to the plastic limit, the rotations start to grow rapidly. This causes 
increasing deflection of the mid-span point. 

Figure 9 shows also the line of thrust and the different positions of the opened 
joints, which correspond to the parts of the load–moment diagram. 

In the elastic part of the diagram, cracks appear and grow at the mid-span 
point and near the supports, at a few bricks above them. As the curve becomes 
flatter, the cracks start growing and further cracks open at the springings. At 
maximum load the biggest cracks are at a few bricks above the supports. Beyond 
the peak of the diagram, the bending moment at the supports is decreasing, what 
corresponds to the closing of the support cracks and appearance of a big crack at 
the mid-span point. 
 

Table 1. Geometry and material of the arch 
 

Geometrical parameters, cm Material parameters, N/mm2 

Free span 200  Compressive strength 10  
Height at mid-span 54  Modulus of elasticity 10 000  
Thickness 12  Tensile strength 1  
Width of the brick 6.5  Cohesion 0.3  
Width of the mortar 1    
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Fig. 8. Load-deflection curve of the arch. 
 
 
 

 
 
Fig. 9. The variation of the bending moment at the support and the position of the opened joints at 
different loading levels. 

 
 
The changing curve of the line of thrust is the result of the loading process. At 

the ultimate load, the line of thrust approaches the edges of the cross-section and 
the arch becomes a mechanism that collapses. 

In the parametric study, the investigated arch was regarded as a starting point. 
Only one of the geometrical or material properties was varied, the others 
remained unchanged. 

The geometry is specified by the arch shape, span, thickness, and height. 
Among the material properties we considered the compressive strength, modulus 
of elasticity, and cohesion. The presence of fill over springing, as a special load, 
also influences the load bearing capacity. The results are plotted in Figs. 10 to 15. 
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Figure 10 shows different load bearing capacities of arches of different 
shapes. The shape of the strongest arch is closest to the line of the thrust for self-
weight. 

Figures 11 and 12 show the effect of the span and arch thickness on the 
ultimate load. 

Uniting these results in Fig. 13, it becomes evident, that not the absolute 
dimensions, but the ratio of them is determinant. This refers to the importance of 
the geometry of the arch. 

 
 
 
 
 
 
 
 
 

 
 

Fig. 10. Effect of arch shape on the load bearing capacity. 
 
 

 
 
 
 
 
 
 

 
Fig. 11. Effect of the span on the load bearing capacity. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. Effect of the arch thickness on the load bearing capacity. 
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Fig. 13. Effect of the ratio span/thickness on the load bearing capacity. 

 
 
Arch height has an advantageous effect on the load carrying capacity up to a 

certain value; after that it declines as illustrated in Fig. 14. 
Figure 15 shows that the amount of fill above springing, similar to the arch 

height, has an optimal value. In spite of the fact that the fill represents an 
increased weight, it enhances the load bearing capacity, because it keeps the 
thrust line inside the arch. 

Increasing linearly the compressive strength, which is connected with the 
increase of the modulus of elasticity, causes linear increase in the ultimate load. 
The variation of cohesion did not affect the load bearing capacity in the 
examined cases, because sliding did not occur. 

 
 
 
 

 
 
 
 
 

 
Fig. 14. Effect of the arch height on the load bearing capacity. 

 
 
 
 

 
 
 
 
 
 
 

Fig. 15. Effect of the amount of fill on the load bearing capacity. 
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4. CONCLUSIONS 
 
In this paper a method for the analysis of masonry arches is presented, which 

can handle both physical and geometrical non-linearities. In contrast to the 
customary finite element analysis, this algorithm uses a special discretization, 
according to the size of the elements, and the results can be found by solving a 
boundary value problem. Information is obtained not only about the ultimate 
load, but also about the failure mechanism and the forces at any joint. Third-
order theory was taken into consideration; therefore the rearrangement of critical 
cross-sections could be observed. 

We found that the geometry of the arch is of crucial importance according to 
the classical theory. The geometrical relation between the thrust line and the 
position of the cross-section along the arch determines the behaviour of the arch, 
the failure mode, and the positions of the hinges. Considering finite compressive 
strength, it was found that the strength and stiffness of the arch have also a 
significant effect on the collapse load. 
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Müüritisvõlvide  uurimine 
 

Réka Macskási 
 
On kirjeldatud müüritisvõlvide arvutamise meetodit, mis vaatleb võlvi jäi-

kadest võlvikividest ning deformeeruvatest mördikihtidest koosnevana. Kivid 
võivad üksteise suhtes pöörduda ja nihkuda vastavuses mördi deformeeruvuse 
mudeliga. Ekstsentrilist survet on kirjeldatud mittelineaarse olekuvõrrandiga ning 
nihkedeformatsioone vaadeldud sõltuvana nihke- ja normaalpingetest. Meetod 
lubab määrata võlvi survetrajektoori ning sobib meelevaldse kuju ja koormusega 
võlvide arvutamiseks. On toodud mitmeid näiteid, mis iseloomustavad võlvi 
geomeetria ja materjali omaduste mõju võlvi deformeerumisele. 

 


