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Abstract. It is shown that if optical retardation is less than half the wavelength, the true values

of optical retardation and of the parameter of the isoclinic, including the direction of the first

principal stress, can be determined uniquely using phase-stepping. The result is especially
important for integrated photoelasticity where a priori information about the stress field is

limited. The influence of the measurement errors on the results is investigated and application
of the method described.
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1. INTRODUCTION

Voloshin and Burger ['] showed that optical retardation can be comparatively
easily determined automatically if it is less thanhalf the wavelength. However, they
did not consider determination of the isoclinics. j

Nowadays phase-stepping ismost widely used in automatic photoelastic
measurements. The idea of the method was introduced by Hecker and Morche [2]
and later considerably developed by Patterson and Wang [>~°], Kihara [®], Asundi

[7], Umezaki et al. [?], Quiroga and Gonziles-Cano [!?:!1], Ramesh and Mangal
[l2], and many others. A review of different phase-stepping methods is given in

[l3].
A number of problems are associated with the phase-stepping technique. Both

the optical retardation, A, and the isoclinic angle, ¢, are found using an arctangent
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operator. The data obtained lie in the ranges

N N
ekes 1

N N
—— RS2_A_2 (2)

The following questions arise. First, which of the principal stress axes, o or

09, 1s determined by ¢? Second, how to find the true value of A? Besides, optical
retardation is determined by the formula

A= C2T7r(Ol - oa)t, (3)

where (' is the photoelastic constant, A is the wavelength, and ¢ is the thickness

of the model. Thus, A is essentially a positive parameter, although phase-stepping
algorithms may give it also a negative value.

In interpreting the measurement data, the operator has to identify optical
retardation at least at one point ['4]. Besides, the sign and the first derivative of

optical retardation are required to generate its continuous distribution [°]. For the

separation of the o 7 and o9y directions, no algorithm has been described in the

literature on phase-stepping. The method for determining the fast axis of a wave

plate, described in ['°], needs interferometric measurements and cannot be applied
with standard phase-stepping polariscopes.

Thus, in applying phase-stepping in two-dimensional photoelasticity, some

a priori information about the stress field is needed for interpretation of the

measurement data. Measurement data are interpreted for the whole field, using
conditions of continuity, boundary values, etc.

Integrated photoelasticity ['®] is nowadays mostly used for residual stress

measurement in axisymmetric glass articles [17:18]. Since stress distribution is

determined after solving an inverse problem for a system of Fredholm integral
equations, a priori information about the stress field is very poor.

Generally, in integrated photoelasticity the characteristic parameters are to be

measured [6l7]. A phase-stepping method for this purpose has been elaborated

by Tomlinson and Patterson [!°]. However, if birefringence is weak, optical
measurements are similar to those applied in two-dimensional photoelasticity
[17:29], only interpretation of the measurement data is different. In measuring
stresses in axisymmetric glass articles which are not tempered (e.g., bottles, neck

tubes of CRT bulbs, electric lamps, optical fibre preforms, etc.), optical retardation

is usually small (less than half the wavelength). In this case the algorithms of

integrated photoelasticity demand measurement of the isoclinic angle and of optical
retardation. Thus, ordinary phase-stepping can be used.

Figure 1 shows experimental set-up in integrated photoelasticity. In two-

dimensional photoelasticity measurement data on the boundaries can be interpreted

directly, but in integrated photoelasticity the light ray, which is tangent to the
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boundary at the point B, does not give any information. Stresses can be determined

only after measurements in the entire section have been carried out. Besides,

algorithms of integrated photoelasticity demand that the direction of oy should be

unambiguously known.

Therefore, using phase-stepping in integrated photoelasticity, it is of paramount
importance to reveal from the measured values of ¢ and A their true values

by identification of the direction of the first principal stress without any a priori
information about the stress (and birefringence) field. Our goal will be to develop
such a phase-stepping algorithm.

2. ALGORITHM FOR CALCULATING TRUE VALUES OF ¢ AND A

2.1. Circularly polarized incident light

We shall use a polariscope with two polaroids and two quarterwave plates
supplied with a CCD camera for recording the distribution of light intensity. Thus,
incident light iscircularly polarized. However, to be able to establish unique values

for ¢ and A, we have to know whether the circularly polarized incident light isright-
handed or left-handed [%']. Therefore, we have to distinguishbetween fast and slow

axes of the quarterwave plates as well as of the model. Which principal stress in the

model corresponds to the slow axis can be established beforehand. In the following,
azimuths of the quarterwave plates and of the model are always givenrelative to the

slow axis which is considered to be the axis of o 1 in the model.

Optical arrangement of the polariscope is shown inFig. 2. The intensity of light
transmitted for arbitrary values of the angles ¢, 1, and /3 is obtained as [!3]

I=l,+ %lo[l —sin2(B —1) cos A + sin2(p —W) cos2(B -- Y)sinA], (4)

where [ accounts for the amplitude of light and I, for the background light.

Usually six recordings of I with different values of 9 and [ are used for

evaluating ¢ and A. They can be chosen as follows [**l2]:

Fig. 1. Experimental set-up in integrated photoelasticity.
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l)Yy=o, p=-n/4

L =l+ šIo(l + cos A), (5)

Q)Y =O, - f=nl4

I =l+ —š—lg(l — cos A), (6)

3)YW=7/2, P=x/2

I3 =l, + %Io(l — sin2psin A), (7)

4 =-w/4, B=-r/f/4:

Iy =1 + šIo(l + cos2psinA), (8)

s)yp=o, p=o

Is=l,+ %10(1 +sin2psin A), (9)

Fig. 2. Optical arrangementof the polariscope with circularlypolarized incident light; @l, @2,
quarterwave plates; 81, S2, Sm, slow axes of optical elements.
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6)yp=mn/4, B=mr/4

Is =1 + —š—Io(l — cos 2p sin A). (10)

Let us mention that Quiroga and Gonzéles-Cano ['*:!l] suggested to measure

eight intensities of light. Although that may have some advantages in reducing
measurement errors, an additional ambiguity appears in determining the angle ¢.

Usingmeasured light intensities, the isoclinic angle ¢, and the fractional optical
retardation A, can be calculated as

1 Is — I 3
Pe = žarctan (—l—4——l6) , (11)

Is —I 3 Iy— Iy
A- = arct —— — | = arct ———

.

12
¢

Lo ((11
—

Ig)sinZgDC) ey ((I1
— I») cos 2<pc) (12)

By Eq. (11), the latter formula can also be written as

x
/ —

2
—

2

AC = avctan
—(IS—..Ä'?.—).—.ML

: (13)
I — Iy

With subscript “c” we underline that the calculated values ¢, and A, may not be

equal to the true values of ¢ and A. The angle ¢, gives the direction of the principal
stress axis which is closest to the z-axis. The true angle ¢, which determines the

direction of the slow axis, may be ¢ or ¢ + 7/2. ;
The true value of optical retardation A may be | Ae ], 7+ | Ae ], 7— | Ae |,

or 27 — | Ae |. Besides, A has always a positive value, but Eq. (12) reveals A,
which may be positive or negative.

Thus, the problem is how to extract from the calculated values ¢, and A, the

true values of ¢ and A. Considering the values of ¢ and A in the ranges

—
— — 14

o<A<2m, (15)

the corresponding values of light intensities can be calculated from Egs. (5)—(10).

After that ¢, and A, can be calculated from Egs. (11) and (12). The results are

qualitatively shown in Table 1. -
In case A < m, only columns 2 and 3 are important. Inboth columns all possible

four combinations of the signs of ¢, and A, are present. Thus, the first problem is

to determine whether A is smaller or bigger than 7/2. Numerical calculations have

shown that for a certain value of A, two values of A are possible:

A = |A], (16)

A; = 1-|Ac]|. (17)
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The true value of A can be found by calculating the values of I; for A; and Ay;
let us denote them I, and 115. These values of light intensity should be compared
with the experimentally measured value of I; which we denote 17. Dependence of

I, on optical retardation is shown in Fig. 3.

The true value of A is found by comparing the following expressions:

W = |lnu-Jil, (18)

Va = |h2-i]|. (19)

Fig. 3. Dependence of I; on optical retardation

0<A<m/2 n/2<A<m T<A<3n/2 3n/2<A<2m

A = A A = 7- A A=7+JA] A = 21— jA

| ;

-n/2<Qp<-1/4 ¢.>0 ¢.>0 ¢.>0 ¢.>0

¢ =¢.-n/2 A.<0 A.>0 A.<0 A>0

-n/4<9<0 ¢.<0 0.<0 P. <0 P. <0

¢ =0, A.>0 A.<0 A.>0 A.<0

0O<p<n/4 ¢.>0 ¢.>0 ¢.>0 p>0

P = 0. A.>0 A.<0 A.>0 A.<0

n/4<@Q<T/2 P. <0 P. <0 P.<0 P.<0

P = P.+7/2 A.<0 A.>0 A.<0 . A.>0

Table 1. Relationship between true (¢, A) and calculated from Egs. (11) and (12) ((pc , AC)
values of @ and A
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If V 1 < V3, then A = Ay; in the opposite case A = Aj,. In such a way we have

determined which column, 2 or 3, in Table 1 is related to the measurement data.

We can see in Table 1 that inside one column the signs of ¢, and A, determine

uniquely the range of ¢. It is shown how the true value of ¢ must be calculated from

©., depending on the signs of ¢, and A..
The described algorithm for single-valued determination of ¢ and A is easy to

realize in software. The algorithm does not need any interference of the operator.
Since the angle ¢ gives the azimuth of the slow axis of the model, the directions of

o 1 and o 9 are determined unambiguously. The same algorithm is valid when four

light intensities are recorded [%?].
Table 1 may be useful for interpreting measurement data also in case A has an

arbitrary value.

2.2. Linearly polarized incident light

In the phase-stepping method proposed by Kihara [®], twelve light intensities are

recorded in a polariscope with linearly polarized incident light and a quarterwave
plate before the analyser:

IL = 1-—sin?2psin? é
5

(20)

A
I, = sin?2psin? > (21)

1 A
iy =

3 + sin 2¢ cos 2¢ sin?
7 (22)

1 A
4 =

>
sin 2w cos 2w sin?

2 (23)

1
l = ž(l+sin2<psinA), (24)

Iy = š(l—sianpsinA), (25)

I = 13, (26)

Is = I, (27)

Iy = 1-cos? 2w sin? é
3

(28)

A ,
Io = cos? 2p sin?

5 (29)

1
y = ž(l—cos2<psinA), (30)

1
Hy = ž(l+cosZcpsinA). (31)

Here we have ignored the background intensity of light. Denoting

I =II-Ij, (32)
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we obtain expressions for calculating ¢, and A, in the form

=

l
arctan Ä (33)eD Lo’

—

22

Ac- = 2arccos A = 2arctan —%l4— , (34)

where

1

A=4 5(11,2 + Iy 10) - (35)

If we take in Eq. (35) always A > 0, also A, > 0. If A < 7, Eq. (34) gives
for A, always the true value, i.e., A = A,.

Dependence of ¢, on ¢ and A is the same as shown in Table 1.

O0<A<m/2 n/2<A<T n<A<3mn/2 3n/2<A< 2n

A=A, A=A, A=2m-A, A=2m-A,

1 s

o,<0 o, <0 o,>0 o, >0

:;/__2_ fp‘fj;tzm o,<0 o,<0 , >0 o,>0

0,<0 , >0 , >0 , <0

0 <0 ;<0 o,>0 o, >0

—n/4_<(p<0 o,>0 | ,>0 , <0 ,<0

P
, <0 o3>0 0y>0 0, <0

o,>0 o,>0 o, <0 o,<0

0<(p—<1c/4 o,>0 o,>0 ,<0 o,<0
PS

, <0 o3>0 ;>0 03<0

o, >0 o,>0 a,<0 a,<0

1;/:<(p(p:://22 , <0 , <Ü , >0 o,>0
c

y<0 o3>0 , >0 , <0

Table 2. Dependence of 0.,0,, and 0; on A and ¢
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Let us denote

oy = 215—1=1-—2I(;, (36)

Qg = 2[12—1-"—‘l—2]ll, (37)

1

Table 2 shows how the signs of «; depend on the values of A and ¢. For

0 < A < 7 the value of ¢ can be unambiguously determined from this table.

3. ANALYSIS OF MEASUREMENT ERRORS

Intensities of light are measured with certain errors. It is of practical interest

to establish the influence of these errors on the precision of A, and ¢.. We shall

find in the classical way maximum errors of ¢, and A, as total differentials of the

corresponding functions. We consider the case when the incident light is circularly

polarized.
From Eq. (11) the absolute value of the maximum possible error of ~D,

can be expressed as

OP, dpc
Dy, < |——| DI ——| DI 39Pe

< )8153,. 53 + '314,6 4,6 5 (39)

and D 1;; is the absolute maximum error ofZ;;.
From Egs. (11) and (39) we obtain

I|cos2¢.| Dlss 1 |sin2¢.| Dlyg
PP oo i 3 fpone Ulbt. el 40‘pc—zisinAcl h 2sna h

(40)

The maximum possible error of A., DA, is obtained fromEq. (13):

OA oA oA
DA. <|22 ¢DT —“|DI —|Dlla6. 4

e ’311,2| e Iõfõ,s' 53 + löh,sl + 1)

Equations (40) and (41) can be written as

e | cos 2¢ | + | sin2¢p, | j
IsinAc]

(42)

DA, <2[| sinA, | + | cos A, | (| sin2¢, | + | cos2¢, |)]e, (43)

where we have assumed that all the light intensities are measured with the same

error £: : o

e=Pli Dlii 2. (44)
2 k
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From Eq. (42) it follows that the error D, is large when A, is small or close

to . The function

Fi =| cos2¢p, | + | sin2¢, | (45)

obtains a maximum at ¢, = 7/8 when F; = /2. Thus,

\/é-
Dw.= —

e
max Do, =le (46)

The function

Fy =|sinA. | +V2 | cos A,| (47)

obtains its maximum value at A, = 35° when F 5, = 1.73. From Eq. (43) we get

max DA, = 3.46¢. (48)

Formulae (46) and (48) give the maximum possible values of the absolute errors

of ¢, and A.. Similar analysis may be carried out for the case when incident light
is linearly polarized.

4. EXPERIMENT

The above theory was implemented in a computer controlled polariscope. The

polarizer, analyser, and both quarterwave plates were supplied with stepper motors

for their rotation. Light intensities in the field of view (DD = 40 mm) were recorded

using a CCD camera and frame grabber. The algorithm described in Section 2.1 was

realized in the software.

The test object was a pharmaceutical bottle. First, in a section of the specimen
the distribution of A and of the azimuth of o 7 was measured with a manual

polariscope using a Berek-type compensator. The latter enables unambiguous
determination of the azimuth of 01.

The same section was measured also by applying the phase-stepping technique
described above, using circularly polarized incident light. The comparison of the

results is shown in Figs. 4 and 5. Agreement of the results is fairly good. Figure 6

shows that distributions of the axial stress, obtained by the two methods, are very

close. In Fig. 7 the distribution of the axial stress in an area of the bottle wall is

shown.

Let us mention that the algorithm described in this paper gives reliable results

when, before calculating the values of ¢ and A, the background light intensity
is deducted from the measured intensities and the intensities are normalized, e.g.,

dividing them by I + I = I.
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Fig. 4. Distribution of the azimuth of ¢; in a section of a pharmaceutical bottle

Fig. 5. Distribution of optical retardation in a section of a pharmaceutical bottle

Fig. 6. Distribution of the axial stress in a section of a pharmaceutical bottle
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5. SUMMARY

An algorithm for single-valued interpretation of the phase-stepping
measurement data for the case of optical retardation being less than half the

wavelength was elaborated. The algorithm gives also the direction of the first

principal stress. The influence of the measurement errors was analysed. Themethod

was implemented into a computer controlled polariscope. Comparison of the new

method with manual measurements showed that it would give reliable results.

ACKNOWLEDGEMENT

The support of the Estonian Science Foundation under grant No. 3595 is greatly
appreciated.

REFERENCES

1. Voloshin, A. S. and Burger, C. P. Half-fringe photoelasticity: A new approach to whole-

field stress analysis. Exp. Mech., 1983,23, 3, 304-313.

2. Hecker, F. W. and Morche, B. Computer-aided measurement of relative retardations in

plane photoelasticity. In Experimental Stress Analysis (Weiringa, H., ed.). Martinus

Nijhoff Publishers, Dordrecht, 1986,532-542.

3. Patterson, E. A. and Wang, Z. F. Towards full field automated photoelastic analysis of

complex components. Strain, 1991,27, 2, 49-56.

Fig. 7. Distribution of the axial stress in an area of the wall of a pharmaceutical bottle: z, axial

coordinate; 10 pixels equal approximately 0.5 mm.



210

4. Patterson, E. A. and Wang, Z. F. Advantages and disadvantages in the application of

phase-stepping in photoelasticity. In Applied Solid Mechanics — 4 (Ponter, A. R. S.

and Cocks, A. C. F, eds.). Elsevier Applied Science, London, 1991, 358-373.

5. Wang, Z. F. and Patterson, E. A. Use of phase-stepping with demodulation and fuzzy sets

for birefringence measurement. Opt. Lasers Eng., 1995,22, 2, 91-104.

6. Kihara, T. Automatic whole-field measurement of photoelasticity using linear polarized
incident light. In Proc. 9th International Conference on Experimental Mechanics.

Copenhagen, 1990, 2, 821-827.

7. Asundi, A. Phase shifting in photoelasticity. Exp. Tech., 1993,17, 1, 19-23.

8. Umezaki, E., Kawakami, T., and Watanabe, H. Automatic whole-field measurement of

photoelastic fringe parameters using generalized phase-shift method. In Proc. XXV

AIAS National Conference — International Conference on Material Engineering.
Gallipoli-Lecce, Italy, 1996, 259-266.

9. Umezaki, E., Nanka, Y., and Watanabe, H. Multiplication and extraction of photoelastic
fringes using image processing. In Proc. XXV AIAS National Conference—Inter-
national Conference on Material Engineering. Gallipoli-Lecce, Italy, 1996, 267-274.

10. Quiroga, J. A. and Gonziles-Cano, A. Phase measuring algorithms for extraction of

information of photoelastic fringe patterns. In Proc. 3rd International Workshop on

Automatic Processing ofFringe Patterns (Jiiptner, W. and Osten, W, eds.). Akademie

Verlag, Berlin, 1997, 77-83. |
11. Ouiroga, J. A. and Gonzäles-Cano, A. Phase measuring extraction of isochromatics of

photoelastic fringe patterns. Appl. Opt., 1997, 36, 32, 8397—8402.

12. Ramesh, K. and Mangal, S. K. Automation of data acguisition in reflection photoelasticity
by phaseshifting methodology. Strain, 1997, 33, 3, 95-100.

13. Ajovalasit, A., Barone, S., and Petrucci, G. A review of automated methods for the

collection and analysis of photoelastic data. J. Strain Anal. Eng. Des., 1998, 33, 2,
75-91.

14. Haake, S. J., Wang, Z. F,, and Patterson, E. A. Evaluation of full field automated photo-
elastic analysis based on phase stepping. Exp. Tech., 1993, 17, 6, 19-25.

15. Chiu, M.-H., Chen, C.-D., and Su, D.-C. Method for determining the fast axis and phase
retardation of a wave plate. J. Opt. Soc. Am., 1996, A 13, 9, 1924-1929.

16. Aben, H. Integrated Photoelasticity. McGraw-Hill, New York, 1979.

17. Aben, H. and Guillemet, C. Photoelasticity, ofGlass. Springer-Verlag, Berlin, 1993.

18. Aben, H., Ainola, L., and Anton, J. Residual stress measurement in glass articles of

complicated shape using integrated photoelasticity. In Proc. XXV AIAS National

Conference — International Conference on Material Engineering. Gallipoli-Lecce,
Italy, 1996, 291-299.

19. Tomlinson, R. A. and Patterson, E. A. Evaluating characteristic parameters in integrated
photoelasticity. In Experimental Mechanics. Vol. 1 (Allison, 1. A., ed.). Balkema,
Rotterdam, 1998,495-500.

20. Aben, H. K., Josepson, J. 1., and Kell, K.-J. E. The case of weak birefringence in

integrated photoelasticity. Opt. Lasers Eng., 1989, 11, 3, 145-157.

21. Theocaris, P. S. and Gdoutos, E. E. Matrix Theory ofPhotoelasticity. Springer-Verlag,
Berlin, 1979.

22. Patterson, E. A. and Wang, Z. F. Simultaneous observation of phase-stepped images for

automated photoelasticity. J. Strain Anal. Eng. Des., 1998, 33, 1, 1-15.



211

POOLLAINE FAASISAMMUDE MEETOD PEAPINGETE SUUNDADE

ERALDAMISEGA

Hillar ABEN, Leo AINOLA ja Johan ANTON

On nédidatud, et juhul kui optiline kdiguvahe on viiksem kui pool lainepikkust,
on voimalik faasisammude meetodil saadud moGtmistulemustest {iheselt médrata

nii optiline kdiguvahe kui ka esimese peapinge suund. On esitatud meetodi algoritm

ning tuletatud valemid maksimaalse voimaliku vea arvutamiseks. Meetod on

realiseeritud automaatpolariskoobis, mille abil saadud tulemusi on vorreldud käsitsi

mootmisel saadutega.
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