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1. INTRODUCTION

Research in the field of mechanics has long traditions in Estonia. Many well-

known scientists have been working in Tartu University and Tallinn Technical

University and their contribution to the progress of mechanical sciences has been

remarkable. In this paper the review of research in mechanics is limited with the

activities of the Department of Mechanics and Applied Mathematics of the

Institute of Cybernetics which was founded 40 years ago by the Estonian

Academy of Sciences. Additional information about research in the field of

mechanics in Estonia can be found in ['™].
At the end of the fifties, academician Nikolai Alumie, who was at that time

the head of the Department of Mechanics and Applied Mathematics at the

Institute of Energetics of the Estonian Academy of Sciences, started to

investigate the problems of the dynamics of elastic shells. The need for

complicated calculations in the shell theory was one of the motives, besides the

problems of automatics, telemechanics, and operation research, which inspired
N. Alumie to organize a new research centre. The kernel of the Department of

Mechanics and Applied Mechanics was formed by Hillar Aben, Leo Ainola, and

Uno Nigul.
From the very beginning the studies expanded into two main directions:

dynamics of solids and integrated photoelasticity.
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2. DYNAMICS OF SOLIDS

2.1. Dynamic problems in the theory of plates and shells

In several areas of technology and structural mechanics detailed knowledge
about processes in constructions under dynamic and impact loading is needed. At

the Institute of Cybernetics the studies of these processes started with the analysis
of the modes and the spectra of free vibrations of thin elastic shells. The

possibilities of separated construction of different components of the stress state

were elucidated and proved by N. Alumie. Several new approaches to this

problem resulted in elegant solutions explaining the physical essence of the

dynamic behaviour of shells [*°].
In the sixties the studies were devoted to the analysis of linear transient

deformation wave processes in plates and cylindrical shells under given moving
or impact load along the boundaries and to the construction of improved
mathematical models for description of the transient deformation waves in elastic

plates and shells.

U. Nigul handled the problem of impact loading using the Fourier method [°].
Later, several problems of the behaviour of the plates and shells under impact
loading were treated from the viewpoint of propagation of the transient

deformation waves on the basis of the 3D theory of elasticity or improved shell

theories. Combined application of analytical and numerical methods was used for

the integration of the equations of the theory of elasticity by U. Nigul in his

doctoral thesis (1968) and in [*]. The axisymmetric transient process of

deformation, caused by the fast loading of the boundary, was investigated in shells

of revolution within the Timoshenko type shell theory. The jump conditions on the

wave fronts were determined and the initial stage of the shell motion was examined

by the finite difference method by U. Nigul and Naum Veksler [’].
L. Ainola proposed variational principles for several dynamic problems of

mechanics and applied them in the theory of elastic shells and plates ['*"*]. The

corresponding functionals were obtained with the aid of convolution integrals.
Using these methods, the nonlinear and linear equations of the Timoshenko type
theory were derived in general coordinates and the high frequency part of the

vibration spectrum was analysed. These results were generalized by L. Ainola in

his doctoral thesis in 1967.

Based on the results of ['*], U.Nigul proposed an asymptotic theory for

cylindrical circular shells and used it for the analysis of the accuracy of the

Kirchhoff-Love type theories ['*'°]. He generalized also the Lur’e symbolic
method in the dynamic theory of elastic plates [''] and applied it for the analysis
of the accuracy of various approximate plate theories. This method was used also

for studying the dynamic bending of the plates ['*'].
The Tallinn seminars on mechanics, organized by N. Alumie, played an

important role in the progress of mechanics in Estonia and persuaded young
researchers to take up the problems of dynamics. One of the main topics of these

seminars was the propagation of deformation waves.
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The waves caused in elastic shells and plates by fast loading on the boundary
were considered by N. Alumie, U. Nigul, and N. Veksler [****]. Analysis of

transient deformation waves in elastic shells under pressure wave type loading
was the following step. Aleksei Tymanok studied wave propagation in

cylindrical shells caused by pressure moving along the shell axis with constant

speed [***]. N. Alumiie proposed a procedure for the analysis of the intensity of

elastic waves caused by pressure waves in an elastic spherical shell [**]. Later

Mati Kutser in his candidate thesis (1970) and U. Nigul used this procedure for

the analysis of the wave propagation in elastic membranes and shells of

revolution in the case of a pressure wave moving with decaying speed along the

shell [*°]. An exact solution of the wave equation, with a right-hand side of the

type of an arbitrary convex pressure wave, was derived by U. Nigul [*]. Flutter

of plates was considered by Jaan Metsaveer 1%
In the late sixties, engineering practice had set up an interesting problem: do

the acoustic echo-signals from elastic underwater objects contain information

about the elastic properties of the latter. In the following years a great part of the

studies was devoted to the theory of acoustic echo-signals and wave scattering by
elastic bodies. At the same time, the studies of the nonlinear wave motion

continued with growing intensity.

2.2. Theory of acoustic echo-signals and wave scattering by elastic

bodies

The problem under consideration was formulated as a direct linear problem of

mathematical physics under following conditions. An elastic object is embedded

in an infinite acoustic medium. The object is bounded by a smooth convex

surface and may have a cavity. This cavity may contain an elastic or liquid filler.

A pulse, generated by an independent source in the medium, meets the elastic

object and is scattered. The scattered pressure pulse is calculated in order to find

its dependence on the geometrical and physical parameters of the object.
The aim of these studies was theoretical foundation of the algorithms for

distant determination of the parameters of different objects through the analysis
of the echo-signals. The main attention was paid to the following:

— development of new methods for solving the wave scattering problem for

elastic bodies of different shape and internal structure;
— analysis of the physical mechanism of formation of the sound pressure field

scattered by several elastic bodies;
— how the information about an elastic body is reflected in the scattered field

in space and time.

Several analytical and numerical methods were suggested and applied for the

analysis of particular cases of this problem. Traditional methods were applied for

solving the two-dimensional problems of scattering of the pulses on spherical and

cylindrical bodies using the Laplace or Fourier transform in time and separation
of the variables. The series solution for a spherical shell was presented by
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J. Metsaveer as a first step [*’]. The Sommerfeld—-Watson transform was applied
to series solution to obtain the high-frequency (J. Metsaveer) and near-front

asymptotic solutions (N. Veksler, M. Kutser) [*°]. The obtained results were

generalized for the analysis of the scattering of pulses on smooth convex bodies

of cylindrical shape. New asymptotic methods were proposed for the estimation

of the high- and low-frequency sound fields, scattered by smooth convex elastic

bodies (J. Metsaveer [*']). Diffraction problems of the acoustic plane waves on

the elastic spheres were studied by N. Veksler [***]. The methods based on the

principles of the ray theory were used for the description of the high-frequency
field, and the Bubnov-Galerkin method for the low-frequency field. It was

shown that the Sommerfeld—Watson transform technique may be used in case of

relatively low frequencies (J. Metsaveer [***]). The boundary integral equation
method based on the integral Kirchoff formula was generalized for the analysis
of the transient waves in fluids by Anatoli Stulov [36'3B].

Using the integral transform, methods for the determination of the echo-signals
from spherical and cylindrical shells (the empty ones and filled with a liquid) were

elaborated for the processes in a large interval of frequencies (J. Metsaveer, J. Pikk

[***'], N. Veksler, M. Kutser [**]).
Analysis of the direct problems by J. Metsaveer and N. Veksler elucidated the

influence of several parameters of the elastic body on the scattered field. The

regions of frequencies, where the two-dimensional shell theories are valid, were

established. A new kind of the radiated sound pulse, caused by waves

propagating on the boundary of the thin shell and its liquid filler, was discovered.

The resonant nature of the sound pulse scattering was established. Solving a

number of direct problems helped to explain the physical mechanism of the

sound pulse scattering on smooth convex bodies.

Computer analysis showed several interesting phenomena. The echo-signals
consist of a series of pulses retarded in time. Algorithms were elaborated for the

determination of the parameters of the object (e.g., thickness, radius, and physical
constants of the shell) on the basis of the arrival time and form of these pulses
(J. Metsaveer [*™]). The dependence of the echo-signal on a certain parameter of

the object is sufficiently strong for practical usage if the incident pulse has an

appropriate form. Therefore an essential element of these algorithms is an iterative

procedure of determination of the suitable form of the incident pulse.
Even the short overview of the tackled problems, given above, indicates that

the scattering of acoustic pulses from elastic objects and the problems of

applying acoustic echo-signals constitute a specific research area. Results in this

field formed a basis of two DSc theses (J. Metsaveer— 1979 and N. Veksler—
1982) and of the monograph [*°]. In 1982 J. Metsaveer was elected a professor of

TTU and his later results are not reflected in this review. N. Veksler’s attention

was directed mainly to the modal resonance problems and to separating the

resonance components. His results from this period on the resonance scattering
theory are presented in the monograph [*'] and several papers, e.g., [**7'].
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2.3. Nonlinear wave motion

Some problems of the geometrically nonlinear shell theory were considered

by L. Ainola [**]. Physically and geometrically nonlinear Timoshenko type shell

theories were derived and the influence of the nonlinear effects on axisymmetric
deformation waves in shells of revolution was analysed by Andres Lahe [*].

In the beginning of the seventies, stress waves in elastic and thermoelastic

solids attracted Jiiri Engelbrecht’s attention. It became evident that in elastic

media both nonlinearities, physical and geometrical, should be accounted for

simultaneously. Immediately the questions about thermal and viscous effects

arose. The governing wave equations are hyperbolic, but the famous Fourier law

of thermal effects leads to a parabolic equation with infinite wave speed.
Nonlinear theories of thermo-viscoelasticity and thermoelasticity, that take into

account the finite velocity of the heat flux, were derived. Following these

theories, the evolution of one-dimensional pulses was analysed and the criteria of

the shock wave formation and propagation were found [***°].
The “near field” asymptotic solutions of the one-dimensional quasi-linear

wave equation were established making use of the method of successive

integration of non-homogeneous linear equations (U. Nigul [*°]). The “far field”

solutions of quasi-linear systems of equations were found by the modified ray

method that leads to a successive nonlinear evolution equation for each wave

(J. Engelbrecht [°’]). This method took into account the coupling and nonlinear

interaction effects and made possible to analyse also one- and two-dimensional

shock waves.

In the end of the seventies and beginning of the eighties, the basic attention

was paid to the construction of mathematical models for the description of the

transient deformation waves in the viscoelastic (hereditary) and active media.

The corresponding inverse problems of acoustic evaluation of the properties of

such media were studied with the aid of the pulse technique.
It was shown that introducing the modified kernel function, it is possible to

construct mathematical models according to which the one-dimensional

deformation waves in homogeneous viscoelastic media are described by a first

order linear or quasi-linear integro-differential equation instead of the classical

second order equations (U. Nigul [***]). A method for estimating the kernel

characteristics directly from experimental data was elaborated by J. Metsaveer

[°]. An asymptotic solution was derived for layered linear media by Arvi

Ravasoo and U. Nigul [*']. It was shown that taking into account the nonlinear

effects, it is possible to predict weak echo-signals (“noise”) from the interface

between two media which from the viewpoint of the linear theory are

acoustically equivalent.
The traditional model of standard viscoelastic solids does not agree with

experimental data about the memory, dispersion, and dissipation processes.
Therefore U. Nigul proposed a model of the so-called Ei-memory, using three

parameters for describing the memory of the medium [*].
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A. Ravasoo investigated the propagation of a one-dimensional longitudinal
wave with finite amplitude in inhomogeneous hereditary media with faded memory
[®]. Derivation of the constitutive equations of the continuous nonlinear

viscoelastic medium [*] paved the way to the idea to extend the possibilities of

nondestructive testing by using, besides the wave velocity measurement data, also

data about the wave profile evolution [®]. The dependences of the wave

characteristics on the parameters of predeformation were determined. These

dependences enabled to propose an algorithm for nondestructive evaluation of the

inhomogeneous predeformed state of the medium [***’]. A theoretical model of

nonlinear viscoelasticity was checked against experimental data and a modified

constitutive equation for nylon threads was proposed [**]. The possibility to

distinguish physically homogeneous elastic solids from the homogeneous ones

with homogeneous predeformation was demonstrated [°]. A method and an

algorithm for acoustodiagnostics of inhomogeneous and inhomogeneously
prestressed materials were derived using nonlinear effects by wave interactions ["°].

The modified ray method was applied for construction of the two-dimensional

evolution equation of wave beams in nonlinear solids, and the corresponding
dispersion relations were established by J.Engelbrecht ['']. An efficient

numerical algorithm, based on the FFT, for solving one- and two-dimensional

evolution equations, was suggested by Ténu Peipman and J. Engelbrecht ["*].
On the basis of the evolution theory (J. Engelbrecht [*]), two-dimensional

evolution equations were derived for nonlinear longitudinal (T. Peipman ["*]) and

transverse (Urmas Valdek [7°]) waves in solids. U. Valdek derived a novel

evolution equation that describes the skew deformation of a harmonic localized

shear excitation due to the influence of the second harmonic. The structure of

higher harmonics and nonlinear interaction between the waves was explicitly
analysed, resulting in a new insight into the contemporary nondestructive testing.
In physical experiments, the special pattern of the near field of an ultrasonic

transducer must be taken into account and for this purpose the formulation of a

model nonlinear problem proved helpful [’]. A more sophisticated mathematical

model was elaborated by J. Engelbrecht and Robert Chivers ["®”’] for the

diagnostics of soft tissues.

In the early eighties, the attention of J. Engelbrecht was focused on the nerve

pulse dynamics. The solution of the classical nerve pulse equation has

convergence problems. After understanding how the initial telegraph equations
were simplified by neglecting certain terms in the parabolic equation, it was clear

that in earlier studies something was overlooked. Putting neglected terms back

into the initial telegraph equations, the evolution equation was easily derived. It

was rather simple but nevertheless there were no problems with convergence and

the solution reflected the existence of a threshold, refractory length, etc., all

typical properties of a nerve pulse. That gave also an explanation to the existence

of the non-oscillating solution for the real nerve pulse [*’]. The stationary pulse in

a nerve fibre was described by a nonlinear Liénard type equation for which the

absence of limit cycles was proved by Teet Tobias [*'].
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The fact that in seismology some waves are not always attenuated as they
should, draw attention to a model explaining the fracture ofmaterials. This model

was based on the notion of dilatons that are short-lived microdynamic density
fluctuations able to absorb energy from the surrounding medium (J. Engelbrecht,
Y. Khamidullin [***']). When the accumulated energy in a dilaton has reached a

certain critical value, the dilaton breaks up, realizing the stored energy. This

approach was generalized from microdilatons, characterizing fracture, to

macrodilatons that may exist in solids with internal large-scale structure like the

block structure of the Earth crust. The dilaton concept was taken into account

phenomenologically by means of body forces depending upon the deformation.

This leads to a modified Korteweg—de Vries (KdV) equation with right-hand side

depending upon the deformation and nonlinearity of longitudinal and shear

waves.

The concept of internal variables proved useful by studying complicated
dynamic processes. It is known how the damage processes, dynamics of liquid
crystals, etc., are described using this concept. The point is that the internal

variables have no inertia, therefore their governing equations are parabolic. On

the other hand, the wave equation is given in terms of observable variables

(stress, deformation) and therefore their governing equations are hyperbolic. That

leads to mathematical difficulties when the two processes are coupled and the

rates of changes (relaxation times) must be carefully accounted for. This is

exactly the process in a nerve fibre where the recovery variables (phenomeno-
logical, auxiliary) are internal variables in terms of the continua. -

One of the physical effects of microstructures is the dispersion of waves. A

general model for a wave in a dispersive medium is the famous KdV equation.
The problems of solitary waves were studied from the end of the eighties in

collaboration with the University Paris 6. Just before that, some ideas of splitting
the solitons were described bearing in mind the control of solitary waves. This

was an attempt to rule the process of soliton formation analytically by changing
the dispersion parameter so that its influence would split up a soliton into two,
etc. [**].

All these results were summed up in a theory of asymmetric solitary waves

for energetically open systems [*%].
Perturbation method was used to solve the general problem of soliton formation

governed by different types of the right-hand sides [*']. However, it was clear that a

reliable numerical code was to be implemented in order to solve more complicated
(nonintegrable) evolution equations. For that Andrus Salupere chose a pseudo-
spectral method due to its good accuracy and additional information about the

spectral densities at every time step [***’]. The test problem of the KdV equation
gave a new result. High accuracy in the analysis showed the existence of short-

lived solitons appearing in the process of soliton formation from the harmonic

excitation due to the fluctuation reference level. These solitons were called virtual

and their existence was shown also by the inverse scattering method, using
asymptotics and truncation ideas. Emerging of solitons from the harmonic
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excitation showed spectral ordering: the maxima of spectral densities over time are

ordered along Farey tree distribution with changes due to phase shifts during
interaction. An evolution equation for martensitic-austenitic alloys has terms with

quartic nonlinearity (c.f. quadratic for the KdV equation) and cubic plus quintic
dispersion (c.f. only cubic for the KdV equation). The numerical analysis carried

out by A. Salupere [*] showed that several types of positive and negative solitons

and multiple solitons can exist depending on the dispersion parameters, and spatio-
temporal chaotic behaviour of waves is possible. Typical regions were found for a

strong perturbation field in the subspace of parameters of the given KdV system
(Pearu Peterson, A. SalupereP

An interesting problem is how to find the amplitudes of the surface waves

from an observation of the wave pattern that results from the nonlinear

interaction of these waves. It was shown by P. Peterson and E. van Groesen that

the problem can be solved. They constructed an explicit unique solution for the

case of two interacting waves that were modelled by the Kadomtsev—Petviashvili

equation [**], which may be generalized for an arbitrary number of solitons.

2.4. General problems

The experience obtained by analysing nonlinear waves has shown that

nonlinear waves and nonlinear oscillations are neighbouring facets of dynamics
and have common roots. The coherent structures of spatio-temporal processes
were studied in detail, but theirchaotic counterparts are not so explicitly analysed
yet. J. Engelbrecht in his monograph [”’] presented a general philosophical
treatment of complexity and simplicity of nonlinear dynamics. The thread of his

monograph is the following: simple basic arguments result in a complicated
theory that, in turn, needs certain simplifications in order to grasp the physical
phenomena involved. Special attention was paid to the description of the sources

ofnonlinearities.

General theory of nonlinear waves in nonlocal media was summed up and an

overview of nonlocal theories in solid mechanics was given by J. Engelbrecht
and Manfred Braun [*].

The problems of the thermodynamic theory of complex systems were in the

centre of Arkadi Berezovski’s interests. The structuring in complex systems was

studied and the thermodynamical condition of structuring was derived [7]. An

algorithm based on the ideas of cellular automata was developed for the

simulation of one-dimensional heat conduction and thermoelasticity problems
[’*°"]. This algorithm was used for solving several problems of thermomechanics

of the continuum. The method of cellular automata was developed also for two-

dimensional thermomechanics [**]. A thermodynamically consistent method was

derived for analysing the two-dimensional waves in materials with discretely
varying parameters []. The novelty consists in the representation of integral
balance laws of thermoelasticity in terms of contact quantities that describe the

non-equilibrium state of discrete elements which represent a continuous medium.
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Several interesting results were obtained by Jaan Kalda in diffusion theory
['“']. The early evolution magnetic field in high energy plasma devices is

governed by the Hall effect. It was established earlier that in 2D geometry the

magnetic field penetrates into plasma in the form of a shock wave. J. Kalda

showed that this phenomenon persists also in the 3D geometry ['**]. It was shown

that, in the collisionless case, the magnetic field penetrates plasma in the form of

an electron vortex and the magnetic field can be nonlinearly enhanced during the

penetration ['*]. The propagation of a passive tracer in a 2D solenoidal turbulent

flow was studied, assuming existence of a certain spectral law. Depending on the

parameters, both ordinary and super diffusion is possible. The approach, based on

statistical topography of the stream function, was used ['*] and the multifractal

structure of passively converted scalar fields was studied ['”].
The cooperation with Tallinn Piano Factory initiated an investigation of piano

hammers. As a result, a new hysteretic model of piano hammers was proposed
which showed a good agreement with experimental data (A. Stulov ['®'”]). On

the basis of this model a device for measuring the piano hammer parameters was

constructed. This device gives a possibility to investigate the dynamic force—-

compression characteristics of the hammer and, using the hereditary (hysteretic)
hammer model, to find the hammer parameters by numerical simulation of the

dynamic experiments. The analysis of the hammer—string interaction shows that

the nonlinear hysteretic model of the piano hammer represents the vibration

spectra of the struck strings for real pianos which are closer to measured data
than spectra of the nonhysteretic model.

.

2.5. Mathematical modelling of physiological processes

The investigations of nerve fibre dynamics initiated a wide spectrum of research

of the physiological processes. It was shown that mathematical modelling may be

successfully used in cardiac research. The studies of the cardiac phenomena were

focused on three aspects: 1) regulation of the heart by means of electrical activation

of the cardiac conducting system; 2) energy transformation from different chemical

forms to mechanical ones by means of oxidative phosphorylation, intracellular

energy transport, and mechanical contraction of the myofibrils; and 3) mechanical

contraction of the heart wall leading to the efflux of blood into the coronary

system.
Modelling of the cardiac conducting system. On the basis of the evolution

equation for the nerve pulse, a mathematical model for heart dynamics was derived

[''®""l]. The main result was successful detection of the non-reentrant bistability on

the mathematical model of cardiac Purkinje cell. The bistability of the Purkinje cell

seems to be mostly affected by the driving conditions and the level of its

supernormality. As the cardiac Purkinje cells mediate the signal delivery from the

pace-making nodes to the ventricles, the bistability on the cellular level can in

principle induce the bistability on the tissue level leading to the bistability of the

cardiac conducting system during tachyarrhythmias. Therefore, according to the
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results of Olav Kongas, J.Engelbrecht, and Raimo von Hertzen [”2_'ls ], the

bistability phenomenon can complicate the interpretation of ECG recordings and it

should be considered as a factor in modelling on tissue level. Using the Floquet
theory, an analysis of the stability and bifurcation of the model was performed.
Analytical approximations of the largest Lyapunov exponents, which characterize

the stability of a given solution, have been derived. The results were summed up in

O. Kongas’s PhD thesis in 1998.

Mathematical modelling of intracellular energy fluxes. The energy meta-

bolism is the basis of the cell life. The energy fluxes in cardiac cells were studied

on the basis of available data on intracellular diffusion and compartmentation of

enzymes and substrates in the cells. The purpose of this research was to develop
mathematical models of compartmentalized energy fluxes of living cells, using the

results of modern experimental research. The mathematical model of a reaction —

diffusion type two-dimensional system was developed by O. Kongas and Marko

Vendelin in close cooperation with researchers from other scientific centres [''*'""].
This model is based on the synthesis of the Aliev—Saks model of intracellular

energy transduction and the Korzeniewsky model of the oxidative phosphorylation.
The first results obtained in this project clearly indicate importance of the non-

equilibrium state of the creatine kinase system and intracellulardiffusion resistance

of the outer mitochondrial membrane. It was shown on the basis of the study in

silico of compartmentalized energy transfer by the phosphocreatine/creatine system
that there exist multiple parallel regulatory factors controlling the rate of oxygen

consumption in dependence of the workload [''®]. A model that describes

quantitatively the published experimental data on dependence of the rate of oxygen

consumption and metabolic state of a working isolated perfused rat heart on

workload over its physiological range was developed [''7].
Mechanical contraction of the cardiac muscle. The simulation of the heart

wall contraction and energy consumption has to be based on a good mathematical

description of the properties of the heart muscle tissue, active stress development,
and energy consumption by the heart muscle. Since the mechanical deformation

is a macroscopic phenomenon, a macroscopic mathematical model of the

mechanical contraction and intracellular energy turnover is required to describe

the experimental results. The basic assumption used in the model is that the stress

developed in the heart muscle tissue may be divided into two components: active

and passive. The passive stress component is determined by elastic response of

the tissue to the deformation. The active stress is generated by muscle fibres. The

description of the active stress is based on the Huxley-type equations and on the

general mechanochemical formalism of the cross-bridge model of the muscle

contraction (M. Vendelin, J. Engelbrecht ['*°]). The governing parameters were

obtained by comparing the theoretical solution with experimental data, measured

in several scientific centres (isometric stress, quick-release shortening velocity,
and muscle shortening during isotonic contraction).

Besides the cardiac phenomena, the tree-like fractal biological networks were

studied. A fractal model of the human blood-vessel system was proposed as a
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generalized Scheiddeger’s model of rivers, and its fractal properties were

determined by J.Kalda ['*'"'*]. Transport processes in biological fractal

structures have been analysed and the governing scaling laws established. Fractal

dimension of blood-vessel systems was calculated and the propagation of

infection in the lung analysed. Similarity dimensions were calculated for

biological tree-like structures. Optimal way for Monte-Carlo calculation of

fractal dimensions was studied ['**].
A method for analysis of heart rate variability was proposed, based on the

theory of Holter-monitoring, using the theory of fractals. A new Zipf-law-based
multiscaling behaviour of the heart rate variability was discovered []

3. INTEGRATED PHOTOELASTICITY

The aim of the investigations in the field of photoelasticity has been

elaboration of methods which allow the 3D state of stress tobe determined on the

basis of integral optical measurements, similarly to tomography. In his candidate

thesis H. Aben used the method of photoelasticity for investigating the stress

state in buckled plates ['*°]. Trying to interpret the photoelastic measurement data

in this particular case, H. Aben and Endel Saks had to deal with a complicated
phenomenon. Namely, in the buckled plates two stress fields are present:
membrane stresses and bending stresses. Since in the general case the principal
stress directions of these fields do not coincide, a rotation of the principal stress
directions through the plate thickness takes place. Accordingly, the principal
directions of the birefringence, caused by stresses, also rotate through the plate
thickness ['*” '**]. Rotation occurs also in shells and in three-dimensional stress

states.

Since at this time three-dimensional problems were experimentally mostly
investigated using the frozen stress method, the rotation of the principal stress

directions was usually ignored and theoretical aspects related to this phenomenon
had been only superficially investigated. In integrated photoelasticity, rotation of

the principal stress and birefringence directions cannot be ignored and this

phenomenon causes a lot of complications by interpreting the measurement data.

Actually, three-dimensional photoelastic models belong to the so-called twisted

birefringent media L
By investigating optical phenomena in twisted birefringent media, H. Aben

and E. Saks showed that there always exist two perpendicular directions of the

polarizer by which the light emerging from the model is linearly polarized
gO, Experimental determination of these so-called characteristic directions

gives information about the state of stress of a three-dimensional model. The

theory of the method of characteristic directions was elaborated and several

applications were considered (investigation of stress in shells and plates ['*°],
determination of the initial birefringence in twisted fibres ['*"], etc.). The main

results of this theory were presented in H. Aben’s doctoral thesis (1966).
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In the sixties Aivo Saar and Maie Uffert participated in developing methods

for investigating shells of revolution. Namely, A. Saar elaborated a method for

residual stress measurement in shells of revolution, including sandwich shells []
which is important in glass industry by manufacturing sandwich lamp shades.

In the end of sixties it was shown that 1f the photoelastic models are

investigated in a magnet field, due to the Faraday effect, gualitatively new

possibilities arise to determine states of stress which are not constant on the wave

normal (so-called magnetophotoelasticity) [°°7°Š]. For investigation of the

possibilities of magnetophotoelasticity, a magnetooptical polariscope was

designed and built ).
In the seventies Siim Idnurm took actively part in elaboration of the theory of

magnetophotoelasticity and applying it for investigation of stress concentration in

plates under cylindrical bending. Application of other physical fields (the Kerr

effect and the Cotton—Mouton effect) in integrated photoelasticity was also

considered ['*’].
Edvard Brosman developed a method for the determination of the stress

distribution in cubic single crystals of cylindrical and prismatic form, using for

that method of integrated photoelasticity. This method found application by
evaluating the quality of KCII and NaCl single crystals used as scintillators in

space research ['*]. Scattered light method was elaborated for stress measure-

ment in cubic single crystals by Jiiri Josepson ['*'].
The results of the investigations in the field of integrated photoelasticity have

been summarized in H. Aben’s monograph []
In integrated photoelasticity, the test object is a three-dimensional inhomo-

geneous and birefringent continuum which transforms in a certain manner the

polarization of light. Polarization transformations are most complicated when the

principal stress directions rotate along the light beam. In polarization optics,
optical systems which consists of birefringent plates and rotators (rotator is an

optical element which rotates the plane of polarization), are often used. Several

theoretical results obtained in integrated photoelasticity can be applied also for

discrete optical systems. The results involve a theory of the artificial quarter-
wave plates ['**'*"], theory of a defective polariscope ['*’], general theory of the

pile of birefringent plates ['*], etc.

Since the specimen in integrated photoelasticity is inhomogeneous, certain

bending of the light rays takes place. Usually this phenomenon has been

considered as a source of errors. At the same time, measurement of the bending
of the light rays gives also additional information about the stress field. This is

named gradient photoelasticity ['*']. Integrated gradient photoelasticity was used

for complete determination of stresses in planes of symmetry of axisymmetric
bodies by H. Aben and Kalle-Jiiri Kell ['*'*]. Bending of the light rays in

tempered drinking glasses was also investigated ['].
In the general case interpretation of the measurement data in integrated

photoelasticity is complicated. It was shown that in the case of weak

birefringence it is possible to determine on each light ray the average direction of



242

the principal stresses and the integral optical retardation (H. Aben, J. Josepson,
K.-J. Kell ["*'7"*?]). Using these data, for each light ray it is possible to calculate

two integrals: of the normal stress difference and of the shear stress in the plane

perpendicular to the light ray. These integrals permit to obtain information about

some components of the axisymmetric (H. Aben, S. Idnurm, Alfred Puro ['s4])
and, also of the general 3D stress distribution. The methods developed have been

used for the determination of stresses in various glass products like optical fibre

preforms ['*°], bottles, drinking glasses, etc. 5
Since in the case of weak birefringence stress measurement in integrated

photoelasticity is based on two integrals of the stress components, analogy
between integrated photoelasticity and tomography is evident. However, stress

field tomography has many specific features. Classical tomography is scalar field

tomography, i.e., every point of the field is characterized by a scalar. Since stress

is a tensor, integrated photoelasticity is actually optical tensor field tomography
['°"l%]. Application of the magnetic field in the tensor field tomography has been

considered by A. Puro ["’]. Usually it is assumed that residual stress distribution

in axisymmetric glass products is axisymmetric. The measurements have shown

that in axisymmetric glass products residual stress distribution deviates from the

axisymmetric one, often considerably. A method for taking this phenomenon into

account was elaborated by Johan Anton ["**].
Optical equations of integrated photoelasticity are in the general case

nonlinear. Therefore the behaviour of the characteristic directions and

characteristic optical retardation are somehow unpredictable and by recording
integrated fringe patterns a curious optical phenomenon was observed by
H. Aben and J. Josepson. Namely, besides interference fringes sometimes also

interference blots appear ['*”'®]. Interference blots are areas where the

interference fringes lose their contrast or disappear at all. It has been shown that

the reason of appearance of the interference blots is rotation of the principal
stress axes. It is curious that the number of fringes, which enter into an

interference blot, is different from the number of fringes that emerge from the

latter. This phenomenon is named fringe dislocation and it is related to optical
vortices. Theory of the interference blots and fringe dislocations was elaborated

by L. Ainola and H. Aben ('3,
Algorithms of integrated photomechanics for the interpretation of

experimental data in the case of axisymmetric problems of viscous flow and

plastic deformation have been elaborated by A. Puro, H. Aben, L. Ainola and

Karl-Hans Laermann ['**'%]. ,
The laboratory of photoelasticity has wide experience in using the methods of

integrated photoelasticity for determining stresses in glass objects. This

experience has been generalized in a monograph by H. Aben and Claude

Guillemet ['**]. Some specific problems are considered in ['*].
An automatic computer controlled polariscope for stress measurement in

axisymmetric glass articles has been elaborated by J. Anton ['®’]. For correct

interpretation of the measurement data obtained with the automatic polariscope,
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an original version of the phase-stepping method was elaborated ['®*]. This

method gives unambiguously the value of the optical retardation and the

direction of the first principal stress if optical retardation is less than half the

wave-length. Polariscopes, manual or automatic, have been installed in several

glass factories and university laboratories in Italy, France, Holland, and Japan.
For complete determination of complicated stress fields it is often reasonable to

use hybrid mechanics, i.e. a combination of experimental and analytical-numerical
methods. Idea of hybrid mechanics lies in measuring distribution of some stress or

displacement components on the test object, and in calculating other components
by using the measurement data and the relationships of the theory of elasticity.
Integrated photoelasticity allows to determine nondestructively in axisymmetric
objects the distributions of the axial and the shear stress. A hybrid mechanics

method for complete residual stress measurement in axisymmetric glass articles

was elaborated. The method is based on the generalized sum rule that relates axial,
radial and circumferential stress, and contains also an integral of the gradient of the

shear stress (H. Aben, L. Ainola ['*]). The possibilities of this method have been

demonstrated in several papers ['"*'"']. A.Puro and K.-J. Kell have elaborated a

hybrid technique for complete residual stress determination in optical fibre

preforms of arbitrary cross-section |1553.
H. Aben and L. Ainola have shown that there exists a duality relationship

between well-known eguations that describe transformation of the polarization of

light in twisted birefringent media. This duality relationshipis induced from the

duality between the two different parametric representations of the unimodular

matrix that describes the transformation of the state of polarization in a twisted

birefringent medium ['’?]. This work helps to understand better the nonlinear

phenomena that appear in integrated photoelasticity.

4. SUMMARY

The results of studies in various fields of mechanics have been presented in

numerous papers and generalized in 20 monographs and books. The following
monographs should be picked out [**#7:%7388693.142156)"The monographs by
J. Engelbrecht [*] and H. Aben ['*°] were awarded the Estonian Science Prize.

This overview shows how deep analysis, started four decades ago in one field

of science, has initiated a successive generation of new ideas. “Problems should

be difficult, then investigators are happy” — this famous saying by N. Alumée has
been carried along for all these years. Nowadays the studies in mechanics have

direct links with many other fields of science — biophysics and cardiology,
fractality and signal analysis, solitonics and microstructrured materials — proving
again the importance of interdisciplinarity. The traditional fields — photo-
elasticity, impact analysis, continuum theory — involve new problems. In 1999, at

the Institute of Cybernetics a Centre for Nonlinear Studies (CENS) was founded,

uniting the research within the Institute with studies of other colleagues in Tartu
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University, the Centre of Biomedical Engineering of Tallinn TU, and Estonian

Marine Institute (see http://cens.ioc.ee). CENS has an International Advisory
Board, many international contacts, and what is actually the most important facet,

many young people.
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