
Proc. Estonian Acad. Sci. Eng., 2000, 6,3, 186-197

186

A MODEL FOR CYCLIC SHEAR IN PLASTICITY

Kalju KENK

Department of Machine Science, Tallinn Technical University, Ehitajate tee 5, 19086 Tallinn,

Estonia; kenk @meo.ttu.ee

Received 13 February 1998, in revised form 7 March 2000

Abstract. A model for describing the plastic behaviour of a material in cyclic shear is proposed. It

comprises a set of elements connected in parallel, each of which is built up of a linear spring and

viscosity and slip subelements, all connected in series. Appropriate choice ofsubelement properties
enables us to describe cyclic hardening and ratchetting processes of the material without the use of

the hypothesis of kinematic hardening. The capabilities of the model are illustrated with numerical

simulation results.
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1. INTRODUCTION

The complexity of material behaviour in cyclic plasticity induces the use of

structural models with a finite or infinite number of elements ['*].
It might seem that an infinite number of elements enables one to describe the

deformation process more adequately. However, in practice the calculations are

carried out with the use of a finite number of model elements [*]. To determine

the necessary parameters of a model, an approximation of the strain—stress

diagram obtained with one-dimensional active loading is usually employed.
It is important to choose and determine element characteristics of the model to

provide:
1) an adequate strain—stress diagram of the one-dimensional active loading,
2) a sufficiently exact strain—stress diagram of the one-dimensional loading-

unloading-reloading process (including ratchetting [*]),
3) a description of the actual response of the material in the one-dimensional

reversed cyclic loading.
Such loadings make up part of the model proof tests. In fact, only after

proving the validity of the description in these simple cases, it is reasonable to

study the complicated multi-axial loading—deformation behaviour. To describe

cyclic hardening and ratchetting processes, commonly, the aim is to compose a
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model in which each element exhibits both isotropic and kinematic hardening. To

consider the isotropic hardening of an element, a scalar parameter is needed; but

for kinematic hardening, a tensor (back-stress tensor) has to be determined.

Naturally, the determination of the tensor for each element, using only an

approximation of the stress—strain curve in one-dimensional active loading,
seems very dubious. Therefore at least some supplementary tests are needed.

In [*], Chiang and Beck proposed a model (the C-B model), where the yield
surface of an element is totally invariant in the stress space of this element. Thus,
neither kinematic hardening rule nor the back-stress tensor are needed in the C-B

model. The main advantages of this model are structural simplicity and a small

number of element characteristics. However, in spite of rejecting the kinematic

hardening rules, the authors show that this model is usually applicable for

describing the behaviour of a material even in the case of multiaxial loading.
Because the C-B model for the one-dimensional case is based on Masing’s
hypothesis, it cannot describe cyclic hardening and ratchetting processes. Thus,
another model is required.

To describe these processes in cyclic shear, a modified C-B model is

proposed in this paper.

2. SOME PROPERTIES OF THE C-B MODEL

According to the C—B model, the deformation process is controlled by the

total strain. As the deformation process in tests is usually governed by stress, it is

essential to find out whether the C—B model is equivalent to any kinematic

hardening model. The most appropriate mode for experimenting is to load a thin-

walled tube with tension and torsion. In this case only stresses ¢,,,0},,0,; and

strains e,,, €,,, €33, €,,,€,, are to be considered and for the ith element of the

C-B model we obtain the following relations:

1) in the elastic range

doy,(i)=Ede,,, (1)

, E

dclz(l)zmdelz, (2)

2) in the plastic range

doy, (i) = Elde,, — 20,,()dA®)], (3)

4013(0) = [dep -301 ()4, (4)

d) = M%il'—(i)———w&—lz., (5)
201, (I+v)+9ojs(i)
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where Young’s modulus E, Poisson’s ratio v and Mises yield condition

ol (i) +305 (i) -k} =0 (6)

are used and k; denotes the tension yield stress of the ith element. To derive

Egs. (3) to (5), the relations

des, (i) = des, (i) = —wdeyj, (i),

A
>p3

]
.

(7)
ded, (i) =del, (i) = —Ede,”l (i),

were taken into account. Here, the superscripts ¢ and p denote elastic and

plastic strains, respectively.
As shown in [2], in all the cases of loading considered by the authors, the

assumed model, comprising only ten elements, proved to be sufficiently correct

to describe material behaviour.

In the following numerical calculations, the dimensionless initial yield
stresses k,(0) of the elements and other parameters are taken equal to the ones

used in [*]:

k,(0) =0.2638, k,(0)=0.4601, k5(0)=0.6097, k,(0)=0.7448, k5(0)=0.8767,
ke(0)=1.0128, k,(0)=1.1612, kg(0)=1.3347, k0(0)=1.5630, k,,(0)=1.9732,

k;(0) =k;(0)/ 04 0,=207 MPa, E=ll5GPa, v=0.33.

The total stresses can be expressed as

10 1
9

| (8)]
.

21
|allzšzall(l)a Õlz—lozlo'lz(')

I=l —

Using the flow diagram presented in [°] for obtaining the stress response of

the model, we have calculated the subsequent yield surfaces of the elements.

Each prestrain was followed by partial unloading and then by reloadings along
many different straight lines in the strain space. In each reloading, the yield
stresses of elements were registered and the subsequent yield surfaces in the total

stress space were plotted, using the computed results.

The following three prestraining trajectories in the total strain plane ee,,

were considered:

1) the straight line trajectory

e;1 =O, e, increases from Oto 0.005 and then decreases to 0.00125,

2) the stepwise trajectory
at the first step e, =O, e, increases from oto 0.00035,

at the second step ¢;; =0.00035, ¢, increases from Oto 0.005,

3) the stepwise trajectory
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at the first step ¢;;, =O, ¢, increases from oto 0.002,

at the second step ¢, =0.002, ¢ increases from Oto 0.005.

For a series of different prestrains along the above-mentioned trajectories,
Figs. la, 2a, and 3a show the corresponding subsequent yield surfaces in the total

stress space for an element featured by the smallest initial yield stress. As these

surfaces represent the motion of the yield surface of the material in the classical

theory of plasticity, we can see that according to the C—B model, in general, the

yield surface is subject to pure translation, i.e.,

(0, - +3(01, -B)* = k2(0). (9)

Using an approximation of the computed surfaces by Eq. (9), the values of the

centre coordinates & and [ were determined. The diagrams in Figs. Ib, 2b, and

3b show that the movement of the yield surface centre depends on material

deformation prehistory in a very complex way. Thus, as a substantial advantage,
the C—B model does not require any kinematic hardening rules. Therefore, to

describe the cyclic hardening and ratchetting behaviour of a material, a

modification of the C—B model seems to be necessary. In Fig. 4, the dashdot line

represents the C—B model strain—stress diagram for copper in active loading by
torsion. It appears that the hardening of the material takes place until all the

elements are switched on into plastic deformation and starting from strain value

~0.005, the Ideal flow follows.

Fig. 1. Yield surface motion for the prestrains along the straight line trajectory: e;; =O, e,

increases from O to 0.005 with prestrain step 0.00025, after that e, decreases with the step 0.00025

until e;, = 0.00125; a) subsequent yield surfaces, b) dependence of o}, and 8 on e,pZ.
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Fig. 2. Yield surface motion for the prestrains along the stepwise trajectory: at first ¢;, increases

from 0 to 0.00035, after that e, increases from 0 to 0.005 with step 0.00025; a) subsequent yield

surfaces, b) dependence of @ and 8 on e,"l and elpz, respectively.

Fig. 3. Yield surface motion for the prestrains along the stepwise trajectory: at first e, increases

from 0 to 0.002 with step 0.00025, after that e, increases from O to 0.005 with step 0.00025;

a) subsequent yield surfaces, b) dependence of & and 8 on elpl and el”z, respectively.
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From the test diagram (Fig. 8c in Ü it may be concluded that minor linear

hardening will continue even when the strains exceed 0.005. Addition of

supplementary elements with higher yield stresses into the C-B model can lead

to the description of the further hardening of the material but would not enable to

describe neither cyclic hardening (softening) nor the ratchetting process.
Therefore, properties of the elements must be principally changed.

3. DEVELOPMENT OF THE MODEL FOR CYCLIC SHEAR

To describe cyclic hardening, we suppose that the yield stress of the element

will not remain constant and its change is proportional to the Odqvist parameter
n of the element, 1.e.,

k; =k;(0)+ hn(), (10)

where

dn(i) = ,/de;,, (i) de’ (i), (11)

de” (i) are plastic strain components of the ith element, and & is a scalar

proportionality factor. This must be followed by a relevant modification of

Egs. (3) to (5). First, the model has to be modified for the one-dimensional case.

Therefore in this paper only cyclic shear will be considered. Modification

applicable to the multidimensional case is not covered in this paper.

Fig. 4. Strain—stress diagrams for active loading.
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For pure shear, the following symbols are used:

E
T=o'l2, y:2€lz, sz (12)

To calculate stress and plastic strain of the ith element, we suppose that if

2 (i) <k’ /3, orif 72(i)=k? /3 and 7(i)dy <O, then

dz(i)=Gdy, dy"(i)=o, (13)

and in the opposite case

dz-(i);—_fl, dy”(,‘):&_ (14)
JšG+h \/—6_G+"h

In Fig. 4, the dotted line represents the strain—stress curve calculated from

Eqgs. (13) and (14) for active loading, when h =345 MPa. This value of h was

optimal to obtain the above-mentioned small linear hardening observed on the

test curve.

Figures 5 and 6 show the diagrams calculated for the case of reversed stress

cycles of two amplitudes. After the hysteresis loop was practically stabilized on

the first amplitude 112 MPa, the

amplitude of cycling stress was

increased to 120 (Fig. 5) or 123 MPa

(Fig. 6). Then, cyclic hardening
restarted. Figure 7 shows the strain—-

stress diagram for initial reversed

stress cycles of the amplitude
120 MPa. According to these

diagrams, the hysteresis loops are

symmetrical with respect to zero strain

if not all of the elements have plastic
strains, otherwise the hysteresis loop
would not be symmetrical to zero

strain. For example, the whole

hysteresis loop would then be located

in the region of positive strains

(Fig. 7). It should be noted that it is not

possible to describe this nonsymmetry
by adding supplementary elements

with higher initial yield stresses to the

C-B model.

Fig. 5. Strain—stress diagram of reversed

cycles of stress for two amplitudes: 112 and

120 MPa.
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Such kind of nonsymmetry is

a well-known property of many

materials, proving that the

described improvement of the

model was necessary.
In Fig. 8, a strain—stress

diagram is depicted for stress

cycling from O to 120 MPa. It can

be seen that in spite of the twenty
applied cycles, no ratchetting
takes place (dotted curve) and a

steady state is reached at once.

Fig. 6. Strain—stress diagram ofreversed cycles of stress for two amplitudes, 112 and 123 MPa

Fig. 7. Strain—stress diagram of reversed cycles of stress

for amplitude 120 MPa.
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To describe ratchetting, we suppose that each element consists of a viscosity
subelement, connected in series with the elastic and slip subelements of this

element. We assume that the viscosity subelement of the ith element has a

constant viscosity threshold stress v;, usually different for each element. In the

calculations below, v; =ak;(0) was used. Here & is assumed to be a material

constant. To calculate stress and plastic strain, we propose the following
relations.

1. 72(i) <v2 [3:

dz(i) = Gdy,{ TS) .
(15)

dy” (i) =O.

2.1 võ/3<7*i)<k2/3, or if ri)=k2/3 and 7(i)dy<O, or if

12(i)=k2/3 and 7(i)dy >0 and |dy] < udr/372() -v2:

dz(i)= G[dy— pdt,/312(i) —v}signr(i)], (16 )

dy” (i) =O.

3.1 f 72(i)=k? /3 and 7(i)dy >0 and |dy|> udty[32%() —v? :

Fig. 8. Ratchetting for stress pulsation from 0 to 120 MPa: — - — C-B model, — — — model with

isotropic hardening (h =345 MPa), —— model with isotropic hardening (k=69o MPa) and

viscosity.
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dz(i) = —G-h—[dy- ;zdt,/3r2 (i) —v]signr(i)],J6G +h
i

-dy” (i)= —Jgigg;—l;[dy— udt,/3rz(i) — v,?signr(i)].
In Fig. 4 the solid line represents the corresponding strain—stress diagram in

active loading for

dy]=2-107, x=sB-10"71/MPas, h=69OMPa, a=o.9, dr=o.ls.

This diagram practically coincides with that plotted for s=34SMPa and

u =O.

In Fig. 8, the solid line illustrates the corresponding ratchetting process in the

cycles of shear stress 7 from O to 120 MPa. In the beginning, the ratchetting rate

is not constant but approaches a constant value.

The model based on Egs. (15) to (17) describes also the cyclic hardening
process, as shown in Figs. 9 and 10. Again, the stabilized hysteresis loops are

symmetrical with respect to zero strain if not all elements have plastic strains,
and are nonsymmetrical in the opposite case.

Fig. 9. Strain—stress diagrams of reversed cycles of stress for amplitude 114 MPa: — — — model

with isotropic hardening (h = 345 MPa), —— model with isotropic hardening (h = 690 MPa) and

viscosity.
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4. CONCLUSIONS

The proposed model for cyclic shear describes complex processes of material

behaviour such as cyclic hardening and ratchetting. This is reached by an

exceptionally small number of simple parameters and without use of the complex
kinematic hardening rules.
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TSÜKLILISE NIHKE MUDEL PLASTSUSTEOORIAS

Kalju KENK

Et kirjeldada tsiiklilist nihet plastsusteoorias, on töös [7] esitatud mudelit

(mudeli ilga element loetakse selle elemendi pingeruumis ideaalselt plastseks)
tiilendatud jdrgmiselt: 1) mudeli element loetakse selle elemendi enda pinge-
ruumis lineaarselt isotroopselt kalestuvaks soltuvalt deformeerimise teepikkusest
elemendi deformatsiooni ruumis ja 2) mudeli igasse elementi lisatakse viskoosne

allelement, milles deformatsioonid arenevad ainult juhul, kui elemendi nihke-

pingete intensiivsus on suurem viskoossuslivest (viimane on iildjuhul igal
elemendil erinev) ja elemendi viskoosse deformatsiooni kiirus postuleeritakse
vordeliseks ruutjuurega elemendi nihkepingete intensiivsuse ja viskoossusldve

ruutude vahest. Need tidiendused voimaldavad saadud mudeli abil kirjeldada ka

materjalide tsiiklilist kalestumist ja tihesuunalise plastse deformatsiooni kogu-
nemist pulseerival koormamisel.
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