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Abstract. A method for ultrasonic nondestructive testing of nonlinear elastic materials
(structural elements) is elaborated. Simultaneous propagation of two longitudinal waves, their
reflection and interaction data are utilized. Convenient choice of the wave frequency makes
it possible to analyse the data recorded on the boundaries of the specimen in terms of wave
harmonics. A detailed analysis of the harmonics evolution and interaction is presented. It is
shown that amplitudes of the harmonics and phase shifts are sensitive to material properties.
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1. INTRODUCTION

The piezoelectric effect discovered by brothers Pierre and Jacques Curie
in 1880 ['] made it possible to pose in principle the ultrasonic nondestructive
testing (NDT) problem. First attempts to use this possibility were made in 1913
[?] and 1931 [3]. After that, intensive application of ultrasound for material
characterization began [']. The result is that ultrasonics plays nowadays a
prominent role in NDT. It permits the development of effective and versatile NDT
methods for evaluating mechanical properties of materials, for the determination of
their micro- and macrostructure, flaws, inclusions, etc. Most practical applications
of ultrasonics are related to solid materials. Ultrasound as a travelling wave is
defined by two basic parameters: velocity and attenuation. A majority of NDT
methods measure these parameters by the conventional time-of-flight method and
treat the recorded data on the level of the linear theory [*]. These methods break
down when the sample is very thin, the wave velocity is frequency-dependent,
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and the material has complicated multiparametric properties. Two first limitations
of the time-of-flight method can be eliminated by the use of Fourier transform
techniques [°]. The elimination of the last limitation demands extraction of
additional information from the wave velocity and attenuation measurement data.
One possibility is to record and analyse the nonlinear effects of wave propagation
[6:7]. Another one is to make use of the more complicated ultrasonic NDT methods
[8,9].

In this paper, a method for NDT of nonlinear elastic materials is proposed.
The basic idea is to utilize the nonlinear effects that accompany simultaneous
propagation of two waves in the material ['°]. The method may be regarded
as the first stage of the project to elaborate a relatively simple method for
NDT of materials with complicated properties. The data about simultaneous
propagation, reflection, and nonlinear interaction of waves in a homogeneous
nonlinear elastic material constitute the reference data for the advanced methods.
Similar simultaneous wave propagation problems have been studied by several
authors ['']. The peculiarity of the approach in this paper is that due to the progress
in analytical computation software (Maple V), the wave interaction problem is
described by an analytical solution to the nonlinear wave equation. This enables
us to follow the whole process of two wave nonlinear interaction in the material
analytically and to analyse the evolution of the nonlinear effects in detail.

The proposed NDT method makes use of two harmonic waves excited on
the opposite surfaces of the material (structural element) in terms of particles
velocity and recorded on the same surfaces in terms of stress. It clears up that
the appropriate choice of the wave frequency enables one to analyse the recorded
data in terms of wave harmonics amplitudes and phase shifts. The recorded values
of these wave characteristics are dependent on material properties. Since the
analytical expressions relating wave characteristics with material properties are too
cumbersome, the corresponding plots are computed and analysed. As the result, an
algorithm for nondestructive material characterization is proposed.

2. PROBLEM FORMULATION

A specimen with two parallel traction free surfaces is considered. The material
of the specimen is isotropic, homogeneous, and elastic, characterized by the density
p, the Lamé coefficients A and p, and by the third order elastic coefficients vy, vy,
and v3. This characterization corresponds to the five constant physically nonlinear
theory of elasticity ['?]. The one-dimensional nonlinear wave propagation process
in the specimen in the range of small but finite deformations is described by the
equation of motion [17]

1+k Ux(X,8)] Uxx(X,t) —c 2 Uu(X,t) =0, (1)

where U(X,t) denotes displacement vector. The indices after the comma, X and
t, indicate differentiation with respect to the Lagrangian rectangular coordinate X
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and time ¢, respectively. Equation (1) is derived using the Kirchhoff pseudostress
tensor and it takes the geometrical nonlinearity of the problem into account.
The coefficients of Eq. (1),

ki =3[1+2ko(s + 1 +13)], E=(kop)™l, ko=(A+2p)7% (@

are functions of the material properties.
One-dimensional harmonic waves are excited in the specimen of thickness L in
correspondence with the initial and boundary conditions

UX,0) = UuX,0)=0,
U:0,t) = eapH(t)sinwt, 3)
UiL,t) = earH(t)sinwt.

Here H (t) denotes the Heaviside function, ¢, ag, and ay, are constants, and w is the
frequency. The constant ¢ is regarded as a small parameter (¢ < 1). Making use
of the perturbation theory, the analytical solution to Eq. (1) is derived in the form
of a series [1?]

U(X,t) =) eUM(X,¢). )
n=}%

Solution (4) describes simultaneous propagation of the two waves in
homogeneous isotropic elastic medium. The wave excited on the surface X = 0
propagates in positive direction and the wave excited on the surface X = L in
negative direction of the X axis (Fig. 1). Solution (4) is valid for the initial stage
of the wave profile distortion (0 < ¢ < 2L/¢) and it is supposed that in this initial
stage the distortion of the wave profile is weak and the shock wave is not generated.

4
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Fig. 1. Longitudinal wave interaction in a homogeneous nonlinear elastic material,
1
A(() ) = E0g.
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3. WAVE INTERACTION

The wave process in the material is excited in terms of particles velocity
(Eq. (3)). Consequently, it is convenient to analyse the wave propagation,
reflection, and interaction on the basis of the solution (4) also in terms of particles
velocity:

UuX,8) = Y UM (X, 1). (5)

=1

The three first terms in Eq. (5) will be analysed. Following the perturbation
procedure [1], the first term in solution (5)

eUM (X, 1) = AV sinwe + AV sinwn — AV sinwd — AV sinw¢  (6)

describes the linear wave process in a homogeneous physically linear elastic
material. In Eq. (6), A(()l) = € ayp, A(Ll) = ¢ ar, and functions &, 7, 6, and ¢

are expressed by formulae

E=t—X/ec, n=t—L/c+ X/c,
0=t—-2LJc+X[c, (=t=LJc—X]/c. (7

The linear propagation, reflection, and interaction of waves are characterized
by four constituents of Eq. (6). The first one describes the propagation of the wave
excited on the surface X = 0. It propagates in the positive direction of the X
axis with the wavefront shown by the line A-B in the X /L, tc/L plane plotted
in Fig. 2. The reflection of the wave from the surface X = L is described as a
superposition of the two waves determined by the first and the third term in Eq. (6).
The line B-C' in Fig. 2 marks the front of the reflected wave determined by the
third constituent.

The second constituent of Eq. (6) describes the wave excited on the surface
X = L simultaneously with the wave mentioned above. It propagates in negative
direction of the X axis with the front D—FE (Fig. 2). The reflection of this wave
from the surface X = 0 is described also as a superposition of the two waves
determined by the second and the fourth term in Eq. (6). The reflected wave
propagates with the wavefront E—F' in accordance with the fourth term.

The region CEGBF in Fig. 2 is the region of wave interaction. The first term
in Eq. (5) describes this interaction as a superposition of corresponding waves. In
the region EGBH it is determined by the first and the second term in Eq. (6), in
the region BF H by the three first terms, in C'EH by all the terms except the third
one, and in C' H F by all the terms of Eq. (6).

The nonlinear effects of wave propagation, such as evolution and interaction of
harmonics (Fig. 3), are described by the second and the subsequent terms in Eq. (5).
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Fig. 2. Front pattern of the wave components; first and second order small terms in Eq. (5).
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Fig. 3. Evolution of the second order nonlinear effects in a homogeneous elastic material.
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In the case of wave propagation in a homogeneous nonlinear elastic material, the
second term ['°]

2 UP(x,1) = UP(X,t) + UP*(X,1) ®)

does not correct the description of the first harmonic but describes formation of
the second harmonic. The second harmonic is caused by two factors. First, as

a nonlinear effect of wave propagation, described by the function U’(tm(X ,t) in
Eq. (8), in the form

U1(?¢)1(X7 1 = A(()Z) - Agz) sin 2wé + A§2) sin 2wn
+Ag2) sin(2wé + x3) + A‘(f) sin(2w( + x4)- (€))

Here A(()z) denotes the nonperiodic term and the other four terms describe the
evolution of the second harmonic in the physically nonlinear elastic medium. The
second term determines the evolution and propagation of the second harmonic
in positive direction of the X axis with the front A-B on the X /L, tc/L plane
(Fig. 2). The third term determines the same phenomenon in negative direction
of the X axis with the front D-FE. The absence of phase shifts in arguments of
these terms means that the influence of the wave interaction on phase velocity of
the second harmonic in the region EGBH (Fig. 2) is a higher order small effect.
It is described by the third term in Eq. (5).

Two last terms in Eq. (9) describe the propagation of the considered above
part of the second harmonic after reflection. Phase shifts in these terms, y3 and
X4, are functions of the spatial coordinate and they are caused by the interaction
between the incident and the reflected wave. This phenomenon is studied in detail
on the basis of the ray acoustics approach in ['']. Consequently, the fronts of wave
components described by these terms have small deviations from lines B—C' and
E-F in Fig. 2, respectively ['].

The second factor of the second harmonic formation is nonlinear interaction
between different waves in the same region of the X /L, tc/L plane. This nonlinear

effect is described by the function U (X, t) in Eq. (8):

UP?(X,t) = AP sinfw(€ +¢) + xs] + AL sin[w(8 + ) + xo]
+AP sin[2w(2¢ — €) + x7] + AL sinf2w(20 — 1) + xs]
+A§)2) sin[w(3¢ — &) + xo] + A%) sin[w (30 —n) + x10). (10)
Phase shifts x; (j = 5,6,...,10) are functions of the coordinate X and they
characterize the phase velocity [7]. Consequently, the nonlinear interaction of
different waves affects the phase velocity of harmonics formed by this interaction.

This result has been described also by other authors ['!]. Fronts of wave
components described by the first and the third term in Eq. (10), are close to the
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line F—F', and by the second and the fourth term are close to the line B—C'in Fig. 2.
The fronts of the last but one and the last term are roughly the lines /-K and J-K,
respectively.

The third term in Eq. (5) may be expressed as a sum ['°]

e UP (X, 1) =P (X, 1) + U (X, 1) + UL (X, ). (11)
The first term in this sum

AR sin(wé +x1 ) + A5 sin(wn + x5V )

AP sin(wd + x§) + AP sin(w¢ + X )

Aga) sin(3wé + x?) ) + A(({Q') sin(3wn + X?) )

A(73) sin(3wl + x(73) ) + A,(;S) sin(3w( + ng) ) (12)

U, 6, = A0

+ + + 4+

describes the influence of the physical and geometrical nonlinearity of the problem
on the first harmonic propagation and, in addition, the third harmonic evolution.
Fronts of wave components in Eq. (12) coincide roughly with the fronts of the
terms in Eq. (9) with analogous arguments and they are plotted as lines A-B,
B-C, D-E, and E-F in Fig. 4.
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Fig. 4. Front pattern of the wave components. Third order small terms in Eq. (5).
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The second term

U (x,t) = AP + AY) sinfw(2e + ¢) + x1 ]+ AD sinfw(2€ + 0) + X\
+A sm[w 26 +1n) + ] + A sin[w(Z{ n) + (3)]
+A14 sinfw(2¢ — 6) + x14] + A15 sinfw(2n + €) + ]
+A16 sinfw(2n + 0) + x16 )+ AD sinfw(2n +¢) + <3)]

8 sm[w(27] &+ X18 ] + A(I%) sinfw(2¢ — 0) + (3)]

0 sm[w(27] ¢)+ Xg%)] + A(s) sin[w(26 + &) + X21 ]

+A22 sin[w(20 + n) + X22 ] + Ag3 sinfw(260 + ¢) + (3)]

+A24 sinfw(20 — €) + x5 ] + Aj sinfw(20 —C) + “”]

+A sinw(2¢ +€) + ‘3)] + A27 sinfw(2¢ + 0) + x57]
( )

Ags sinfw(2¢ —n) + Xzs ] + Azg sin[w(2¢ +n) + X29]
(13)

describes propagation of the first and the third harmonic components that originate
from nonlinear interaction of various waves in different regions of the X /L, tc/L
plane.

The components of the third harmonic that originate from nonlinear interaction
of the three different waves or the wave with the frequency higher than 2w, are
collected into the term

U x,t) = A + A sin[w(30 —n+¢) + xa1]
AD sinfw(3¢ — € +0) + x32] + AY sinfw(5¢ — 26) + x33]

+ A sinjw(560 — 2n) + x34] + A sinfw(4¢ — €) + X35 ]-
(14)

Possession of the analytical description for the third term in Eq. (5) enables
us to plot the front pattern (Fig. 4) for the components of the third term
specified by Egs. (12)—-(14). This front pattern characterizes the complexity of the
nonlinear wave interaction process. It is interesting that some third order interaction
components propagate considerably faster and some of them considerably slower
than the wave in the non-interaction region. For example, the fronts of the terms in

Eq. (13) with amplitudes Ag‘? and Ag37) are shown in Fig. 4 by lines O — P and
N — @ and the fronts of terms with amplitudes Ag) and Ag35) by lines L — S and
M — R, respectively.
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4. MATERIAL CHARACTERIZATION

Investigation of wave motion in homogeneous nonlinear elastic materials is
of especial importance since the obtained results may be used as reference data
for elaboration of methods for characterization of materials with complicated
properties. Wave propagation, reflection, and nonlinear interaction in nonlinear
elastic materials has been studied by many authors (see references in ['!]). Progress
in computer technology and in the development of symbolic software (Maple V,
Mathematica 3.0, etc.) makes it possible to study this problem on higher level.
In this paper the analytical solution derived in ['°] is used. The advantage of
this approach is that all effects of wave propagation may be analysed on the
basis of analytical expressions. The effects that accompany wave propagation
are dependent on the physical and geometrical properties of the material. The
analytical solution analysed in this paper enables us to derive an analytical
description of the wave characteristics as a function of the material properties. This
solution may be used as a theoretical basis for the following NDT methods.

1. The modified time-of-flight method. The ultrasound in the form of a
harmonic wave is excited on the surface X = 0 of the specimen in correspondence
with boundary conditions (3) where a;, = 0, i.e., the velocity of the material
particles on the surface X = L is supposed to be equal to zero. The wave process
is recorded on the surface X = L in terms of stress. The stress is characterized
by the derivative of the displacement vector U (X, t), determined by Eq. (4), with
respect to the spatial coordinate X. The modification of the time-of-flight method
consists in recording not only the flight time but also the distorted wave profile.
The distorted wave profile is analysed in terms of harmonics amplitudes and phase
shifts. Similarly to the procedure described in [°], the solution (4) is used to
compose the plots of the wave characteristics versus material properties. The
analysis of these plots enables us to propose an algorithm of nondestructive material
characterization on the basis of the recorded wave propagation data.

2. The reflected wave method. The wave process is excited on the surface
X = 0 of the specimen in terms of particles velocity in correspondence with the
boundary conditions (3) where a;, = 0, and it is recorded on the same surface in
terms of stress. Separation of overlapping waves on the boundary is described, for
example, in ['?]. The material characterization procedure is similar to the procedure
of the previous method.

3. The two waves interaction method. Two harmonic waves are excited
simultaneously on two opposite parallel surfaces of the specimen in correspondence
with the boundary conditions (3) in terms of particle velocity (Fig. 1). In
our possession are analytical expressions for functions U(X,t), U4(X,t), and
U x(X,t) in the whole X /L, tc/L plane. Therefore, in principle, it is possible to
record and analyse wave propagation and interaction in any section of the specimen.
Two cases may be useful in applications.

First, the NDT of rods. Waves are excited simultaneously at both ends of the
rod. The ratio of the rod diameter to the wavelength enables us to describe the
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wave propagation as one-dimensional. The wave motion is recorded in arbitrary
rod sections in terms of U 4(X, t) or U x (X, t). The plots of the material properties
versus wave characteristics for the selected sections of the rod are computed. The
analysis of these plots enables us to solve the ultrasonic material characterization
problem.

Secondly, the more general case. The two waves interaction method may be
applied if there is an access at least to two parallel traction free surfaces of the
specimen. Let us discuss this case in more detail.

Two waves are excited simultaneously on parallel surfaces of the specimen in
terms of the particle velocity (see boundary conditions (3)) and they are recorded
on the same surfaces in terms of stress. The recorded data are analysed in the
time interval 0 < tc¢/ L < 2 (Fig. 3) making use of the analytical expression
for the function U x(X,t) determined on the basis of Eq. (4). The nonlinear
oscillation on the specimen boundaries may be considered as a sum of the linear
constituent (first order effects) described by the first term in Eq. (4), of the second
order nonlinear effects (second term in Eq. (4)), of the third order nonlinear
effects, etc. It is possible to distinguish two different intervals, 0 <te¢/L < 1
and 1 <tc /L < 2, for all these boundary oscillations (Fig. 5). In all cases the
maximum amplification of the oscillation amplitude occurs in the wave interaction
interval 1 < ¢t ¢/ L < 2. From the point of view of NDT it is essential that the
inhomogeneity in material properties may be easily identified by the difference in
oscillations on both boundaries. In the considered case of a homogeneous nonlinear
elastic material these oscillations are theoretically identical. The profile of the
oscillation and its amplitude depend on material properties. The problem is how to
determine these dependences.

The analysis of the solution (4) leads to the following method for ultrasonic
NDT of homogeneous nonlinear elastic materials. It can be shown that if the initial
frequency of the excited waves satisfies the condition

w=27ncn/L, (15)

where n in an integer, the approach used in the modified time-of-flight method [%]
may be adapted. In this case the analytical solution (4) may be presented on the
boundaries of the specimen in the form

Ux(s,t) = Ao + Ay sin(wT + ¢y) + Az sin(2wT + ¢2) + Az sin(3wT + ¢3). (16)

Here 7 =t — L/c, Ay is the non-periodic term, amplitudes A; and phase shifts ¢,
have different constant values in various boundary regions plotted in Figs. 2 and
4. Constant s is equal to zero on the boundary X = 0 and to L on the boundary
X ==,

The physical meaning of the condition (15) is that the frequency of the excited
waves must be chosen so that the number of wave periods on the specimen
boundary is equal to the integer in the time interval 0 < t¢ /L < 1.
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The nondestructive characterization problem of a homogeneous nonlinear
elastic material may be solved on the basis of Eq. (16) as follows.

The specimen of the homogeneous nonlinear elastic material is characterized,
besides the dimensions, by the density p, by the elastic coefficients of the second
order, A and p, and by the elastic coefficients of the third order, v, vo, and v3.
The peculiarity of the one-dimensional problem is that the elastic coefficients are
grouped in the governing equations (1) and (2), and the elastic properties of the
material may be characterized by the parameters

a=X+2pu, p=2wv+v2+uv3). (17)

The parameter « characterizes linear elastic properties and the parameter [
nonlinear elastic properties of the material, respectively.

The recorded oscillation on the specimen boundaries is described by Eq. (16)
and it is characterized by the frequency w, by the non-periodic term Ay, and by the
amplitudes and phase shifts of the harmonics Ay, Ay, A3, ¢1, ¢, and 3.

If one tries to solve the problem of characterization of the homogeneous
nonlinear elastic materials on the basis of one-dimensional longitudinal wave
propagation and interaction data, i.e., using Eq. (16), at his disposal are six basic
functions Ay, As, A3z, ¢1, ¢2, ¢3, and one constant w. The number of material
parameters to be evaluated is three — p, «, and f3.

The conclusion seems to be that it is possible to determine completely the
properties of the material on the basis of wave propagation data. The success
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depends on the way how material properties are related to the wave characteristics.
In the considered case these dependences are clarified in both time intervals
0<te/L <1land1<tec/L < 2on the specimen boundaries.

The nonlinear expressions relating wave characteristics with material properties
are too cumbersome for analysis. That is the reason to analyse these relations on
the basis of the numerical experiments. As an example, a specimen of duralumin is
considered and the sensitivity of wave characteristics on the deviation of material
properties from the basic duralumin properties, defined as p = 3000 kg/m3,
a = 100 GPa, and f = —T750 GPa, is studied. The thickness of the specimen
is 0.1 m.

Two longitudinal sine waves with the same frequency w, amplitude ag =
—ay, = —c, and constant ¢ = 10~ are excited simultaneously on the surfaces
X =0and X = L = 0.1 m in accordance with the boundary conditions (3),
i.e., in terms of particle velocity. The wave process is studied on the same surfaces
during the time interval 0 < t¢/L < 2. Itis recorded in terms of stress and analysed
in terms of U x(X,t) defined by Eq. (16). The plots of wave characteristics
(amplitudes A; and phase shifts ¢; in Eq. (16)) versus material parameters p, c,
and 3 are computed.

Numerical simulation verifies the fact that the harmonics amplitudes are
strongly dependent on the linear (o) and nonlinear ((3) elastic properties of the
material. These dependences for two first harmonics are plotted in Figs. 6
and 7. They are qualitatively similar in both time intervals 0 < tc¢/ L < 1 and
1<te/L < 2. Exception is the dependence of the first harmonics amplitude
on the parameter « that has different sign of the curvature in these intervals. The
sensitivity of harmonics amplitudes to the variation of the parameters o and 3 in
both time intervals on the boundary is about the same. Only sensitivity of the first
harmonics amplitude is about ten times higher in the interval 1 < tc¢ /L < 2
compared with the sensitivity in the interval 0 < £¢ /L < 1. Essential from
the point of view of NDT is that the wave interaction amplifies the first harmonics
amplitude about ten times, the second harmonics amplitude about hundred times
(Fig. 5) and the third harmonics amplitude about thousand times. Consequently,
despite the same sensitivity of the harmonics amplitudes to the variation of elastic
properties in both intervals, the absolute value of the amplitude variation is much
larger in the wave interaction interval than in the interval 0 < t¢ /L < 1.

The sensitivity of the first harmonics phase shift to the variation of the
parameter [ is about three times higher than to the variation of the parameter
a in the wave interaction interval. The homogeneity of the elastic material
is characterized by the fact that the phase shift of the second harmonic in a
homogeneous elastic material is equal to zero. This fact is pointed out also in
[]. In the considered case, the other phase shifts are not sensitive to the variation
of the material properties.
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Fig. 6. First harmonics relative amplitude response to the variation of linear and nonlinear
elastic properties of the material.
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Fig. 7. Second harmonics relative amplitude versus material elasticity parameters.

The analysis of the plots points out that the wave characteristics are not sensitive
to the material density variation. The reason is the satisfaction of the condition (15)
where it is necessary to compute a new value of the velocity ¢ on the basis of
Eq. (2) for every variation of material properties. The result is that by this method
of nondestructive material characterization the material density must be determined
by a non-acoustic method.

In order to illustrate the possibility to characterize the nonlinear elastic
materials on the basis of Eq. (16), the following problem is posed. It is assumed
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that there is a necessity to determine the linear and nonlinear elastic properties of
a homogeneous elastic material. The visual inspection enables one to determine
roughly the material properties. These are taken as the basic properties. Possible
deviation of the material properties from the basic properties is estimated. The
plots of wave characteristics versus material properties for the considered case are
computed using Eq. (16). The analysis of these plots shows that the problem may
be solved on the basis of two plots: (i) the relative amplitude of the first harmonic
versus parameters « and 3 (Fig. 6) and (ii) the relative amplitude of the second
harmonic versus parameters o and 3 (Fig. 7). The plotted amplitudes are strongly
sensitive to the variation of both parameters, o and 3. Consequently, the curves
in Figs. 6 and 7 must be approximated by a set of two nonlinear equations. The
solution of this set of equations gives needed values of the parameters, i.e., solves
the posed NDT problem.

5. DISCUSSION AND CONCLUSIONS

The topic of this paper may be considered as a part of the project to elaborate
a relatively simple method for NDT of materials (structural elements) with
complicated properties. The ideas presented in [!°] are developed bearing the
requirements of NDT in mind.

The simultaneous nonlinear propagation of two longitudinal waves in an
isotropic homogeneous nonlinear elastic material is studied in detail. The evolution
of the nonlinear effects of wave propagation and interaction is clarified. The
presented front patterns of wave components in Figs. 2 and 4 characterize the nature
of the nonlinear wave process in the homogeneous material and these patterns
may become a good reference data to distinguish materials with more complicated
properties.

Three different possibilities to use the considered nonlinear wave propagation
data in NDT of materials are proposed. The two waves interaction method is
discussed in detail. This method may be efficient by NDT of inhomogeneous
materials. The possibility to use this method for nondestructive characterization
of homogeneous nonlinear elastic materials is shown. It is noticed that convenient
choice of the excitation frequency enables one to transform the description of the
wave process on the boundaries into the form of harmonics. The dependence of
harmonics amplitudes and phase shifts on the material properties is analysed on the
basis of corresponding plots. An algorithm for nondestructive characterization of
homogeneous nonlinear elastic materials is proposed.
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MITTELINEAARSETE ELASTSETE MATERJALIDE OMADUSTE
MAARAMINE LAINETE INTERAKTSIOONI ABIL

Arvi RAVASOO ja Andres BRAUNBRUCK

On esitatud ultrahelil baseeruv meetod mittelineaarse elastse materjali
(konstruktsioonielemendi) mittepurustavaks katsetuseks. Meetod lidhtub kahe
pikilaine (ultraheli) samaaegse levi, peegelduse ja interaktsiooni modtmistulemus-
test ning vdimaldab harmooniliste lainete sageduste sobival valikul analiiiisida
katsekeha &irtel registreeritud vonkumiste harmoonikuid. Detailselt on uuritud
harmoonikute evolutsiooni ja interaktsiooni ning ndidatud, et laine harmoonikute
amplituudide ja faasinihete vdirtused sdltuvad materjali omadustest.
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